
Physics Letters B 743 (2015) 301–305

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector 
Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Non-extremal branes

Pablo Bueno a, Tomás Ortín a, C.S. Shahbazi b,∗
a Instituto de Física Teórica UAM/CSIC, Madrid, Spain
b Institut de Physique Théorique, CEA Saclay, Île-de-France, France

a r t i c l e i n f o a b s t r a c t

Article history:
Received 26 January 2015
Received in revised form 24 February 2015
Accepted 27 February 2015
Available online 3 March 2015
Editor: M. Cvetič

We prove that for arbitrary black brane solutions of generic Supergravities there is an adapted system 
of variables in which the equations of motion are exactly invariant under electric–magnetic duality, i.e.
the interchange of a given extended object by its electromagnetic dual. We obtain thus a procedure 
to automatically construct the electromagnetic dual of a given brane without needing to solve any 
further equation. We apply this procedure to construct the non-extremal (p, q)-string of Type-IIB 
String Theory (new in the literature), explicitly showing how the dual (p, q)-five-brane automatically 
arises in this construction. In addition, we prove that the system of variables used is suitable for a 
generic characterization of every double-extremal Supergravity brane solution, which we perform in full 
generality.
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Supergravity branes have played a role of outermost importance 
in String Theory since they were discovered to be the macroscopic 
counterparts of many String Theory microscopic extended objects, 
during the second String Revolution [1]. However, strictly speak-
ing, this correspondence is limited to the extremal cases, which 
have been thoroughly studied in the literature. Much less atten-
tion has been paid to non-extremal Supergravity branes (which 
are regular in general, in contrast to the extremal ones), since they 
do not obey first order differential equations and its String The-
ory interpretation is less clear. In this note we are interested in 
further understanding the structure of general non-extremal Su-
pergravity branes and their behavior under electric–magnetic dual-
ity.

In Ref. [2], a generalization of the FGK-formalism [3] to an 
arbitrary number of space–time dimensions d and worldvolume 
dimensions (p + 1) was presented. The d-dimensional class of the-
ories considered in [2] describes gravity coupled to a given number 
of scalars φi , i = 1, . . . , nφ , and (p +1)-forms A�

(p+1) , � = 1, . . . , nA , 
and is given by the following, two-derivative, action

S =
∫

ddx
√|g|

{
R + Gi j(φ)∂μφi∂μφ j

+ 4 (−1)p

(p+2)! I��(φ)F �
(p+2) · F �

(p+2)

}
, (1)
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where F �
(p+2)

= (p + 2)dA�
(p+1)

are the (p + 2)-form field strengths 
and the scalar dependent, negative definite, matrix I�� (φ) de-
scribes the couplings of scalars φi to the (p + 1)-forms A�

(p+1) . The 
generic space–time metric considered in [2] was

ds2
(d) = e

2
p+1 U

[
W

p
p+1 dt2 − W − 1

p+1 d�z 2
(p)

]
− e

− 2
p̃+1 U

γ(p̃+3) , (2)

γ(p̃+3) = X
2

p̃+1

[
X 2 dρ2

(p̃ + 1)2
+ d�2

(p̃+2)

]
, (3)

where X ≡
(

ω/2
sinh

(
ω
2 ρ

) ), �z(p) ≡ (
z1, . . . , zp

)
are spatial worldvolume 

coordinates and d = p + p̃ + 4 so p̃ is the number of spatial dimen-
sions of the dual brane. d�2

(p̃+2)
stands for the round metric on the 

(p̃ + 2)-sphere of unit radius, and ω is a constant that corresponds 
to the non-extremality parameter of the black-brane solution. In 
other words, the black-brane is extremal if and only if ω = 0.

Assuming the space–time background (2) and that all the fields 
of the theory depend exclusively on the radial coordinate ρ , the 
equations of motion of (1) are equivalent to the following set of 
ordinary differential equations [2]

Ü + e2U V BB = 0 , (4)

φ̈i + 	 jk
iφ̇ jφ̇k + d−2

2(p̃+1)(p+1)
e2U ∂ i V BB = 0 , (5)

(U̇ )2 + (p+1)(p̃+1)Gi jφ̇
iφ̇ j + e2U V BB = c2 , (6)
d−2
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where V BB stands for the so-called black-brane potential

V BB (φ,q) ≡ 2α2 2(p + 1)(p̃ + 1)

(d − 2)

(
I−1

)��

q�q� , (7)

and c2 is a real semi-definite positive constant given by

c2 ≡ (p + 1)(p̃ + 2)

4(d − 2)
ω2 − (p̃ + 1)p

4(d − 2)
γ 2 , (8)

and γ is another constant whose origin will be clear in a moment. 
Notice that the system of differential equations above involves only
the metric factor U and the scalar fields φi , since the (p +1)-forms 
can be eliminated in terms of the corresponding charges q� , � =
1, . . . , nA , by explicitly integrating the Maxwell equations.

Remarkably enough, it turns out that W can also be explicitly 
integrated yielding

W = eγρ , (9)

where γ is the (integration) constant which appears in (8).
In [2] it was argued that in order to have a regular black-brane 

solution, we must have [6] γ = ω and therefore c2 = ω2

4 .
To sum up, in Ref. [2] it was found that the above ansatz cor-

responds to a black-brane solution (not necessarily regular) of the 
theories defined by the generic action (1) if Eqs. (4), (5) and (6)
are satisfied.

It can be seen that the FGK system of equations is completely 
fixed once we know the following data: the Riemannian metric Gi j
of the non-linear sigma model, the number p of spatial dimensions 
of the brane and the matrix I�� describing the couplings of the 
scalars and the (p + 1)-forms. Actually, the FGK-system is invariant 
under the interchange

p ↔ p̃ , (10)

which however does not leave invariant the space–time metric, 
which represents now the metric of a p̃ brane. A p̃ brane natu-
rally couples to a (p̃ + 1)-form, that is, to the magnetic duals of 
the electric (p + 1)-forms A�

(p+1) . Therefore, in order to properly 
perform the interchange (10) we also have to change the electric 
matrix Iel of couplings to the magnetic Imag one. Schematically the 
transformation is

p ↔ p̃ , Iel ↔ Imag . (11)

The only term in the FGK-system that depends on I�� is the black-
brane potential V BB. Therefore, if(

I−1
)��

el
q�q� =

(
I−1

)��

mag
q′
�q′

� , (12)

where q′
� = A�

�q� , A ∈ Gl(nA, R), then the FGK-system is invariant 
under the transformation (11), up to a redefinition of the charges, 
and therefore with the same solution of the FGK-system we can 
construct two space–time solutions, the electric-brane solution and 
the magnetic-brane solution. In order to see when condition (12)
holds, we have to change from electric variables A�

(p+1)
to the 

magnetic ones Ã(p̃+1)� in the action (1). The equations of motion 
and the Bianchi identities for the electric fields A�

(p+1) are

d
(

I�� ∗ F �
(p+2)

)
= 0 , dF �

(p+2) = 0 . (13)

Now we define

G(p̃+2)� = I�� ∗ F �
(p+2) , (14)

and thus the equations of motion for the electric vector fields can 
be written as a Bianchi identity for G(p̃+2)�
dG(p̃+2)� = 0 ⇒ G(p̃+2)� = dÃ(p̃+1)� locally . (15)

Eq. (14) can be inverted as follows

F �
(p+2) = (−1)(d−1)+(p+2)(p̃+2)

(
I−1

)�� ∗ G(p̃+2)�. (16)

Substituting Eq. (16) in Eq. (1), we deduce that

Imag = I−1
el . (17)

Given Eq. (17) and Eq. (12) we obtain that a sufficient condition 
to obtain the same FGK-system for electric and magnetic branes 
is that there exists a matrix A ∈ Gl(nA, R) such that the following 
self-duality condition holds

I−1 = AI AT . (18)

Without invoking supersymmetry we can say little more beyond 
Eq. (18), since the couplings in the action (1) are in principle 
arbitrary aside from some regularity conditions. Supersymmetry, 
however, constrains the couplings and therefore it is easier to an-
alyze when Eq. (18) is satisfied.

Supergravity non-linear sigma models are constrained by super-
symmetry and related to the couplings of the (p +1)-forms and the 
scalars of the theory. Let us now consider the general situation of 
an extended ungauged Supergravity, where the scalar manifold is 
a homogeneous space of the form

MS = G

H
, (19)

and the matrix I of the couplings between the (p + 1)-forms and 
the scalars is a coset representative, namely I ∈ G

H . The coset ele-
ment I must be taken in a particular representation, namely I is 
in the representation R(G) that acts on the charges of the corre-
sponding electric p-forms of the theory. This is the standard situa-
tion happening in an extended Supergravity in diverse dimensions. 
From the self-duality condition (18) we are interested in coset 
representatives I such that there exists a matrix A ∈ Gl(nA, R) sat-
isfying

I−1 = AI AT . (20)

There is a sufficient condition on G such that the self-duality 
condition (20) is implied. Let us assume that the Lie group 
leaves invariant a bilinear form B ∈ V ∗ ⊗ V ∗ , where V is the 
nA -dimensional representation vector space of G , or in other 
words, q� ∈ V . The condition of G leaving invariant B can be 
rewritten as follows

RT BR = B , R ∈ R(G) , (21)

where R(G) is the corresponding representation of G as automor-
phisms of V . Now, the self-duality condition does not have to be 
satisfied by an arbitrary element in G but for an element in G/H
which, in the representation R(G), must be symmetric in order 
to be an admissible I [7]. Assuming then that RT = R we can 
rewrite (21) as follows

R−1 = B−1 RB , R ∈ R(G) , (22)

and therefore if

BT = B−1 , (23)

then Eq. (20) is satisfied and the corresponding FGK model is 
self-dual, meaning that the system of differential equations to be 
solved for the electric p-brane and the corresponding magnetic 
p̃-brane is exactly the same.
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There are several Supergravities where condition (23) holds. 
Just to name a few: Type-IIB Supergravity, where G = Sl(2, R), 
H = SO(2) so B = antidiag(1, −1); nine-dimensional N = 2 Su-
pergravity, where G = Sl(2, R) × O(1, 1) and H = O(2), quotienting 
only the first factor and B = antidiag(1, −1) × diag(1, −1); four-
dimensional N = 8 Supergravity, where G = E7(7) acting on the 56
irrep. on the charges, H = SU(8)/Z2 and B is the symplectic form 
in the 56-dimensional vector space; four-dimensional N = 6 Su-
pergravity, with G = SO∗(12), H = U(6) and B being the identity 
matrix, etc.

Let us see how this works in a particular example, namely 
the (p, q)-black-strings and (p, q)-5-black branes of Type-IIB Su-
pergravity. First, we will use the effective FGK variables to con-
struct the non-extremal (p, q)-black-string, new in the literature, 
and then, we will show how in the FGK framework this solution 
is actually the same as the non-extremal (p, q)-5-black-brane, also 
new. Before getting started, let us review the basic properties of 
the extremal (p, q)-string of Schwarz [4].

From the stringy perspective, an (extremal) (p, q)-string is a 
bound state of Type-IIB String Theory composed of p D-strings
(D1s), charged under the RR two-form C(2) , and q fundamental 
strings (F1s), with charge under the NS–NS two-form B . Type-IIB 
Supergravity is invariant under a global SL(2, R) symmetry, so all 
the states of the theory are accommodated in multiplets of such 
group. In particular any state can be generated from another one 
living in the same multiplet by applying an SL(2, R) transforma-
tion. This is the case for the D1 and F 1 solutions, which are re-
lated to each other via this IIB S-duality. Similarly, we can generate 
a (p, q)-string starting from one of them, and performing a general 
enough SL(2, R) transformation. This was done for the first time by 
Schwarz [4], who also gave the corresponding Supergravity version 
of the solution. In fact, from the Supergravity perspective, all these 
states correspond to extremal black strings charged under one or 
both two-forms. All these solutions are nevertheless singular, given 
that the corresponding black-string singularities are naked. As we 
will see, this behavior is cured in the non-extremal case, and we 
will be able to construct a regular non-extremal (p, q)-black-string 
solution.

The relevant truncated Type-IIB Supergravity Lagrangian is

S =
∫

d10x
√|g|

[
R + 1

2

∂μτ∂μτ̄

(
mτ )2
+ 1

2 · 3!H
T M−1H

]
(24)

where H ≡ dB, with BT ≡ (
C(2), B

)
and M ≡ 1


mτ

( |τ |2 �eτ
�eτ 1

)
with 
mτ > 0 is the coset representative of the space SL(2, R)/

SO(2) parametrized by the axidilaton τ ≡ C(0) + ie−� . Since black 
strings in ten dimensions have p = 1 and p̃ = 5, let us set [8]

d = 10 , p = 1 , p̃ = 5 (25)

in the FGK effective action (1). Now, the key point to notice is that 
the action (24) is a particular case of (1), by taking nφ = 2, nA = 2
and making the following identifications

φ1 = C(0) , φ2 = e−� , Gi j = e2� δi j

2
, I(φ) ≡ −1

8
M−1 , (26)

where i, j = 1, 2 and τ = C(0) + ie−� . We thus obtain that the 
black-brane potential for this truncation of Type-IIB Supergravity 
is given by

−V BB (φ,q) = M��q�q� = e�
(
|τ |2 p2 + q2 + 2pqC(0)

)
, (27)

where �, � = 1, 2 and we have defined α2 = 1
24·3 and q1 ≡ p, 

q2 ≡ q. Therefore, in order to obtain the black-string solutions of 
the theory (24) we just have to solve the system of ordinary dif-
ferential equations given by (4), (5) and (6) assuming Eqs. (25), 
(26) and (27). Notice that M is definite positive and therefore 
V BB (φ,q) in (27) is negative definite.

In Ref. [2], it was shown that for regular extremal black-brane 
solutions, the value φH of the scalars at the black-brane horizon 
obeys

∂i V BB (φH ,q) = 0 , i = 1, . . . ,nφ . (28)

The solutions φH of Eq. (28) are the so-called black-brane attrac-
tors, and generalize to black-brane solutions the popular concept 
of black-hole attractor. Notice that Eq. (28) completely fixes the 
value of the scalars at the horizon in terms of the charges, as 
long as there are no flat directions. Taking the black-brane po-
tential as in (27), one easily finds that (28) has no solutions for 
the (p, q)-black-string system, meaning that there does not exist 
any extremal regular black-string solution of Type-IIB Supergravity 
with non-trivial scalars.

The most general extremal solution of this kind was con-
structed by Schwarz in [4]. It is given, in standard coordinates by

ds2
E = H− 3

4

[
dt2 − dz2

]
− H

1
4 d�x2 ,

Btz = a

(
H−1 − 1

)
, M = aaT H− 1

2 + bbT H
1
2 , (29)

where

H = 1 + h

r6
, (30)

r2 ≡ �x2 and aT = (a1, a2) and bT = (b1, b2) are two constant vec-
tors to be expressed in terms of the physical parameters of the 
solution and subject to the constraint aT ηb = a1b2 − a2b1 = 1. The 
relation between M and H can be inverted to obtain the expres-
sion for the axidilaton, which reads

τ = a1a2 + b1b2 H

a2
2 + b2

2 H
+ i

√
H

a2
2 + b2

2 H
. (31)

It is not difficult to recover the D1 and F 1 solutions from the 
(p, q)-black-string one by setting C(0) = 0 and q = 0 or p = 0 re-
spectively in each case.

The standard coordinates can be related to the FGK ones 
through the change r = ρ− 1

6 . It is straightforward to check 
that Eqs. (4), (5) and (6) with c = 0 are satisfied by Schwarz’s 
(p, q)-black-string (29) [9]. We find that the singular extremal 
(p, q)-black-string can be generalized to a regular non-extremal 
solution, given by

ds2
E = H− 3

4

[
W dt2 − dz2

]
− H

1
4

[
W −1dr2 + r2d�2

(7)

]
,

Btz = ±a

(
H−1 − 1

)
, τ = a1a2 + b1b2 H

a2
2 + b2

2 H
+ i

√
H

a2
2 + b2

2 H
,

H = 1 + h

r6
, W = 1 + 2c

r6
, h = c + 2√

3

√
|V BB∞| + 3c2

4
,

a1 =
(
q C(0)∞ + p|τ∞|2) e�∞

√|V BB∞| , b1 = − q√|V BB∞| ,

a2 =
(
q + p C(0)∞

)
e�∞

√|V BB∞| , b2 = p√|V BB∞| ,

V BB∞ ≡ −e�∞
(

q2 + 2pqC(0)∞ + p2|τ∞|2
)

, (32)

where we have expressed all the parameters of the solution in 
terms of the corresponding physical quantities (charges q and 
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asymptotic values of the axion and dilaton). The FGK variables in 
which this solution was obtained are related to the standard ones 
by the change of variables

r6 = 2c

e2cρ − 1
, H(r)−3/4 = eU (ρ)e−cρ . (33)

It can be easily seen that the general non-extremal solu-
tion we have found reduces to all the known solutions, namely, 
the non-extremal D1-brane by taking C(0) = 0, q = 0; the non-
extremal F 1-string by setting C(0) = 0, p = 0; and Schwarz’s 
extremal (p, q)-string by taking the c → 0 limit. This non-
extremal (p, q)-black-string possesses the same metric as the 
non-extremal D1 and F 1, and an axidilaton with both real and
imaginary parts having the same expression as Schwarz’s extremal 
(p, q)-string (29) (although everything depends now also on the 
non-extremality parameter c = ω/2).

As we explained before, the FGK equations (4), (5) and (6) are 
blind under electric–magnetic duality for a broad class of bosonic 
actions. That is indeed the case of the action (24). Indeed, all the 
equations of motion of the FGK-formalism coming from (24) are 
invariant under the interchange p ↔ p̃, Iel ↔ Imag . The only sub-
tlety appears in the black-brane potential. Since M−1 = ηT M η, 
this goes from

−V
(C(2),B)

BB = qT Mq= e�
(
|τ |2 p2 + q2 + 2pqC(0)

)
, (34)

in the electric version of the action, to

−V
(C(6),B(6))

BB = qT
5Mq5 = e�

(
|τ |2 p2

5 + q2
5 + 2p5q5C(0)

)
, (35)

in the magnetic one, provided that we define the charges q5 as

q5 = (p5,q5)
T ≡ ηq = (q,−p)T , η =

(
0 1

−1 0

)
. (36)

Hence, in the effective FGK variables, pairs consisting of a black 
string and a 5-black-brane solving the equations of motion of 
the corresponding ten-dimensional action appear as a single so-
lution. This corresponds in general to a black string of charges 
(p, q) under (C(2), B) and a 5-black-brane with charges (q, −p) un-
der (C(6), B(6)). Also, the fact that both black-brane potentials are 
equivalent implies that no regular 5-black-brane extremal objects 
exist.

The known 5-brane solutions of Type-IIB Supergravity corre-
spond to the non-extremal D5-brane, the non-extremal S5 and 
the analogue of Schwarz’s extremal black-string, the (p, q)-5-brane
of Lu and Roy [5]. Using the very same solution of the FGK 
system (32) it is straightforward to construct the non-extremal 
(p, q)-5-brane, which can be easily seen to reduce to the known 
cases just mentioned.

As we have explained, there is a black-brane attractor mecha-
nism at work for extremal black-branes (ω = 0), which fixes the 
scalars at the horizon as the critical points φH of the black-brane 
potential. Indeed, assuming regularity of the scalars at the hori-
zon as well as a regular Riemannian scalar metric, the value of the 
scalars at the horizon φH for an extremal black-brane solution sat-
isfies (28). We will use now the FGK-formalism for black-branes to 
prove the existence of a universal [10] black-brane solution with 
constant scalars, and a universal near-horizon behavior, if condi-
tion (28) is satisfied. In this case, however, such condition will 
appear as a constraint from imposing the scalars to be constant 
(often referred to as double-extremality) and not from requiring the 
non-extremality parameter c to vanish. Indeed, for constant scalars, 
the FGK system of equations reduces to
Ü + e2U V BB = 0 , (37)

∂i V BB = 0 , (38)

(U̇ )2 + e2U V BB = c2 . (39)

Note that Eqs. (37), (38) and (39) do not depend on the number p 
of spatial dimensions of the brane. Notice also that V BB(q) will 
be now a constant constructed from the product of the constant 
nA × nA kinetic matrix 

(
I−1

)��
and the charge vectors q� , see (7). 

Thus, a double-extremal black brane will in general be charged un-
der the nA (p + 1)-forms A�

(p+1) present in the theory.
Eq. (38) can be automatically solved if the black-brane potential 

has at least one critical point, something that must be analyzed in 
a case by case basis and that we will assume henceforth. Eq. (37) is 
the derivative of Eq. (39), and thus we are left with a single equa-
tion. This was to be expected, provided there is only one variable 
left to be integrated, namely U . Eq. (39) can be explicitly inte-
grated and the solution is given by

e−2U = |V BB| sinh2 (cρ + s)

c2
, (40)

where s is an integration constant. Normalizing the metric to ob-
tain Minkowski space–time at spatial infinity fixes s to be given 
by

s = arcsinh

(
c√|V BB|

)
. (41)

Therefore, inserting Eq. (40) into the general metric (2) we obtain 
a complete (p1, p2, . . . , pnA )-p-black-brane solution with constant 
scalars which solves the theory (1). The metric factor e−2U is well 
defined for ρ ∈ [0, +∞) and therefore the solution contains a hori-
zon at ρ → +∞ and is regular. Taking the extremal limit c → 0 we 
obtain

e−2U =
(

1 + √|V BB|ρ
)2

, (42)

which corresponds to a regular extremal universal black-brane so-
lution. We can obtain now the near-horizon geometry of the ex-
tremal solution simply by taking the limit ρ → +∞ in the general 
extremal metric where now U is given by Eq. (42). Making the 
change of coordinates ρ = rp+1 and relabeling �z and t we can 
rewrite the final result as follows

lim
ρ→∞ ds2

(d) =

|V BB| 1
p̃+1

[
(p + 1)2

(p̃ + 1)2

1

r2

[
dt2 − d�z 2

(p) − dr2
]
+ d�2

(p̃+2)

]
, (43)

which corresponds to the space AdS(2+p) × S p̃+2. Notice that the 
near-horizon geometry (43) is itself a solution of the equations of 
motion, and corresponds again to a universal solution with con-
stant scalars. Let us remind the reader that in order for the univer-
sal black-brane solution, or the near-horizon solution to exist, the 
only requirement is that the nφ scalars present in the theory can 
be consistently chosen to be constant. This is equivalent to requir-
ing the black-brane potential to have a critical point.

A simple case in which we can easily construct the double-
extremal solution corresponds to N = 2, d = 5 Supergravity cou-
pled to one vector multiplet. A model of this theory gets com-
pletely determined by specifying a completely symmetric tensor 
C I J K (see, e.g. [2], for details), which in this case reads C011 = 1/3. 
The black-brane potential of the model reads

−V BB = 1
[(

p0
)2

e−2
√

2
3 φ + 2

(
p1

)2
e

√
2
3 φ

]
, (44)
3
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with φ being the only scalar of the theory, and p0, p1 the charges 
under the 2-forms B0μν and B1μν dual to the graviphoton and the 
1-form of the vector multiplet respectively [2]. Now, (44) has a 
critical point for

φh =
√

2

3
log

(∣∣∣∣ p0

p1

∣∣∣∣
)

, (45)

at which

−V BB(φh, p) =
[
|p0|(p1)2

]2/3
. (46)

Therefore, the double-extremal black string of this model is given 
by

e−2U =
[|p0|(p1)2

]2/3
sinh2 (cρ + s)

c2
, (47)

with

s = arcsinh

(
c[|p0|(p1)2

]1/3

)
. (48)
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