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A Novel Protein Fold and Extreme Domain
Swapping in the Dimeric TorD Chaperone
from Shewanella massilia

belongs to the family of DMSO-TMAO molybdoen-
zymes. The three-dimensional structure of the protein
from S. massilia, a marine bacterium responsible for fish
tissue decay, illustrated that the 798 residues fold into
four domains organized around the molybdenum cofac-
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Institut de Pharmacologie et Biologie Structurale tor [9]. This periplasmic enzyme operates together with

the c-type cytochrome TorC, which is anchored to the205 route de Narbonne
31077 Toulouse Cedex innermembrane and shuttles electrons from the mem-

branous menaquinones to the reductase. The tetrahe-France
2 Laboratoire de Chimie Bactérienne mic N-terminal domain of TorC binds to TorA and trans-

fers electrons to the monohemic C-terminal domain,Institut de Biologie Structurale et Microbiologie
Centre National de la Recherche Scientifique which ultimately provides them to the reductase [10].

Interestingly, the immature C-terminal domain of apocy-13402 Marseille Cedex 20
France tochrome TorC downregulates the tor operon by binding

to the sensor region of TorS, the histidine kinase of the
TorS/TorR phosphorelay that strictly controls expres-
sion of the operon in response to TMAO availability [11].Summary

In E. coli, the absence of TorD leads to a significant
decrease in the amount of TorA, and in vitro experimentsTorD is the cytoplasmic chaperone involved in the mat-

uration of the molybdoenzyme TorA prior to the trans- showed that TorD binds both the TorA enzyme and its
precursor form [12]. It was proposed that TorD actslocation of the folded protein into the periplasm. The

X-ray structure at 2.4 Å resolution of the TorD dimer as a private chaperone of the reductase, and recent
experiments indicate that TorD allows efficient matura-reveals extreme domain swapping between the two

subunits. The all-helical architecture of the globular tion of TorA (M. Ilbert and C.I.-N., in preparation). This
process, which involves insertion of the molybdopterindomains within the intertwined molecular dimer shows

no similarity with known protein structures. According cofactor, is a prerequisite event for the translocation
of the protein into the periplasm by the twin-arginineto sequence similarities, this new fold probably repre-

sents the architecture of the chaperones associated translocation (TAT) system, which transports TorA as a
folded holoprotein [13, 14]. The targeting of TorA to thewith the bacterial DMSO/TMAO reductases and also

that of proteins of yet unknown functions. The occur- TAT system is mediated by a specific amino-terminal
signal peptide that exhibits the consensus motif S/T-R-rence of multiple oligomeric forms and the chaperone

activity of both monomeric and dimeric TorD raise R-X-F-L-K, which is also found in a variety of periplasmic
redox enzymes [15].questions about the possible biological role of domain

swapping in this protein. The TorD protein from S. massilia interacts specifically
with its cognate reductase, TorA. The chaperone is 33%
identical in sequence to the E. coli ortholog and displaysIntroduction
multiple and stable oligomeric forms. The monomeric
and dimeric species of the protein were characterizedTrimethylamine N-oxyde (TMAO) is widely distributed in

marine fishes and mollusks, where it is assumed to act by analytical ultracentrifugation, and interconversion
between these forms required conditions that destabi-as an osmoprotector in living tissues. In decaying organ-

isms, TMAO is reduced to the nauseous trimethylamine lize the native fold of the proteins [16]. The X-ray struc-
ture of the dimeric TorD protein reported here was(TMA) and plays an important role in tissue spoilage. This

reduction is mainly mediated by the bacterial species of solved at 2.4 Å resolution by the MAD method. The
protein displays a dumbbell-like shape and reveals ex-the fish flora, such as Shewanella and Vibrio species,

which use TMAO as an exogeneous electron acceptor for treme domain swapping between the two subunits. The
all-helical architecture of the globular domain in the di-anaerobic respiration [1, 2]. TMAO-reducing activity was

also observed in photosynthetic bacteria (Rhodobacter mer and the geometry of the motif constituting the open
interface region show no similarity with reported proteinspecies) and, more surprisingly, in most enterobacteria

[3–5]. The dedicated respiratory system is encoded by structures. Structure analysis, together with small-angle
scattering data, suggests that the globular domain inthe TorCAD and TorECAD operons in Escherichia coli

and Shewanella species, respectively [1, 6, 7]. the dimer illustrates the structure of the monomeric spe-
cies of the protein. According to sequence similarities,The proteins encoded by the torA, torC, and torD

genes have been characterized. The mature TorA en- the fold of the TorD protein likely represents the architec-
ture of the chaperones associated with the DMSO-zyme is a periplasmic TMAO-specific reductase [8] that
TMAO bacterial reductases.
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Table 1. Data Collection and MAD Phasing Statistics

Native Edge �1 � 0.9787 Å Peak �2 � 0.9785 Å �3 � 0.9537 Å

Resolution (Å) 19.61–2.42 54.23–2.40 54.23–2.40 54.23–2.4
Reflections Measured/unique 108,921/21,290 136,737/23,612 214,824/23,643 85,570/23,239
Completeness % 90.3 (81.6)e 100 (99.7) 99.8 (98.8) 98.7 (98.9)
I/� 11 (2.8)e 12.8 (3.7) 11 (4.2) 14 (3.6)
Rsym

a 0.040 (0.368)e 0.041 (0.168) 0.046 (0.168) 0.033 (0.177)
Rano

b — 0.030 0.047 0.036
f�/f″ (e�)c — �9.5/2.3 �8.1/5.5 �4.5/3.5
Z score/FOMd — 28/0.56

a Rsym � ��|�I� � Ii|/��Ii.
b Rano � �|�I	� � �I��|/�|�I	� 	 �I��|.
c Values of anomalous scattering factors, as refined by SOLVE, used for phasing.
d Phasing statistics provided by the program SOLVE; FOM, figure of merit.
e Outer resolution shell in parentheses.

Results combinant protein carried, in addition to the natural 209
residues, two additional amino acids and 6 histidine
residues at the C terminus. Residues 209–215 from oneStructure Determination

All methionines, except the cleaved N-terminal methio- subunit contribute to crystal packing. A few solvent-
exposed side chains were disordered, and residuesnine, in the sequence of TorD from S. massilia were

substituted by SeMet, according to mass spectrometry. Q28su1, E48su2, C79su1,su2, and E131su2 had alternate confor-
mations. The electron density map (Figure 1) suggestedThe dimeric species of the TorD protein crystallized in

the orthorhombic space group P212121, with one dimer a correction of the amino acid sequence (H8P, F147C,
and F163V) of TorD from S. massilia [1]; this was con-in the asymmetric unit, and the structure was deter-

mined to 2.4 Å resolution from MAD phasing at the sele- firmed by gene sequencing. According to PROCHECK
[18], 93.5% of the residues belong to the most favorablenium K absorption edge. Only four (SeMet-143su1,

SeMet-114su2, SeMet-139su2, and SeMet-143su2) of the six areas in the Ramachandran plot. The conformations of
the other residues are in allowed regions.SeMet residues present in the dimer were found by

SOLVE [17] and used for phasing (Table 1). The two
scattering atoms that escaped the automatic search, Overall Structure
SeMet-114su1 and SeMet-139su1, were found to be lo- The TorD dimer displays an all-helical architecture that
cated only 5 Å away from other SeMet residues. They comprises 69.6% of the amino acids and reveals ex-
were nevertheless well defined in the initial electron den- treme domain swapping between the two subunits (Fig-
sity map. The final model comprises 3117 nonhydrogen ure 2). The dimeric protein displays a dumbbell-like
atoms from the TorD dimer, two DTT molecules, and shape, with molecular 2-fold symmetry. Each globular
144 water molecules. The crystallographic R and Rfree module contains ten 
 helices and two small 310 helices
values were 0.224 and 0.255, respectively (Table 2). The (Figure 3) and results from the association of the
average refined B factors (Table 2) were in excellent N-terminal moiety from one subunit (residues 1–126)
agreement with the value (41.5 Å2) determined from a with the C-terminal moiety from the other subunit (resi-
Wilson plot analysis of the diffracted intensities. dues 133–209). The module seems organized around a

No electron density could be assigned to residues helix bundle core formed by the first helix of one subunit
1–3, 87–88, and 99–104 in one subunit or to residues (H1

su1 residues 7–22) and by the helices provided by the
1–4, 86–88, and 99–107 from the other subunit. The re- whole C-terminal moiety from the other subunit: H7

su2

(residues 136–149), H8
su2 (residues 152–163), H9

su2 (resi-
dues 167–174), and H10

su2 (residues 182–209) (Figure 3).
Table 2. Refinement Statistics

This helix bundle is surrounded by the remaining part
Resolution (Å) 2.4 of the first subunit: H2

su1 (residues 27–34), H3
su1 (residues

R factor (%) 22.4 36–46), H4
su1 (residues 52–64), H5

su1 (residues 68–82), and
Rfree (%) 25.5

H6
su1 (residues 108–121) (Figure 3). The molecular inter-Rmsd bond lengths (Å) 0.007

face (C interface) between the swapped N- and C-ter-Rmsd bond angles (�) 1.2
minal moieties buries 4500 Å2 from solvent. No proteinRmsd dihedral angles (�) 19.7

Rmsd improper angles (�) 0.87 structure with a similar topology has been found in the
Mean B factor (Å2) 43.8 protein structure database with DALI [19].
Rmsd B, bonds (Å2) Networks of polar interactions occur at two important

Main chain atoms 1.0
regions of the C interface. The first area involves theSide chain atoms 2.8
N- and C-terminal ends of the protein, tightly held atRmsd B, angles (Å2)
one edge (H1su1, H8su2, and H10su2) of the helix bundleMain chain atoms 1.8

Side chain atoms 4.0 core (Figure 3). Asp-197, at the C-terminal part of helix
Number of protein atoms 3117 H10su2, forms a salt bridge and a hydrogen bond interac-
Number of heteroatoms 114 H2O tion with Arg-10 and Tyr-14, respectively, from helix

2 DTT
H1su1. Arg-10 is also hydrogen bonded to the side chain
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Figure 1. Stereo View of the Final 2Fo � Fc Electron Density Map, Contoured at 1 � above the Mean, in the Crossover and Dimerization Region

Residues 108–135 from subunit 1, blue; residues 108–135 from subunit 2, red.

of Gln-155, located at the N-terminal part of helix H8su2. As a consequence, Glu-116, His-119, Gln-120, and their
symmetry-related counterparts come in close vicinityThe second area is found at the edge of the crossover

region. A network of polar interactions involves His-134, (Figure 5). The two imidazole rings are stacked on each
other at a distance of 4 Å, and each side chain is hydro-His-135, Leu-136, and Ala-137 from the same subunit

and Pro-92, Tyr-93, Ala-94, Ser-95, and His-111 from the gen bonded to the carboxylate group of Glu-116 from
the other subunit (Figure 5). The interactions describedother subunit (Figure 3). This area comprises invariant

residues in the TorD orthologs (Figure 4) and seems in this paragraph define the open interface region [20]
generated by 3D domain swapping and bury 440 Å2 fromcritical because these interactions define the position

of the first residues (134–137) of the C-terminal moiety solvent.
within the N-terminal moiety of the protein. It brings
the carbonyl oxygen of Ala-137 from helix H7su2 within The TorD Protein Family

A Psi-Blast search in the sequence database with thehydrogen bond distance of Ser-18 from H1su1 (Figure 3),
which may be an important anchor point for the forma- amino acid sequence of TorD from Shewanella massilia

identified proteins with significant sequence similarities.tion of the helix bundle core.
The two polypeptide chains are highly intertwined, Some of these proteins from other bacterial species are

orthologs of TorD according to the conservation of theand the dimerization element involves the H6 helix (resi-
dues 108–121), the loop 122–124, and the polypeptide tor operon in the corresponding genomes. In decreasing

order of sequence identity, TorD proteins were found instretch 125–135, the direction of which is orthogonal to
the axis of helix H6 (Figure 5). There are 18 polar residues Shewanella oneidensis (71.8%), Vibrio cholerae (39.3%),

E. coli (34.7%), Salmonella thyphi CT18 (33.5%), andwithin the 28 amino acids defining this motif, which is
duplicated by the molecular 2-fold symmetry. The two Pasteurella multocida (29.8%). TorD homologs occur in

Haemophilus influenzae (Ynfl, 27.5%), E. coli (YnfI orglobular modules are connected by residues 125–135
from each subunit, which form two adjacent, extended, DmsD, 21.1%) [21], and Rhodobacter capsulatus (DorD,

25.6%) [22]. A protein with no known function, YcdY,antiparallel peptide stretches. The molecular 2-fold axis
is nearly perpendicular to the average plane defined by was found in E. coli and Haemophilus influenzae (21%

and 27.5% identity, respectively). All the proteins identi-these stretches, running between the two Phe-129 side
chains, which are at van der Waals distance to each fied in this search are made of approximately 200 amino

acids, and a multiple sequence alignment was per-other (Figure 5). On one side of this plane, at the edge
of the crossover region, Tyr-93 and Phe-129 from the formed on the basis of the structure of the S. massilia

protein (Figure 4). The overall sequence identity betweensame subunit and Pro-130, Pro-132, and His-135 from
the other subunit are in close vicinity (Figure 5). The these proteins and the finding that the few invariant or

highly conserved hydrophobic residues (Leu-17, Phe-21,hydroxyl group of Tyr-93 is at hydrogen bond distance
to one nitrogen atom from the buried His-135 side chain. Leu-81, Phe-82, Leu-136, Leu-140, Trp-166, Leu-167, Phe-

170, Tyr-183, and Leu-189) constitute a hydrophobicOn the other side of the plane defined by the two peptide
stretches, Asp-134 from one subunit and His-111 from core in the globular domain (Figure 3) suggest that these

proteins share the same all-helical three-dimensionalhelix 6 of the other subunit are hydrogen bonded (2.7 Å).
The C-terminal parts of the H6 helix from each subunit fold.

The six ORFs assigned as TorD orthologs display in-are proximal and run antiparallel in the swapped dimer.
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variant residues at positions 72–77 in helix H5, in addi-
tion to the 92–95 and 131–138 regions discussed above
as forming a key area in the globular domain. Residues
72–77 and 92–95/131–138 generate acidic areas (A) and
polar surfaces (P), respectively, on the TorD dimer. A
Grasp [23] representation (Figure 6) illustrated that a
60 Å-long depression is bordered by all four surfaces,
whereas two of them (one A and one P) face another
large cavity in the swapped dimer. In monomeric TorD,
which corresponds to one globular domain on Figure 6,
the A and P surfaces are nearly contiguous along a
convex surface.

Discussion

Domain Organization
The spatial organization of the 209 amino acids of the
TorD monomer within the dimer (Figure 2) does not rep-
resent a stable fold. This structure is made of two sepa-
rated domains and exposes several hydrophobic resi-
dues to solvent. From a structural viewpoint, this “open”
monomer may represent a folding intermediate that
could lead to the several molecular forms of the protein.
Indeed, formation of the monomer versus the swapped
dimer from the “open” structure seems to depend only
on the conformation of the polypeptide stretch 125–135.
The extended conformation favors domain swapping,
whereas a loop conformation of the peptide would bring
the C-terminal domain back into the N-terminal moiety
and result in a monomeric protein essentially repre-
sented by the globular module in the swapped dimer
(Figure 3). This proposal is supported by the excellent
fit between the diffusion data calculated from the coordi-
nates of the globular module and the small-angle X-ray-
scattering (SAXS) data measured for the TorD monomer
(Figure 7). SAXS experiments were also conducted with
the dimeric protein and provided a similar agreement
between the measured diffusion data and those calcu-
lated from the current X-ray structure (Figure 7).

The proposal that the fold of the monomer is repre-
sented by that of the globular domain in the swapped
dimer underlies the conservation of the interdomain in-
terface (C interface) in the two structures. This conserva-
tion is supported by the biochemical studies, which
showed that acidic pH similarly disrupts the native mo-
nomeric and dimeric TorD structures. The polypeptide
chain adopts a nonnative fold in these conditions [16].
According to the X-ray structure, an important contribu-
tion to the stability of the C interface is provided by
two polar networks, and we propose that protonation
at acidic pH of the two carboxylate side chains (Asp-
134 and Asp-197) facing two positively charged resi-
dues, His-111 and Arg-10, respectively, and, possibly,
of the buried histidine 135 (Figure 3) should destabilize

Figure 2. The TorD Structure this interface and favor the open monomer over the
(A) Topology of the TorD dimer with one monomer in green and the monomeric and swapped oligomeric structures.
other in red. Helices are represented by cylinders and numbered
sequentially, and the connecting loops are represented with a differ-
ent line thickness for each monomer.

Role of TorD Chaperones(B) Ribbon representation of the TorD dimer with the same color code.
The finding of several molecular species for the S. mas-(C) Ribbon representation of one monomer within the dimer. The

PEP sequence (residues 130–132) shown within the crossover poly- silia protein raises questions about the general occur-
peptide stretch (residues 125–135). rence of 3D domain swapping in this protein family and



Figure 3. Molecular Interface in the Globular
Module of the TorD Dimer

(A) Stereo view of the globular module within
the dimer. Subunit 1 is colored from dark blue
(N terminus) to green (residue 126); subunit
2 is colored from yellow (residue 133) to red
(C terminus). The dotted line indicates a loop
region with undefined electron density.
(B) Stereo view illustrating the polar interac-
tions at the C interface and occurring at one
edge of the helix bundle core. The CA traces
of subunits 1 and 2 are shown in red and blue,
respectively.
(C) Stereo view of the network of polar inter-
actions involving invariant residues in the
TorD family and stabilizing the C interface.
The CA traces of subunits 1 and 2 are shown
in red and blue, respectively.
(D) Stereo view illustrating the hydrophobic
core in the globular module. These residues
are invariant in the TorD family.
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Figure 4. Structure-Based Sequence Align-
ment of the TorD Protein Family

The sequence identity between any two of
these proteins is above 21%. The proteins
from groups 1, 2, and 3 are TorD orthologs.
The secondary structure elements for the
TorD chain were calculated with DSSP [48].
The picture was created with ESPrit [49].

the possible biological role for domain swapping in the transition from closed to open monomer, which
leads to the oligomeric translocation assembly, is stimu-TorD.

Three TorD orthologs carry the PEP sequence at posi- lated upon binding of the toxin monomer to the heparin
binding epidermal growth factor, the cell surface targettions 130–132, three others display the xEP sequence

(Figures 2 and 4), and the conformation of the polypep- of the toxin [29]. In some cases, 3D domain swapping
extends functionality. An additional dinucleotide bindingtide stretch 125–135 likely determines formation of the

monomer versus swapped oligomers. The PEP se- site for allosteric regulation is generated in bovine semi-
nal ribonuclease [30], and a large amphipathic bindingquence is found in p13suc1, where it was shown that the

partition between the monomer and swapped dimers site for pyrazine or carvone is created in bovine odorant
binding protein [31]. It was previously established fromwas only controlled by these two proline residues [24].

However, a large diversity in sequence of the hinge re- genetic investigations that TorD is required prior to co-
factor incorporation in the precursor TorA protein, andgion was documented in proteins that undergo domain

swapping, and the occurrence of a single proline in this surface plasmon resonance measurements indicated
formation of a protein complex between TorD and TorAregion is common [25]. The occurrence of 3D domain

swapping in all TorD proteins remains an open question [12]. Experiments in progress now demonstrate that
TorD allows efficient maturation of the apoprecursor ofbut deserves further investigation because a relation-

ship between 3D domain swapping and functional prop- TorA and that both the monomeric and dimeric forms
of TorD facilitate molybdenum cofactor insertion in theerties has been established in several cases. For most

proteins, only one molecular form is biologically active. apoprecursor (M. Ilbert and C.I.-N., in preparation).
These data shed light on the mechanism of action ofRegulation of cdk2 activity is only mediated by the mo-

nomeric species [26], and domain swapping in T4 endo- TorD as chaperone of TorA and suggest that domain
swapping, if it occurs in vivo, may not be implicated innuclease VII is mandatory for generating a functional

protein with DNA binding and cleavage activity [27]. In the modulation of this function.
This chaperone activity is critical because TorA isdiphteria toxin, [28] domain swapping and intoxication

pathways are related processes. It was proposed that exported by the twin-arginine translocation system as
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Figure 5. Stereo Views of the Open Interface
and Dimerization Region Mediated by Resi-
dues 108–135 from Subunits 1 and 2

Residues 108–135 from subunit 1, blue; resi-
dues 108–135 from subunit 2, red. The molec-
ular 2-fold axis is perpendicular to the plane
of the figure.
(A) View from one side of the average plane
defined by the stretch 125–135.
(B) View from the other side of this plane.

a folded holoprotein [32]. This is a basic feature of this that the acidic patch revealed by the X-ray structure of
TorD (Figure 6) may sequester the basic S/T-R-R-X-export pathway, fundamentally distant from any system

yet studied, which recognizes signal peptides carrying F-L-K motif within the TorA-TorD complex that favors
molybdenum cofactor acquisition. This possibility wouldthe characteristic sequence motif (S/T)-R-R-x-F-L-K

[15]. Cofactor incorporation and protein targeting must support the proposal of proofreading and would confer
to the TorD protein a function in the process of exporttherefore be coordinated in the translocation process,

and it was suggested that the system could contain mediated by the TAT system.
The knowledge about the original fold of TorD pro-elements for proofreading before export is attempted

[33]. Along this line, it was proposed that the signal vides a new framework in which to investigate the mech-
anism of maturation and export of the TorA molybdoen-peptide may be bound by an accessory protein that

attaches itself to the apoform of the protein and may zyme family.
only be released after cofactor insertion [13]. It is now
possible to state, on the basis of the functional and Biological Implications
biochemical results reported above, that TorD fulfils the
last two requirements. The affinity of the signal peptide A variety of bacterial periplasmic redox enzymes are

exported as folded holoproteins by the recently discov-of TorA for TorD has not been evaluated, but it was
shown that the TorD homolog DmsD (Figure 4) binds ered twin-arginine translocation system. The best-docu-

mented enzyme with respect to export by the TAT ma-the twin-arginine leader sequences of DmsA and TorA
[21], two molybdopterin-containing reductases with sig- chinery is TorA, a trimethylamine N-oxyde-specific

reductase. This protein is part of the respiratory systemnificant sequence similarities. It is therefore possible
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the enzyme, a prerequisite event for translocation of the
enzyme into the periplasm.

TorD from this bacterium forms multiple oligomeric
species, and the crystal structure of dimeric TorD re-
veals extreme domain swapping between the two sub-
units. The dimer displays a dumbbell-like shape, and
the all-helical architecture of the globular module within
the intertwined dimer shows no similarity with known
protein structures. According to sequence and structure
analysis, this new fold defines a family of putative chap-
erones from various bacterial species and includes pro-
teins of yet unknown functions.

Both monomeric and dimeric TorD facilitates molyb-
denum cofactor incorporation and maturation of the pre-
cursor apo-TorA enzyme. These experiments suggest
that domain swapping in TorD preserves a significant
extent of the surface of the protein that mediates the
formation of the TorD-TorA complex, observed by sur-
face plasmon resonance. These data may also indicate
that domain swapping, if it occurs in vivo, does not seem
to be implicated in the modulation of the chaperone
function. The structural, biochemical, and functional
data presented in this report provide a new framework
in which to study the maturation of molybdoenzymes
and raise the possibility that TorD may have a comple-
mentary function of proofreading before transport of
TorA is attempted.

Experimental Procedures

Expression and Purification
Figure 6. Grasp Representation of the Polar and Acidic Areas Gen- The torD gene of S. massilia was amplified from chromosomal DNA
erated by Invariant Residues in the TorD Protein Family Mapped on by PCR with primers SMD1 (5�-TTTCCATATGAGTCAAGTCGATAT
the Surface of the Structure of the TorD Dimer CAACCACGC-3�), which corresponds to an NdeI site followed by
P, polar; A, acidic. the 5� coding sequence of torD, and SMD2 (5�-TTTCTCGAGGC

TAATTATCGCCACAGCGGGTTC-3�), which corresponds to an XhoI
site followed by a sequence encoding the complementary sequence
of the 3� end of torD. The purified PCR product was digested byencoded by the torEACD operon in Shewanella massilia,
both restriction enzymes and ligated into the appropriate cloninga bacterium responsible for fish tissue decay. TorD is the
sites of the expression vector, pet-22b (NOVAGEN), to give plasmid

cytoplasmic chaperone of TorA and allows maturation of pet-TorD, which allows production of C-terminal His-tagged TorD
protein. The absence of mutation was checked by DNA sequencing.

The recombinant vector was transformed into E. coli strain
BL21(DE3)pLysS. Bacteria were grown at 37�C in Lenox broth me-
dium supplemented with 100 �g ml�1 ampicillin and 35 �g ml�1

chloramphenicol to an OD600nm of 0.7. Expression of the gene torD
was induced by the addition of 0.5 mM IPTG (isopropyl 
-D-thioga-
lactopyranoside) for 4 hr. Cells were harvested by centrifugation at
4500 � g for 20 min, resuspended in lysis buffer (20 mM sodium
phosphate [pH 7.6], 500 mM NaCl, 1 mM DTT, 150 U benzonase
(Merck), 10 �g ml�1 leupeptin, pepstatin, and TPCK, and 0.1 mM
PMSF), and disrupted by sonication. The insoluble material was
removed by centrifugation at 9000 � g for 2 hr.

All protein purification procedures were carried out at 4�C. The
supernatant was loaded onto a 5 ml Ni-Sepharose column equili-
brated with 20 mM sodium phosphate (pH 7.6) and 500 mM NaCl
(buffer A). The column was washed with 10 ml of buffer A and then
with 10 ml of buffer A implemented with 5 mM imidazole. The bound
proteins were eluted with 70 ml of a 0.1–0.25 M imidazole linear
gradient in buffer A. The TorD protein was eluted in two peaks at
160 mM (major peak, the monomeric form) and at 240 mM imidazole
(minor peak, the dimeric form). Each protein fraction was then han-

Figure 7. Comparison of the Scattering Data Measured by SAXS dled independently. After dialysis against 10 mM sodium phosphate
Experiments and Calculated from the X-Ray Structure (pH 7.6) and 10 mM DTT, the TorD fractions were applied on a

UnoQ6 anion exchange column (Biorad) equilibrated with 20 mMExperimental data (triangle) and data calculated with CRYSOL [47]
for the TorD dimer. Experimental data (square) for the TorD monomer Tris-HCl (pH 8) and 10 mM DTT and eluted with a 0.075–0.4 M NaCl

linear gradient in this buffer. Monomeric TorD was eluted at 150and calculated scattering data for one globular domain within the
dimer (black curve). mM NaCl, and dimeric TorD was eluted at 220 mM NaCl. Minor
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contaminants in the monomeric TorD fraction were removed on a wavelength of the X-ray was 1.488 Å (Ni K absorption edge), and
the sample to detector distance was set to 1639.5 mm. All experi-Superdex 75 column (Hiload 16/60; Pharmacia) equilibrated with 20

mM Tris-HCl (pH 8), 150 mM NaCl, and 10 mM DTT. The TorD ments were performed at 4�C with a temperature-controlled cell
[46]. Eight successive frames of 200 s were collected for each sam-monomers (in 20 mM Tris-HCl [pH 8], 150 mM NaCl, and 10 mM

DTT) and dimers (20 mM Tris-HCl [pH 8], 220 mM NaCl, and 10 mM ple. The scattering intensity of a reference sample of carbon black,
recorded immediately before and after each experiment, was usedDTT) were concentrated to 10 mg ml�1 and 2.5 mg ml�1, respectively,

with Centricon 10 filter units (Amicon-Millipore) and stored at 4�C. to normalize all data to the transmitted intensity. The scattering
contribution of the buffer was subtracted before further analysis.The selenium-substituted protein was expressed in methionine

auxotroph strain B834(DE3) with minimal medium supplemented The X-ray-scattering patterns, for the dimer and for one globular
module within the dimmer, were computed from crystallographicwith 17 amino acids, the bases for nucleic acids, various salts,

sulfate, IPTG, and SeMet [34]. The SeMet protein was purified by coordinates with the program CRYSOL [47].
the same procedure, except that all buffers were supplemented with
5 mM 
ME. Acknowledgments

Crystallization We thank the staff at the Deutches Elektronen-Synchrotron for ex-
Crystallization of the TorD dimer was achieved by the hanging drop cellent data collection facilities. This work was financed by CNRS
vapor diffusion method at 4�C. The crystals were obtained by mixing and, in part, by “Le Programme de Recherche en Microbiologie
1 �l (1.2 mg ml�1) of protein solution with an equal volume of reservoir Fondamentale” of the French Ministry of Research.
solution containing 1.6 M ammonium sulfate in 100 mM MES (pH
6.4). Crystals appeared in 4–6 days. They belong to space group Received: July 19, 2002
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