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Abstract 

Directly from luminescence images it can be shown that, for constant average injection (lumped dark current) and for not-too-
large lateral voltage differences, besides the sign, the current flow direction doesn’t play any role for the voltages present, so the 
series resistances in the dark and under illumination are the same. This fits to the results of a linear-response based series 
resistance description, treating lateral voltage differences on large-area silicon solar cells in linear order in the series resistance as 
deviation from the case of zero resistance. In this approach it is found that for constant lumped dark current, emitter and grid of a 
large-area solar cell can be described as a passive network. Therefore, no difference occurs in the voltage distribution caused by 
inward and outward currents except for the sign. This contradicts several literature works reporting a smaller lumped series 
resistance of silicon solar cells in the dark than under illumination. However, we show that this contradiction is just a result of the 
series resistance definition applied in the respective works or that it can be the result of unsuitable measurement conditions. In a 
numerical modeling of a large-area silicon solar cell as a 1D distributed structure, using exactly the same parameters as Araújo et 
al. [IEEE-TED 33 (3), 391–401 (1986)] but calculating the lumped series resistance from the integrated Joule losses, we obtain 
completely different results than Araújo et al.: Under short-circuit condition, the series resistance stays constant, and there is no 
difference between the open-circuit and dark series resistance; the latter show the same dependence on the diode current density. 
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1. Introduction 

The equivalent lumped series resistance Rs of a solar cell has at least one, if not two physical meanings: First, it 
allows to express the sum of all ohmic heating losses (Joule losses) in the solar cell as 

Ps = Rs Iext
2

 ,    (1) 

and second, under certain conditions (cf. [1]) it provides the voltage difference between the external contacts and the 
effective internal voltage related to replacing the whole solar cell by an effective ideal diode (or two diodes in case 
of the two-diode model) according to the equivalent circuit. The latter role of the series resistance – providing the 
local voltage – is of importance for all local solar cell efficiency analyses, carried out e.g. in any optimization 
procedure related to changes in solar cell manufacturing. 

Various series resistance measurement prescriptions, related to different Rs concepts, can be found in the 
literature. One of the latter has been introduced to treat the well-known variation of the lumped series resistance with 
the operating conditions (cf., e.g., [2] and references therein) directly in the framework of the equivalent circuit. In 
this modeling, the external-current-density dependent series resistance rs(Jext) is defined by the following expression 
for the effective diode voltage of the equivalent circuit [Jext is the external current density, here taken as positive for 
inward (dark) current and negative for outward (photo-)current, and Uext is the terminal voltage]:  

UD = Uext – rs(Jext) Jext .    (2) 

In the literature, several works report a smaller lumped series resistance of silicon solar cells in the dark than 
under illumination. For example, based on the above-given expression for the diode voltage, Eq. (2), and a numerical 
modeling of a large-area silicon solar cell as a 1D distributed structure, Araújo et al. [2] have explicitly displayed 
rs(Jext) for the dark, open-circuit, and short-circuit cases in dependence on the external current density; always their 
dark value is the lowest of all. However, we have found that there is no such difference between the series resistance 
behavior in the dark and for the open-circuit case. In this contribution we want to resolve this contradiction, and we 
provide a consistent description via an appropriate replacement for the standard equivalent circuit model. 

 
Nomenclature 

LR-Rs Linear-response series resistance 

 

2. Experimental and theoretical basics: the LR-Rs method 

Parts of the basics of the LR-Rs method have already been published [3–5]; here we present it in a consistent 
manner. After considering the lumped series resistance Rs,cell for a fixed dark current, we explain how to obtain the 
distributed series resistance Rs

distr(x,y) from an auxiliary function R(x,y) and discuss its dark current dependence. 

2.1. The lumped series resistance  

The most reliable measurement of the lumped series resistance of a solar cell is obtained by the comparison of 
two illuminated I–U curves for different illumination strengths [6]; the relative error of this method can be 
considerably decreased by using multiple I–U curves, i.e. several illumination levels [7]. In this method, those points 
of the I–U curves are compared where the solar cell is under identical injection conditions as measured by the dark 
current flowing. From the differences in the relevant external cell currents, Icell, and the corresponding voltages, 

Uext, the series resistance is determined as 

Rs,cell = Uext / Icell .    (3) 
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In this paper, based on photoluminescence measurements using red light for illumination, we replace the condition 
of “equal dark current” by the equivalent one of “equal average luminescence signal”, as illustrated in Fig. 1. 
 

   

Fig. 1. Illustration of series resistance determination using identical average luminescence values (symbolized by the red arrows labeled 
“<Lum>”) to determine identical injection conditions, as given by identical differences of the external current to the full photocurrent. 

    

Fig. 2. Example for lumped series resistance determination using identical average luminescence values to find identical injection conditions: 
Both images have an average of 2992 counts. Left: open circuit (U = 595,5 mV); right: current extraction (U = 580,5 mV, Icell = –6.5 A). 

 
Fig. 3. Variation of the cell voltage with extracted current for identical dark current, as determined from average luminescence values measured 
for the cell of Fig. 2. The slope of the observed linear I–U relation is the lumped series resistance, Rs,cell, for the given dark current, cf. Eq. (3). 
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For various loads, ranging from extraction of a large current of several amps to open-circuit condition, the 
illumination is adjusted to obtain the same average counts in the luminescence images. For each image taken, the 
external cell current and the external cell voltage are measured. Two such images are shown in Fig. 2, and the 
obtained perfect linear relation between cell current and voltage for a set of 10 measurements (using 10 different 
illumination levels and extracted currents up to 7.5 A) is shown in Fig. 3; only at the highest current, a slight 
nonlinearity occurs. This experimentally found linear relation between voltage and current justifies our approach 
using the average luminescence signal as reference for the series resistance measurement. 

2.2. The distributed local series resistance  

From the measured luminescence images, a map of the distributed series resistance can be obtained. The method 
used here was described earlier [3, 4], it uses a linear response description of the solar cell and does not rely on the 
model of independent diodes. “Linear response” here means that a change in the local voltage somewhere on the 
solar cell, Uloc(x,y), occurring due to a variation of the total external current, Iext, is expressed as being 
proportional to this variation, the proportionality factor being an auxiliary function R(x,y):  

Uloc(x,y) = R(x,y) Iext .   (4) 

The proportionality factor R(x,y) is defined by this proportionality; its meaning is the total resistance of the solar 
cell, containing both series and diode resistance. The change in the local voltage can easily be obtained from the 
ratio of two luminescence images 1(x,y), 2(x,y), corresponding to the two different external currents (cf. [8]): 

),(
),(ln),(

2

1
thermloc yx

yxUyxU ,   (5) 

where the thermal voltage Utherm may include a diode (non-)ideality factor, if necessary. For laterally homogeneous 
diode resistance (which is found in most “sufficiently regular” solar cells, cf. [9–11]) this lateral voltage variation is 
determined by the lateral series resistance. Directly at the external contact, located at position (x0,y0), the voltage 
variation is largest, and the lateral series resistance is negligible. Going into the area of the solar cell, the voltage 
change becomes smaller, since the lateral series resistance increases. Therefore, comparing the local voltage change 
to the one at the external contact provides information about the lateral series resistance. In linear-response 
description one has for the lateral series resistance (here called Rs

distr for reasons becoming clear only later) that 

),(),(),(),(),( 00
ext

loc00locdistr
s yxRyxR

I
yxUyxUyxR .  (6) 

Of course, since a solar cell under operation is a forward-biased p–n junction, linear response behavior is not a 
trivial thing to expect but has to be experimentally verified. For practical measurements, one of the luminescence 
images frequently is taken under open circuit condition, having a voltage distribution of U0(x,y). For this case, Eq. 
(4) can be written as  

U(x,y,Iext) – U0(x,y) = R(x,y) Iext  or   (7a) 
U(x,y,Iext) = U0(x,y) + R(x,y) Iext .   (7b) 

To separate the lateral series resistance from the diode resistance, for the measurement under external current flow 
the illumination strength is varied from the open-circuit one so that the lumped dark diode current is the same for 
both measurements; this basically eliminates the influence of the non-linear diode behavior. For example, in the case 
of current extraction the illumination strength is increased as much as to provide the additional photocurrent (as 
discussed in Sect. 2.1 for the accurate determination of Rs,cell; cf. Fig. 1). For any given external current, according to 
Eqs. (6) and (7b) the local voltage distribution can be written as 



 Jan-Martin Wagner et al.  /  Energy Procedia   92  ( 2016 )  255 – 264 259

U(x,y,Iext) = U(x0,y0,Iext) – Rs
distr(x,y) Iext + U0(x,y) – U0(x0,y0) ,  (8) 

i.e., the lateral voltage drop (from a given point to the contact) is not only determined by the voltage drop at the 
lateral series resistance, but also by the voltage distribution under open-circuit condition (which for multicrystalline 
cells comes mainly from inhomogeneities of the dark current [as can be expressed by a J0 distribution], acting on the 
series resistance network of the cell [5, 12]). In other words: The part Rs

distr(x,y) Iext is only the contribution of the 
external current to the voltage distribution, it adds to the one for the open-circuit case corresponding to the relevant 
injection (as given by the lumped dark diode current). 

In addition to the distributed series resistance there is always a homogeneous contribution that shows no spatial 
dependence, here it is called Rs

nondistr. It is given by the difference between the lumped resistance (determined as 
described in Sect. 2.1) and the arithmetic mean of the image of the distributed series resistance. Two such images of 
the distributed series resistance (for the cell of Fig. 2), differing in the extracted current, are shown in Fig. 4. These 
linear response series resistance images (which we from now on call “LR-Rs” images) have the same arithmetic 
mean value, and their difference is just noise (not shown). Therefore, for this cell and at the given injection, the 
distributed series resistance does not depend on the strength of the extracted current. 
 

   

Fig. 4. Distributed series resistances images of the cell shown in Fig. 2, calculated according to Eq. (4). Left: cell current –1.03 A; right: cell 
current –6.5 A. 

2.3. The injection (dark diode current) dependence of the series resistance  

The series resistance of a solar cell is not constant but depends on the injection condition [3–7, 9–11]. The global 
and local series resistance measurement is therefore repeated for various injections, measured by the current injected 
across the diode, ID, and (for reasons becoming clear below) converted to the lumped diode resistance, RD, by 

.
d
d:1
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D
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D
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q
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R
   (9) 

The variation of the lumped cell series resistance with the injection is shown in Fig. 5. The same curve is shown in 
the left part of Fig. 6 as a black line, together with the average distributed series resistance value (arithmetic mean), 
obtained from the relevant images (as those shown in Fig. 4). The difference between these two values is shown in 
the right part of Fig. 6, it is essentially constant (mind the scaling of the ordinate). Therefore, one can conclude that 
the lumped series resistance of the cell can be written as 

,distr
s

nondistr
scells, RRR    (10) 
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Mean Val. :          0.83  mOhm
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Mean Val. :          0.83  mOhm
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the angle brackets (here and elsewhere in this paper) indicating the arithmetic mean value of the respective image.  
 

 

Fig. 5. Lumped series resistance versus the inverse of the lumped diode resistance (i.e., lumped dark current) for the cell shown in Fig. 2. 

 

    

Fig. 6. Left: variation of the lumped and the average distributed series resistance value with the inverse of the lumped diode resistance [cf. 
Eq. (9)] for the cell shown in Fig. 2. Right: the difference of global and average distributed series resistance value is essentially constant. 

 

 

Fig. 7. Injection dependence of the inverse of the average distributed series resistance value (arithmetic mean) for the cell shown in Fig. 2. As a 
direct experimental result, a linear relationship is found, which can be described by Eq. (11). 
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Plotting the inverse of the distributed series resistance versus the injection (as given by RD
–1), a linear relation is 

obtained as a direct experimental result, shown in Fig. 7. The intersection of this straight line with the ordinate gives 
the inverse of the average distributed series resistance for infinite diode resistance and is therefore called Rs,

–1. The 
slope of the straight line being referred to as g, one can therefore express the observed linear relationship as 

.111

Ds,
distr
s R

g
RR

   (11) 

Therewith, Eq. (10) becomes  

.
1

1

Ds,

nondistr
scell,s RgR

RR    (12) 

The value of g depends on the geometry of the distributed series resistance network, therefore this letter was chosen.  
This result is theoretically well understood (cf. [9–11]) and found since many years for nearly all monocrystalline 

solar cells and good multicrystalline solar cells. The expression for the distributed series resistance, Eq. (11), has a 
rather simple interpretation: Under forward bias, lateral current flow is reduced by bypassing current through the 
distributed diodes to the back side, reducing ohmic losses in the emitter and the grid. We note that this strong, but 
predictable dependence of the series resistance on the injection condition has important consequences for the 
description of the I–U curve of a solar cell, cf. [1] for details. 

2.4. Equivalent circuit and the dark vs. illumination comparison 

One of the main results of the linear response series resistance described above is that for constant lumped dark 
current, emitter and grid can be described as a passive network, the resistance of which, however, is not constant but 
varies with the effective diode resistance. According to Eq. (12), this can be expressed graphically by the following 
modified equivalent circuit (Fig. 8) which includes the variation of the lumped series resistance resulting from the 
switch-on of the diodes. As a consequence of emitter and grid behaving as a passive network, no difference occurs 
in the voltage distribution caused by inward and outward currents except for the sign. This contradicts several works 
in the literature (cf. [2] and references therein) reporting a smaller lumped series resistance of silicon solar cells in 
the dark than under illumination. In the remainder of this work, we address this (as it will turn out: seeming) 
discrepancy.  
 

  

Fig. 8. Modified equivalent circuit, consistent with the variation of the series resistance due to the varying diode resistance (i.e., dark-current 
dependence of the series resistance). 

3. Experimental results 

We have performed electro- (EL) and photoluminescence (PL) measurements of an mc-Si solar cell for constant 
average injection (lumped dark current) and for not-too-large lateral voltage differences (injected and extracted 
current 3 A), cf. Figs. 9(a), (c).  
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(a) 
 

(b) 

(c) 
 

(d) 

(e) (f) 

Fig. 9. Luminescence images of the cell shown in Fig. 2 at a fixed injection. (a) EL, Iext = 3 A; (b) under open circuit and 0.5 sun illumination; (c) 
PL under one sun illumination and with Iext = –3 A; (d) geometric mean of (a) and (c). Additionally shown: (e) LR-Rs series resistance image 
obtained from (a) and (b); (f) ratio of (d) and (b). 
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Combining these images by taking their geometric mean (i.e., taking the square root of the product of the pixel 
intensities), an image results, Fig. 9(d), which is identical to the directly measured open-circuit image taken for the 
same average injection (in praxis, for the same arithmetic mean value of the luminescence intensity), Fig. 9(b): The 
ratio of the latter two, Fig. 9(f), is just noise at an average value of 1.01 (the deviation from 1.0 results from the 
small difference in the mean values). This means that the series resistance effects present in the EL and PL image 
have cancelled out – which is only possible if they are just of opposite sign but otherwise identical. In fact, 
calculating a linear-response based series resistance image either from using the PL image under current extraction 
and the oc image or from combining the EL the and oc image yields the same result; the one obtained from EL is 
shown in Fig. 9(e). 

4. Numerical results 

We solved numerically the same 1D problem as Araújo et al. [2], using their parameter values, but calculated the 
lumped series resistance from the integrated Joule losses, cf. Eq. (1), i.e. we used a completely model-free approach 
to numerically obtain the series resistance. Our results, presented in Fig. 10, correspond directly to the three curves 
shown by Araújo et al. (in their Fig. 4). Our results are in perfect agreement with Eq. (12), applying Eq. (9) for the 
translation of diode currents to diode resistances.  

There are two findings which deviate completely from the results of Araújo et al.: First, our short-circuit value of 
the series resistance doesn’t increase; it stays perfectly constant. Second, in the onset range of their decrease there is 
no difference between our open-circuit and dark rs curves; only in the region of steepest decay a slight difference 
occurs. (We note that here, as in the work of Araújo et al., “open circuit” does not refer just to the open-circuit point 
of the I–U curve, but to the open-circuit region of the characteristic; cf. the derivation of Eq. (20) in [2].)  

We attribute these deviations from the results of Araújo et al. to their series resistance modelling, which is based 
on rs(Jext) as mentioned above, cf. Eq. (2). Their model is just an I–U curve description without a sound physical 
justification, in contrast to the determination of the series resistance from the integrated Joule losses which is 
capable to give correct results for all operating conditions. 
 

 
Fig. 10. Results of a numerical calculation of the lumped series resistance for a 1D distributed model, using the same parameters as in [2] but 
calculating the lumped series resistance from the integrated Joule losses. For the short-circuit curve (sc), the abscissa is the photo-current density 
Jph, while for the open-circuit (oc) and dark curve, the abscissa is the dark diode current density JD. 
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5. Summary and conclusions 

At constant injection (dark diode current), emitter and grid of a large-area silicon solar cell can be described as a 
passive network. As a consequence, there is no difference in the series resistance behavior of large-area silicon solar 
cells in the dark and under illumination; previously found differences stem from an inadequate definition of the 
series resistance or unsuitable measurements. (There is a relevant exception: Shading due to the front metallization 
indeed leads to a difference in the lumped series resistance [13], however this does not contradict the fact that 
emitter and grid of a large-area silicon solar cell can be described as a passive network.) 

The variation (decrease) of the series resistance along any current–voltage characteristic results primarily from 
the switching-on of the diodes; the lumped series resistance Rs,cell is a function of the lumped dark current ID only, 
i.e. Rs,cell = Rs,cell (ID). This occurs already in linear order in the series resistance and is not related to current 
crowding; this regime can still be described by a modified equivalent circuit. 

As a consequence of the dark-current dependence of the series resistance, only series resistance measurement 
methods that work at a constant dark current can yield reliable results; this holds, e.g., for the double (or multiple) 
illumination method. 

From a theoretical point of view, only the definition of the lumped series resistance on the basis of the integrated 
Joule losses yields a value which is physically meaningful for all points along the I–U curve and for arbitrary photo-
current densities. 
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