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Myasthenia gravis (MG) patients with antibodies against the muscle specific tyrosine kinase (MuSK +) have
predominantly involvement of cranio-bulbar muscles and do not display thymus pathology, as do acetylcholine
receptor antibody seropositive (AChR+) MG patients. In search of novel biomarkers for MuSK+ MG, we
evaluated circulating serum microRNAs. Four analyzed microRNAs were specifically elevated in MuSK+ MG
patient serum samples: let-7a-5p, let-7f-5p, miR-151a-3p and miR-423-5p. The circulating microRNA profile in

ﬁi:zgz;edﬁc tyrosine kinase M.uSK-!- MG. differs from the profile previou.sl.y observed in the serum of AFhR+ MG, thus indicating the
MuSK etiological difference between these two entities. We propose that the identified microRNAs could serve as
Myasthenia gravis potential serum biomarkers for MuSK + MG.

MG © 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
MicroRNA (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Let-7

Biomarker

1. Introduction

Myasthenia gravis (MG) is a chronic autoimmune disorder, caused
by an antibody-mediated attack against proteins of the neuromuscular
junction (Berrih-Aknin, 2014). In a subtype of MG, antibodies (abs) tar-
get the postsynaptic muscle specific tyrosine kinase (MuSK + ). MuSK +
MG, that represents approximately 5-7% of the MG spectrum, appears
to be more common in Mediterranean countries and is predominantly
characterized by involvement of cranio-bulbar muscles and an in-
creased rate of muscle wasting (Evoli et al., 2003). MuSK abs differenti-
ate themselves in that they are mainly of the IgG4 subtype compared to
the more common form of MG with predominantly IgG1 subtype abs
against the acetylcholine receptor (AChR + ). The MuSK IgG4 abs inhibit
agrin-dependent MuSK activation by interfering with Lrp4-MuSK bind-
ing, and this is considered one of the key effector mechanisms of the
MuSK abs (Huijbers et al., 2013; Koneczny et al., 2013). The MuSK
IgG4 abs vary from other IgG antibodies in various functional aspects;
for example, IgG4 abs do not activate the complement system. Still,
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prominent B-cell pathology, that has been described in AChR + MG,
was recently reported in MuSK+ MG (Guptill et al,, 2015).

MuSK abs are very specific and their detection in patients with ob-
jective signs of skeletal muscle fatigue and disturbed neuromuscular
transmission confirms MG diagnosis. Furthermore, serum concentra-
tion of MuSK abs decreases upon immunosuppression and correlates
with disease severity (Bartoccioni et al., 2006). Nevertheless, the
MuSK ab titer does not necessarily predict the course of the disease
and thus more reliable biomarkers are needed for individual treatment
and clinical trials (Kaminski et al., 2012; Meriggioli and Sanders, 2012).

Mammalian microRNAs (miRNAs) are important small non-coding
regulatory RNAs that impede gene expression by blocking translation
of their target messenger RNAs (mRNAs) (Krol et al., 2010). Quantita-
tive detection of cellular miRNAs can be used to describe disease status,
as abnormal presence of certain miRNAs correlates with the pathogen-
esis of diseases such as cancer and diabetes (Esteller, 2011; Kasinski and
Slack, 2011). In addition to their intracellular accumulation, miRNAs can
also be released from the cells into the extracellular space. The released
miRNAs enter the circulation packed into the exosomes, where the
miRNAs are protected from degradation (Zhang et al., 2015). The de-
tection of circulating miRNAs in patient biofluids has been considered
a novel approach to detect progression of cardiovascular diseases and
malignant growth (Creemers et al.,, 2012; Etheridge et al., 2011)
as well as monitoring the disease state in multiple sclerosis (MS)
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(Gandhi et al., 2013). Recent studies in AChR + MG have identified
miR-151-5p and miR-21-5p as disease-specific miRNAs with dif-
ferent accumulation patterns in immunosuppressed and non-
immunosuppressed patient sera (Punga et al., 2014, 2015). Since
MuSK+ MG clinical phenotype is different from AChR+ MG, it
would be important to analyze the possible involvement of circulat-
ing miRNAs in this MG entity.

Thus, the aim of the present study was to identify serum circulating
miRNAs specific for MuSK+ MG patients.

2. Material and methods
2.1. Subjects

In this study we included 25 patients with MuSK + MG, in different
stages of their disease, who were regularly followed at the Neurology
Clinic of the Catholic University Hospital, Rome, Italy. At time of diagno-
sis, all patients had muscle weakness and fatigability, together with ev-
idence of impaired neuromuscular transmission during low-frequency
repetitive nerve stimulation and/or single-fiber EMG, and positive
serum MuSK ab titers (>0.05 nM/I) in a standard radioimmuno-
precipitation assay. Three patients never received any immunosuppres-
sive therapy, 9 patients were treated with prednisone and 13 patients
were treated with prednisone and other immunosuppressants; two of
these patients received rituximab. At time for blood sampling six pa-
tients did not have any ongoing immunosuppression (Table 1). Three
patients had undergone thymectomy and in all, histologic examination
revealed a thymus that was histopathologically normal for their age.
Serum samples were obtained from MG patients and from age and gen-
der matched healthy controls after informed consent. These studies
were approved by the local Ethics Committees [Uppsala-Sweden
(Dnr. 2010/446) and Rome, Italy (authorization number ID P/529/
CE/2011))]. Disease severity was classified according to the
Myasthenia Gravis Foundation of America (MGFA) system (Jaretzki

Table 1

et al., 2000); clinical status at the time of the study was graded ac-
cording to a semi-continuous disease severity score (DSS) (Niks
et al., 2008).

The discovery set (N = 10) included five MuSK+ MG patients, out
of whom three were on immunosuppressive therapy (see Table 1).
The discovery set also included five age- and gender-matched healthy
Italian controls (HCs).

The validation set (N = 40) consisted of 20 MuSK + MG patients and
20 age-and gender-matched healthy controls. Demographics of the dis-
covery and validation sets are shown in Table 1. All patients and healthy
controls were of Italian ethnicity.

2.2. Serum circulating miRNA isolation

Blood samples were collected in tubes without any additives, stored
at room temperature for at least 20 min, and then centrifuged at
4000 rpm at 20 °C for 5 min. Total RNA was isolated from 200 pl
serum by using a miRCURY™ RNA Isolation Kit-Biofluids (Exiqon
#300112), according to the manufacturer's instructions. Two microli-
ters of isolated RNA sample was used for cDNA synthesis in 10 pl reac-
tion mix using the Universal cDNA Synthesis Kit I (Exiqon #203301).

2.3. Serum circulating miRNA expression analysis

2.3.1. miRNA analysis using microRNA PCR panel

Initial miRNA detection experiments were performed on Serum/
Plasma Focus microRNA PCR Panel (V4.M) using EXiLENT SYBR®
Green master mix (Exiqon #203420) as recommended by the manufac-
turer. This panel covers the detection primers for 179 human miRNAs
and was used for profiling the discovery set of five patients and five
age- and gender-matched HCs. The qRT-PCR data from Serum/Plasma
Focus microRNA PCR Panels were examined with GenEx software
(Exiqon) according to the recommendations from Exiqon. In this pro-
cess the inter-plate calibration, approved quality controls (RNA-spike-

Clinical data on the 25 MuSK antibody seropositive patients assayed. Disease dur (duration) is stated in years from MG diagnosis. M, male; F, female; MGFA; Myasthenia Gravis Foundation
of America; IS, immunosuppressive; pred; prednisone; AZA, azathioprine; CyA, cyclosporine; MMF, mycophenolate; RTX; rituximab; *pharmacological remission; #complete stable
remission. **Treatments with rituximab were given. N-m failure; examination of neuromuscular transmission failure with neurophysiological methods. RNS, repetitive nerve stimulation;
SFEMG, single fiber electromyography. —, normal; +, abnormal neuromuscular transmission; n.p., not performed. HC, healthy control. Current MuSK antibody (ab) titer is stated.

Pat # Age/sex Disease dur Max MGFA IS therapy during MuSK ab MG grade IS now N-m failure HC
grade disease course titer (nM) RNS/ SFEMG Age/sex

Discovery set (N = 10)

1 59F 46 3b None 4.7 3 No +/+ 59F
2 61F 9 3b Pred, AZA 3.5 3 Yes n.p/+ 62F
3 39M 8 2b Pred 0.5 1# No n.p/+ 39M
4 47F 15 3b Pred, CyA 6 2 Yes —/+ 50F
5 35F 22 5 Pred, AZA 123 3 Yes +/+ 36F
Validation set (N = 40)

11 81F 10 2b None 53 2 No —/+ 82F
12 59F 1 5 Pred, AZA 3.98 2 Yes +/+ 59F
13 60M 2 2b Pred 6.4 1* Yes —/+ 60M
14 64F 16 5 Pred, AZA 5.48 3 Yes —/+ 64F
15 62F 2 2b None 1.5 2 No —/+ 62F
16 31M 3 3b Pred 7.19 2 Yes n.p./+ 31M
17 24F 8 3b Pred, AZA 2.8 2 Yes —/+ 20F
18 48M 18 3b Pred 3 2 No —/+ 48M
19 28M 2 3b Pred 0.5 2 Yes +/n.p 30M
20 43M 5 3b Pred, AZA, MMF** 8.08 3 Yes +/+ 41M
21 61M 6 3b Pred, AZA, MMF 0.91 2 Yes +/n.p. 61M
22 36F 16 3b Pred 5.9 2 Yes +/+ 36F
23 38F 4 4b Pred, AZA 0.9 2 Yes +/+ 38F
24 45F 9 5 Pred 0 1* Yes +/n.p. 47F
25 42F 4 5 Pred, AZA 39 3 Yes —/+ 43F
26 35M 10 3b Pred 0.8 1# No —/+ 34M
27 41F 1 4b Pred, AZA, CyA, MMF 7.33 3 Yes —/+ 38F
28 34F 5 5 Pred, AZA, CyA** 5.95 3 Yes +/n.p. 33F
29 27F 15 5 Pred, AZA 0 1* Yes +/+ 28F
30 21F 1 3b Pred 0.80 2 Yes —/+ 26F
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in) and hemolysis test (see below) were included. Analyzing the sug-
gested candidate genes using the “NormFinder and geNorm” applica-
tions available in the GenEx software, we chose reference miRNAs
miR-191-5p and miR-103a-3p.

2.3.2. Screening of the individual miRNAs

The qRT-PCR analysis was performed using EXiLENT SYBR® Green
master mix (Exiqon #203420) on custom made 384-well Pick-&-Mix
microRNA PCR panel plates (Exiqon #203815) pre-coated with validat-
ed primer sets to amplify target miRNAs. The cDNA reactions were dilut-
ed 100x in ExiLENT SYBR® Green master mix before being applied to
the Pick-&-Mix microRNA PCR panel plates. All qRT-PCR reactions
were analyzed with the Applied Biosystems 7900HT Fast Real-Time
PCR System (Life Technologies) as described previously (Punga et al.,
2014). The following quality controls were included on Pick-&-Mix
microRNA PCR panel plates: inter-plate calibration (UniSp3), RNA
extraction control (UniSp2 and UniSp4), cDNA synthesis control
(UniSp6) and hemolysis test (miR-23a-3p-miR-451a) (all from
Exiqon). The ACT value of hemolysis markers (ACT hemolysis) =
CT(mir-23a-3p) — CT(mir-451a)), Was used to detect hemolysis. A
ACT > 7 in serum samples indicates a high risk of hemolysis and
therefore these samples were not used for further analysis.

Normalization of individual miRNA levels was done according to
GenEx manual guidelines (Exiqon). Relative quantities for the discovery
cohort were calculated by using the healthy blood donors as a control
group. Quantification of relative miRNA expression on the validation
set was performed with the comparative CT method using the formula
27AACT where ACT = (CT gene of interest — CT reference gene) of
each sample, using miR-191-5p and miR-103a-3p as the reference
miRNA (Schmittgen and Livak, 2008).

2.4. Statistical analysis

Log conversion of the data in the discovery set was done in order to
obtain data more similar to a normal distribution for the statistical tests.
An unpaired two-tailed t-test of independent samples was performed,
comparing MG and control groups with the null hypothesis that the
mean values of the different miRNAs were the same across MG and con-
trol categories. In the discovery set, candidate miRNAs were selected if
they were significantly differentially expressed in the MG versus HC
group. Exclusively miRNAs that were found to be reduced or elevated
in each individual patient compared to his/her matched control were
selected for the validation set analysis. Spearman Rank correlation was
performed in order to determine the correlation coefficient between
disease duration, MuSK ab titer, age and differentially expressed
miRNAs. Statistical significance was defined as p < 0.05.

3. Results

3.1. Circulating miRNA profile in MuSK + MG patient sera in the discovery
set (N =10)

The discovery set included five MuSK 4+ MG patients (mean age:
49 + 10 years; 4 women) who had mean disease duration of 20 £ 15
years. In this cohort, age of MG onset ranged from 13 to 52 years of
age. Three patients were currently on immunosuppressive treatment
and two patients (#1 and #5) had undergone thymectomy (Table 1).
These patients were age- and gender-matched with five healthy blood
donors (mean age: 48 4+ 10 years, 4 women) without any diagnosed
disease. Patients #1,2,3 and 4 had no concomitant disease, whereas pa-
tient #5 had thyroiditis.

The first step was to evaluate the circulating miRNA profile in sera of
patients with MuSK + MG. For this purpose, the discovery set samples
of five MuSK+ MG patients and five age- and gender-matched HCs
were analyzed. Importantly, none of the discovery set serum samples
showed significant signs of hemolysis (ACT < 6.5). Normalization of

Table 2

Differentially expressed miRNAs in the discovery set. Selection of miRNAs of interest
among the 107 miRNA validated from the discovery set of 179 miRNAs. Comparing five
MG patients with MuSK antibodies (MuSK +) versus five healthy controls, miRNAs were
selected when a p-value <0.05 was found on unpaired two-sided t-test and the miRNAs
were elevated in each individual MuSK+ MG patient compared to its matched healthy
control (bold).

microRNA Fold change (log) Fold change (log) p-Value
elevated reduced
hsa-miR-151a-3p 2.63 0.000887
hsa-let-7f-5p 3.76 0.01040
hsa-miR-423-5p 4.30 0.0118
hsa-let-7d-3p 3.68 0.0178
hsa-miR-10b-5p 3.48 0.0247
hsa-miR-376¢-3p 3.75 0.0324
hsa-let-7a-5p 2.03 0.0327
hsa-miR-484 317 0.0342
hsa-miR-409-3p 4.46 0.0351
hsa-miR-421 2.99 0.0447
hsa-miR-25-3p 1.95 n.s.
hsa-miR-140-3p 1.05 n.s.

the miRNA expression was done using the recommended reference
miRNAs (miR-191-5p and miR-103a-3p). Out of 179 tested miRNAs,
107 miRNAs showed amplification in more than 60% of the samples
and were thus further analyzed. Twelve miRNAs were found to be
strongly elevated or reduced in the MuSK + MG patients (Table 2).
Out of these candidates, 10 miRNAs had p-values <0.05 after statistical
analysis with t-test, visualized in the volcano plot (Fig. 1). These data
were supported by principal component analysis (Supplemental
Fig. 1), indicating different expression of the 10 miRNAs between MG
patients and HC. Clustering of different miRNAs in a heat map analysis
was in accordance with these data (Supplemental Fig. 2).

3.2. Individual validation of the miRNA expression pattern (N = 40)

The six miRNAs that were found to be significantly altered between
all individual MuSK+ MG patients and HCs in the discovery set
(Table 1) were further analyzed by qRT-PCR in sera from a larger Italian
cohort. The validation cohort included 20 MuSK + MG patients (mean
age: 44 4 16 years; 13 women) who had mean disease duration of
7 + 6 years. Age at disease onset in this MuSK + MG cohort ranged
from 13 to 71 years of age. Sixteen MuSK + MG patients were immuno-
suppressed at the time of sampling and one had undergone
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Fig. 1. Volcano plot of the 107 expressed miRNAs in the discovery set (N = 10). The
differentially expressed miRNAs with p < 0.05 on t-test (yellow dots; shown in Table 2)
were further analyzed in the validation set. All dots under the red line (gray or red) did
not differentiate between MuSK+ MG patients (MG; N = 5) and healthy controls (Ctrl;
N = 5). The Y-axis represents 10 log of the p-value and the X-axis represents log fold
change of miRNA expression in the MG versus healthy controls.
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thymectomy. Concomitant diseases were observed in five patients. Pa-
tient #11 had polycythemia, #21 had cerebral stroke, #26 and #30
had thyroiditis and #27 had cardiomyopathy. The patients were age-
and gender matched with 20 HC (mean age: 44 + 16 years; 13 women).

The haemolysis quote (ACT(haemolysis) = CT(miR—23a—3p) — CT(miR-
451a)) Was <6 in all MG and HC sera; hence all samples were further
processed. All selected miRNAs of interest had a stable amplification
in all of the individual samples with good expression (CT < 34), ex-
cept for one MuSK+ MG sample (M17; Table 1) and one healthy
control (C41; Table 1), with reference CT > 35, and were thus ex-
cluded. Based on these results, we were able to validate four
miRNAs that were differentially expressed in MuSK+ MG patients
and HCs: miR-151a-3p (p = 0.0212; Fig. 2A), let-7a-5p (p =
0.0464; Fig. 2B), let-7f-5p (p = 0.0050; Fig. 2C) and miR-423-5p
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(p = 0.0473; Fig. 2D), whereas let-7d-3p (p = 0.115; Fig. 2E) and
miR-409-3p (p = 0.8234; Fig. 2F) were not significantly altered in
the validation cohort. The ROC curve (area under the curve; AUC)
for these validated, deregulated miRNAs displayed the strongest as-
sociation with MG for miR-151a-3p and miR-423-5p (both AUC of
0.740), followed by let-7f-5p (AUC of 0.726) and let-7a-5p (AUC
of 0.659) (Fig. 3). Disease duration among the validation cohort of
MuSK+ MG patients ranged from 1 to 18 years (mean 6.9 +
6.0 years). We found no correlation between disease duration and
expression level of any miRNA (p > 0.05). There was a correlation
between MuSK ab titer and clinical score (R = 0.67; p = 0.002),
however there was no significant correlation between individual
miRNAs and MuSK ab titres or between miRNA levels and disease
severity (data not shown).
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Fig. 2. Significantly altered miRNAs in MG patients (N = 19) compared to age- and gender-matched healthy blood donors (N = 19). Relative expression with individual values as well as
median + interquartile range (bars) are shown for the assayed miRNAs in the validation cohort: hsa-miR-151a-3p (A), let-7a-5p (B), let-7f-5p (C), miR-423-5p (D), let-7d-3p (E) and

miR409-3p (F). *p < 0.05; **p < 0.01.
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Fig. 3. ROC curve of all altered miRNAs, indicating sensitivity of each miRNA for MG: miR-151a-3p (A), let-7a-5p (B), let-7f-5p (C) and miR-423-5p (D).

4. Discussion

In the present report we have analyzed the presence and abundance
of circulating miRNAs in MuSK+ MG patient sera. Out of 179 analyzed
miRNAs, four miRNAs: let-7a-5p, let-7f-5p, miR-151a-3p and miR-423-
5p, showed significant enrichment in MuSK + MG patient sera. Previous
reports observed elevated levels of circulating miR-150-5p and miR-21-
5p in the sera of AChR + MG patients, with lower levels in immunosup-
pressed patients (Punga et al., 2015). Additionally, miR-150-5p was re-
duced upon thymectomy in correlation with clinical improvement
(Punga et al.,, 2014). In contrast to AChR+ MG, thymus pathology is
very uncommon in MuSK + MG, where the thymus does not seem to
play a pathogenic role (Marx et al., 2013). We chose not to include
AChR + patients in this study as a third comparator, since the previous
study on circulating miRNA profile in AChR+ MG did not indicate any
changed profile of any of the miRNAs let-7a-5p, let-7f-5p, miR-151a-
3p or miR-423-5p (Punga et al., 2014). Together with the difference be-
tween IgG1 AChR abs and IgG4 MuSK abs, it is not unexpected that
AChR + MG and MuSK+ MG are associated with different circulating
serum miRNAs.

The members of the let-7 miRNA family are among the most studied
miRNAs since they possess a functional impact on various cellular pro-
cesses including embryogenesis, neuronal development and glucose
metabolism (Gurtan et al., 2013; Patterson et al., 2014; Zhu et al,,
2011). Twelve different let-7 family members (let-7a-1, let-7a-2, let-
7a-3, let-7b, let-7c, let-7d, let-7e, let-7f-1, let-7f-2, let-7 g, let-7i, and
miR-98) are expressed in human cells (Roush and Slack, 2008). In addi-
tion to their intracellular roles, several members of the let-7 miRNA
family have been shown to be incorporated into exosomes and actively
secreted into the extracellular environment in the gastric cancer cell line

AZ-P7a (Ohshima et al., 2010). Quantification of the circulating miRNAs
in ovarian cancer and in non-small-cell lung carcinoma patient sera has
shown that let-7b and let-7f are significantly underrepresented in these
patient sera (Chung et al,, 2013; Silva et al,, 2011). In contrast, the pres-
ent study identified selective enrichment of two let-7 miRNA family
members, let-7a-5p and let-7f-5p, in MuSK + MG sera. In accordance
with our data, members of the let-7 miRNA family are highly elevated
in the sera of patients with multiple sclerosis (MS) compared to healthy
individuals (Gandhi et al., 2013). Especially, circulating serum let-7a
shows significant enrichment in patients with secondary progressive
MS (Gandhi et al., 2013). Thus, the enrichment of circulating serum
let-7 miRNAs might be a selective feature that patients with MuSK +
MG and MS have in common.

One function of the let-7 miRNAs in the immune response is T cell
activation through stimulation of the toll-like receptor 7 (TLR7)
(Wangetal., 2011). Intriguingly, engagement of TLR7 in CD4™* T cells ac-
tually induces unresponsiveness of T cells (Dominguez-Villar et al.,
2015). One confounding factor in our cohort was the large number of
immunosuppressed patients, since immunosuppression is known to at-
tenuate the Th1 response in MuSK+ MG (Yilmaz et al., 2015). This
problem is difficult to counteract, considering the relatively small inter-
national cohort of MuSK 4+ MG patients. On the contrary, lower levels of
let-7 miRNAs were previously reported in peripheral blood mononucle-
ar cells from MG patients compared to healthy controls (Jiang et al.,
2012). Nevertheless, in this particular study the authors did not present
antibody status of the MG patients, thus not allowing any comparison
with our data. A previous Spanish study examined circulating miRNA
of MG patients, however in this study only AChR + patients were in-
cluded and thus we cannot make direct comparisons to circulating
miRNA profiles of our MuSK + patients (Nogales-Gadea et al., 2014).
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The other serum circulating miRNAs associated with MuSK + MG
were miR-151a-3p and miR-423-5p. Unlike the established immune-
miRNA, miR-150-5p (Kroesen et al., 2015), miR-151-3p is instead
known as an oncomir (Chiyomaru et al., 2012). Increased levels of circu-
lating miR-151-3p are considered a positive indicator, and thus useful
biomarker in clinical trials for breast cancer (Krell et al., 2012). In addi-
tion, circulating miR-151-3p levels have been found to be reduced im-
mediately following aerobic exercise (Nielsen et al.,, 2014).

The last elevated miRNA, miR-423-5p, has been confirmed to be el-
evated in plasma from patients with heart failure and to be predictive
of its severity (Tijsen et al., 2010). Nevertheless, none of the patients
in our study had any signs of heart failure. Regarding concomitant dis-
eases, three patients had thyroiditis and three others had cardiomyopa-
thy, cerebral stroke and polycythemia respectively. This low prevalence
of concomitant diseases does not make us suspect that the observed
miRNA profile was due to another disease process than MuSK + MG.
The main limitation of the present study is that the group of MuSK + pa-
tients consists of a cross-sectional sample with relatively long disease
duration as well as immunosuppressive treatment in the majority of pa-
tients. Although we did not find any particular correlation between dis-
ease duration and any of the expressed miRNAs, both long disease
duration and concomitant medication could serve as potential con-
founders that may impact on outcome. Further, although all patients
had a normal thymus as is commonly seen in MuSK+ MG (Marx
et al., 2013), we cannot exclude that thymectomy impacted the
miRNA profile in a few patients.

In summary, the present study defined four circulating miRNAs
that were elevated in MuSK+ MG subtype. The identified miRNAs:
let-7a-5p, let-7f-5p, miR-151a-3p and miR-423-5p, all could serve
as potential biomarkers in addition to ab titres in MuSK + MG. There-
fore, we suggest further validation of these biomarkers in a larger in-
ternational cohort with a longitudinal follow-up study for diagnostic
and therapeutic purposes.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.jneuroim.2016.01.003.

Conflicts of interest
The authors declare that they have no conflicts of interest.
Acknowledgment statement

ARP was supported by the Swedish Society of Medicine (SLS-
330141), Uppsala Lins Landsting (LUL-350891), the Swedish Research
Council (VR-523-2014-2048), Neuroférbundet (NEURO Sweden) and
Selanders memorial foundation.

TP was supported by the Swedish Cancer Society (CAN 2013/350),
the Swedish Research Council (VR-Unga Forskare, K2012-99X-21959-
01-3) and the Swedish Research Council through a grant to the Uppsala
RNA Research Centre (URRC; 2006-5038-36531-16).

References

Bartoccioni, E., Scuderi, F., Minicuci, G.M., Marino, M., Ciaraffa, F., Evoli, A., 2006. Anti-
MuSK antibodies: correlation with myasthenia gravis severity. Neurology 67,
505-507.

Berrih-Aknin, S., 2014. Myasthenia gravis: paradox versus paradigm in autoimmunity.
J. Autoimmun.

Chiyomaru, T., Yamamura, S., Zaman, M.S., Majid, S., Deng, G., Shahryari, V., et al,, 2012.
Genistein suppresses prostate cancer growth through inhibition of oncogenic
microRNA-151. PLoS One 7, e43812.

Chung, Y.W., Bae, H.S,, Song, J.Y., Lee, ].K,, Lee, N.W., Kim, T., et al., 2013. Detection of
microRNA as novel biomarkers of epithelial ovarian cancer from the serum of ovarian
cancer patients. Int. J. Gynecol. Cancer 23, 673-679.

Creemers, E.E., Tijsen, AJ., Pinto, Y.M., 2012. Circulating microRNAs: novel biomarkers and
extracellular communicators in cardiovascular disease? Circ. Res. 110, 483-495.
Dominguez-Villar, M., Gautron, A.S., de Marcken, M., Keller, M]., Hafler, D.A., 2015. TLR7

induces anergy in human CD4(+) T cells. Nat. Immunol. 16, 118-128.
Esteller, M., 2011. Non-coding RNAs in human disease. Nat. Rev. Genet. 12, 861-874.

Etheridge, A., Lee, I, Hood, L., Galas, D., Wang, K., 2011. Extracellular microRNA: a new
source of biomarkers. Mutat. Res. 717, 85-90.

Evoli, A, Tonali, P.A., Padua, L., Monaco, M.L, Scuderi, F., Batocchi, A.P., et al., 2003. Clinical
correlates with anti-MuSK antibodies in generalized seronegative myasthenia gravis.
Brain 126, 2304-2311.

Gandhi, R., Healy, B., Gholipour, T., Egorova, S., Musallam, A., Hussain, M.S,, et al., 2013.
Circulating microRNAs as biomarkers for disease staging in multiple sclerosis. Ann.
Neurol. 73, 729-740.

Guptill, ].T., Yi, J.S,, Sanders, D.B., Guidon, A.C,, Juel, V.C., Massey, ].M,, et al., 2015. Charac-
terization of B cells in muscle-specific kinase antibody myasthenia gravis. Neurol.
Neuroimmunol. Neuroinflamm. 2, e77.

Gurtan, A.M., Ravi, A,, Rahl, P.B., Bosson, A.D., JnBaptiste, CK,, Bhutkar, A, et al., 2013. Let-7
represses Nr6al and a mid-gestation developmental program in adult fibroblasts.
Genes Dev. 27, 941-954.

Huijbers, M.G., Zhang, W., Klooster, R., Niks, E.H., Friese, M.B., Straasheijm, K.R,, et al.,
2013. MuSK IgG4 autoantibodies cause myasthenia gravis by inhibiting binding be-
tween MuSK and Lrp4. Proc. Natl. Acad. Sci. U. S. A. 110, 20783-20788.

Jaretzki 3rd, A., Barohn, RJ., Ernstoff, R.M., Kaminski, HJ., Keesey, J.C., Penn, A.S., et al.,
2000. Myasthenia gravis: recommendations for clinical research standards. Task
Force of the Medical Scientific Advisory Board of the Myasthenia Gravis Foundation
of America. Ann. Thorac. Surg. 70, 327-334.

Jiang, L., Cheng, Z., Qiu, S., Que, Z., Bao, W., Jiang, C,, et al., 2012. Altered let-7 expression in
myasthenia gravis and let-7c mediated regulation of IL-10 by directly targeting IL-10
in Jurkat cells. Int. Immunopharmacol. 14, 217-223.

Kaminski, HJ., Kusner, L.L, Wolfe, G.I, Aban, I, Minisman, G., Conwit, R, et al., 2012. Bio-
marker development for myasthenia gravis. Ann. N. Y. Acad. Sci. 1275, 101-106.
Kasinski, A.L, Slack, F.J., 2011. Epigenetics and genetics. MicroRNAs en route to the clinic:
progress in validating and targeting microRNAs for cancer therapy. Nat. Rev. Cancer

11, 849-864.

Koneczny, I, Cossins, J., Waters, P., Beeson, D., Vincent, A., 2013. MuSK myasthenia gravis
IgG4 disrupts the interaction of LRP4 with MuSK but both IgG4 and IgG1-3 can dis-
perse preformed agrin-independent AChR clusters. PLoS One 8, e80695.

Krell, J., Frampton, A.E., Jacob, J., Pellegrino, L., Roca-Alonso, L., Zeloof, D., et al., 2012. The
clinico-pathologic role of microRNAs miR-9 and miR-151-5p in breast cancer metas-
tasis. Mol. Diagn. Ther. 16, 167-172.

Kroesen, BJ., Teteloshvili, N., Smigielska-Czepiel, K., Brouwer, E., Boots, A.M., van den Berg,
A, et al, 2015. Immuno-miRs: critical regulators of T-cell development, function and
ageing. Immunology 144, 1-10.

Krol, J., Loedige, 1., Filipowicz, W., 2010. The widespread regulation of microRNA biogen-
esis, function and decay. Nat. Rev. Genet. 11, 597-610.

Marx, A, Pfister, F,, Schalke, B., Saruhan-Direskeneli, G., Melms, A., Strobel, P., 2013. The
different roles of the thymus in the pathogenesis of the various myasthenia gravis
subtypes. Autoimmun. Rev. 12, 875-884.

Meriggioli, M.N., Sanders, D.B., 2012. Muscle autoantibodies in myasthenia gravis: beyond
diagnosis? Expert Rev. Clin. Immunol. 8, 427-438.

Nielsen, S., Akerstrom, T., Rinnov, A., Yfanti, C., Scheele, C., Pedersen, BK, et al., 2014. The
miRNA plasma signature in response to acute aerobic exercise and endurance train-
ing. PLoS One 9, e87308.

Niks, E.H., van Leeuwen, Y., Leite, M.L, Dekker, F.W., Wintzen, A.R., Wirtz, P.W., et al., 2008.
Clinical fluctuations in MuSK myasthenia gravis are related to antigen-specific [gG4
instead of IgG1. J. Neuroimmunol. 195, 151-156.

Nogales-Gadea, G., Ramos-Fransi, A., Suarez-Calvet, X., Navas, M., Rojas-Garcia, R.,
Mosquera, J.L., et al., 2014. Analysis of serum miRNA profiles of myasthenia gravis pa-
tients. PLoS One 9, €91927.

Ohshima, K., Inoue, K., Fujiwara, A., Hatakeyama, K., Kanto, K., Watanabe, Y., et al., 2010.
Let-7 microRNA family is selectively secreted into the extracellular environment via
exosomes in a metastatic gastric cancer cell line. PLoS One 5, e13247.

Patterson, M., Gaeta, X., Loo, K., Edwards, M., Smale, S., Cinkornpumin, J., et al., 2014. Let-7
miRNAs can act through notch to regulate human gliogenesis. Stem Cell Rep. 3,
758-773.

Punga, T., Le Panse, R., Andersson, M., Truffault, F., Berrih-Aknin, S., Punga, AR., 2014. Cir-
culating miRNAs in myasthenia gravis: miR-150-5p as a new potential biomarker.
Ann. Clin. Transl. Neurol. 1, 49-58.

Punga, AR, Andersson, M., Alimohammadi, M., Punga, T., 2015. Disease specific signature
of circulating miR-150-5p and miR-21-5p in myasthenia gravis patients. J. Neurol. Sci.
356, 90-96.

Roush, S., Slack, FJ., 2008. The let-7 family of microRNAs. Trends Cell Biol. 18, 505-516.

Schmittgen, T.D., Livak, K.J., 2008. Analyzing real-time PCR data by the comparative
C(T) method. Nat. Protoc. 3, 1101-1108.

Silva, J., Garcia, V., Zaballos, A., Provencio, M., Lombardia, L., Almonacid, L., et al., 2011.
Vesicle-related microRNAs in plasma of nonsmall cell lung cancer patients and corre-
lation with survival. Eur. Respir. J. 37, 617-623.

Tijsen, AJ., Creemers, E.E., Moerland, P.D., de Windt, LJ., van der Wal, A.C,, Kok, W.E., et al.,
2010. MiR423-5p as a circulating biomarker for heart failure. Circ. Res. 106,
1035-1039.

Wang, S., Tang, Y., Cui, H,, Zhao, X,, Luo, X,, Pan, W,, et al., 2011. Let-7/miR-98 regulate Fas
and Fas-mediated apoptosis. Genes Immun. 12, 149-154.

Yilmaz, V., Oflazer, P., Aysal, F.,, Durmus, H., Poulas, K., Yentur, S.P., et al,, 2015. Differential
cytokine changes in patients with myasthenia gravis with antibodies against AChR
and MuSK. PLoS One 10, e0123546.

Zhang, J., Li, S, Li, L., Li, M., Guo, C,, Yao, J., et al., 2015. Exosome and exosomal microRNA:
trafficking, sorting, and function. Genomics Proteomics Bioinformatics 13, 17-24.
Zhu, H,, Shyh-Chang, N., Segre, AV., Shinoda, G., Shah, S.P., Einhorn, W.S,, et al,, 2011. The

Lin28/let-7 axis regulates glucose metabolism. Cell 147, 81-94.


http://dx.doi.org/10.1016/j.jneuroim.2016.01.003
http://dx.doi.org/10.1016/j.jneuroim.2016.01.003
http://refhub.elsevier.com/S0165-5728(16)30004-2/rf0005
http://refhub.elsevier.com/S0165-5728(16)30004-2/rf0005
http://refhub.elsevier.com/S0165-5728(16)30004-2/rf0005
http://refhub.elsevier.com/S0165-5728(16)30004-2/rf0010
http://refhub.elsevier.com/S0165-5728(16)30004-2/rf0010
http://refhub.elsevier.com/S0165-5728(16)30004-2/rf0015
http://refhub.elsevier.com/S0165-5728(16)30004-2/rf0015
http://refhub.elsevier.com/S0165-5728(16)30004-2/rf0020
http://refhub.elsevier.com/S0165-5728(16)30004-2/rf0020
http://refhub.elsevier.com/S0165-5728(16)30004-2/rf0020
http://refhub.elsevier.com/S0165-5728(16)30004-2/rf0025
http://refhub.elsevier.com/S0165-5728(16)30004-2/rf0025
http://refhub.elsevier.com/S0165-5728(16)30004-2/rf0030
http://refhub.elsevier.com/S0165-5728(16)30004-2/rf0030
http://refhub.elsevier.com/S0165-5728(16)30004-2/rf0035
http://refhub.elsevier.com/S0165-5728(16)30004-2/rf0040
http://refhub.elsevier.com/S0165-5728(16)30004-2/rf0040
http://refhub.elsevier.com/S0165-5728(16)30004-2/rf0045
http://refhub.elsevier.com/S0165-5728(16)30004-2/rf0045
http://refhub.elsevier.com/S0165-5728(16)30004-2/rf0045
http://refhub.elsevier.com/S0165-5728(16)30004-2/rf0050
http://refhub.elsevier.com/S0165-5728(16)30004-2/rf0050
http://refhub.elsevier.com/S0165-5728(16)30004-2/rf0055
http://refhub.elsevier.com/S0165-5728(16)30004-2/rf0055
http://refhub.elsevier.com/S0165-5728(16)30004-2/rf0055
http://refhub.elsevier.com/S0165-5728(16)30004-2/rf0060
http://refhub.elsevier.com/S0165-5728(16)30004-2/rf0060
http://refhub.elsevier.com/S0165-5728(16)30004-2/rf0060
http://refhub.elsevier.com/S0165-5728(16)30004-2/rf0065
http://refhub.elsevier.com/S0165-5728(16)30004-2/rf0065
http://refhub.elsevier.com/S0165-5728(16)30004-2/rf0070
http://refhub.elsevier.com/S0165-5728(16)30004-2/rf0070
http://refhub.elsevier.com/S0165-5728(16)30004-2/rf0070
http://refhub.elsevier.com/S0165-5728(16)30004-2/rf0075
http://refhub.elsevier.com/S0165-5728(16)30004-2/rf0075
http://refhub.elsevier.com/S0165-5728(16)30004-2/rf0075
http://refhub.elsevier.com/S0165-5728(16)30004-2/rf0080
http://refhub.elsevier.com/S0165-5728(16)30004-2/rf0080
http://refhub.elsevier.com/S0165-5728(16)30004-2/rf0085
http://refhub.elsevier.com/S0165-5728(16)30004-2/rf0085
http://refhub.elsevier.com/S0165-5728(16)30004-2/rf0085
http://refhub.elsevier.com/S0165-5728(16)30004-2/rf0090
http://refhub.elsevier.com/S0165-5728(16)30004-2/rf0090
http://refhub.elsevier.com/S0165-5728(16)30004-2/rf0090
http://refhub.elsevier.com/S0165-5728(16)30004-2/rf0095
http://refhub.elsevier.com/S0165-5728(16)30004-2/rf0095
http://refhub.elsevier.com/S0165-5728(16)30004-2/rf0095
http://refhub.elsevier.com/S0165-5728(16)30004-2/rf0100
http://refhub.elsevier.com/S0165-5728(16)30004-2/rf0100
http://refhub.elsevier.com/S0165-5728(16)30004-2/rf0105
http://refhub.elsevier.com/S0165-5728(16)30004-2/rf0105
http://refhub.elsevier.com/S0165-5728(16)30004-2/rf0110
http://refhub.elsevier.com/S0165-5728(16)30004-2/rf0110
http://refhub.elsevier.com/S0165-5728(16)30004-2/rf0110
http://refhub.elsevier.com/S0165-5728(16)30004-2/rf0115
http://refhub.elsevier.com/S0165-5728(16)30004-2/rf0115
http://refhub.elsevier.com/S0165-5728(16)30004-2/rf0120
http://refhub.elsevier.com/S0165-5728(16)30004-2/rf0120
http://refhub.elsevier.com/S0165-5728(16)30004-2/rf0120
http://refhub.elsevier.com/S0165-5728(16)30004-2/rf0125
http://refhub.elsevier.com/S0165-5728(16)30004-2/rf0125
http://refhub.elsevier.com/S0165-5728(16)30004-2/rf0130
http://refhub.elsevier.com/S0165-5728(16)30004-2/rf0130
http://refhub.elsevier.com/S0165-5728(16)30004-2/rf0135
http://refhub.elsevier.com/S0165-5728(16)30004-2/rf0135
http://refhub.elsevier.com/S0165-5728(16)30004-2/rf0140
http://refhub.elsevier.com/S0165-5728(16)30004-2/rf0140
http://refhub.elsevier.com/S0165-5728(16)30004-2/rf0140
http://refhub.elsevier.com/S0165-5728(16)30004-2/rf0145
http://refhub.elsevier.com/S0165-5728(16)30004-2/rf0145
http://refhub.elsevier.com/S0165-5728(16)30004-2/rf0145
http://refhub.elsevier.com/S0165-5728(16)30004-2/rf0150
http://refhub.elsevier.com/S0165-5728(16)30004-2/rf0150
http://refhub.elsevier.com/S0165-5728(16)30004-2/rf0150
http://refhub.elsevier.com/S0165-5728(16)30004-2/rf0155
http://refhub.elsevier.com/S0165-5728(16)30004-2/rf0160
http://refhub.elsevier.com/S0165-5728(16)30004-2/rf0160
http://refhub.elsevier.com/S0165-5728(16)30004-2/rf0165
http://refhub.elsevier.com/S0165-5728(16)30004-2/rf0165
http://refhub.elsevier.com/S0165-5728(16)30004-2/rf0170
http://refhub.elsevier.com/S0165-5728(16)30004-2/rf0170
http://refhub.elsevier.com/S0165-5728(16)30004-2/rf0175
http://refhub.elsevier.com/S0165-5728(16)30004-2/rf0175
http://refhub.elsevier.com/S0165-5728(16)30004-2/rf0180
http://refhub.elsevier.com/S0165-5728(16)30004-2/rf0180
http://refhub.elsevier.com/S0165-5728(16)30004-2/rf0180
http://refhub.elsevier.com/S0165-5728(16)30004-2/rf0185
http://refhub.elsevier.com/S0165-5728(16)30004-2/rf0185
http://refhub.elsevier.com/S0165-5728(16)30004-2/rf0190
http://refhub.elsevier.com/S0165-5728(16)30004-2/rf0190

	Disease specific enrichment of circulating let-�7 family microRNA in MuSK+ myasthenia gravis
	1. Introduction
	2. Material and methods
	2.1. Subjects
	2.2. Serum circulating miRNA isolation
	2.3. Serum circulating miRNA expression analysis
	2.3.1. miRNA analysis using microRNA PCR panel
	2.3.2. Screening of the individual miRNAs

	2.4. Statistical analysis

	3. Results
	3.1. Circulating miRNA profile in MuSK+ MG patient sera in the discovery set (N=10)
	3.2. Individual validation of the miRNA expression pattern (N=40)

	4. Discussion
	Conflicts of interest
	Acknowledgment statement
	References


