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ABSTRACT 

This is a historical and mathematical survey of work on necessary and sufficient 
conditions for a pair of quadratic forms to admit a positive definite linear combina- 
tion and various extensions thereof. 

INTRODUCTION 

Work on classifying definite matrix pencils has been going on for over 40 
years. Following a chronological survey, we will indicate how some of the 
numerous proofs now known for the Main Theorem are interconnected 
mathematically. As extensions of this work, we will deal with recent results: 
a classification of positive semidefinite and indefinite pencils, as well as a 
network of interrelated theorems about the simultaneous diagonalization of 
two quadratic forms and very recent work on related questions on general 
fields and on the stability analysis of a generalized eigenvalue problem. 

NOTATION. S and T will denote two real symmetric matrices of the 
same dimension n throughout, while H,K will stand for two complex (or 
quatemion) hermitian matrices. Moreover, to avoid dealing in trivialities, let 
us assume that S and T (or H and K) are not scalar multiples of each other. 

We define the quadratic hypersurface associated with S as Qs : = 
{xERn~x’Sx=O}, while Q,:={xEC”~x*Hx=O}. Moreover, we call a 
pencil P(S,T):={aS+bTla,bER} (or P(H,K):={aH+bKla,bER}, re- 
spectively) a d-pencil if there exists a definite matrix in P( S, T) (or P(H,K)). 
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Such a pencil is called a s.d. pencil if there exists a nonzero semidefinite but 
no definite matrix in it, while we call it an i-pencil if every nonzero matrix in 
it is indefinite. 

We are concerned with the history and mathematical background of the 

MAIN THEOREM. 

(I) If n > 3, then P( S, T) is a d-pencil iff Qs n QT= (0). 
(II) For arbitrary n, P( S, T) is a d-pencil iff the quadratic form of S (or 

T) does not change sign on QT (or Qs, respectively). 
(III) For arbitrary n, P(H, K) is a d-pencil iff QH n QK = (0). 

HISTORY 

Theorems (I) and (II) were originally proved in 1936 by P. Finsler of 
Zurich [21], who is also known for a branch of differential geometry and for 
having discovered the Finsler comet 1937v. At the time he was studying a 
special class of algebraic surfaces called FreigebiZde (see [22]). The Zentrul- 
blatt review of [21] unfortunately does not mention (I). 

Almost concurrently with Finsler, in the summer of 1937, G. A. Bliss 
proposed Theorem (II) in his seminar on multidimensional calculus of 
variations at the University of Chicago. Following this seminar, several 
proofs of (II) were found by W. T. Reid [47], A. A. Albert [2], E. J. McShane 
[43] and M. Hestenes [26]. Later Hestenes and McShane [27] jointly proved 
the following generalization to more than two quadratic forms: 

(II for r forms) Assume that x’Sx>O for uZZ XE QT, n . . . n QT,, x#O, 
and let Ti be such that EiuiTi is indefinite for any nontrivial choice of 
ai E R. Moreover assume that fm any subspuce L cC(QT, n . * . n Q,) there 
are constants bi E R such that x’(C i bi Ti)x > 0 fw all 0 #x E L. (C( +) denotes 
the complement.) Then P( S, T,, . . . , T,) is a d-pencil. 

For r= 1 only the first assumption needs to be made. 

This sufficient condition for d-pencils is certainly not necessary, but it is 
well suited for minimizing certain types of integrals arising in the multidi- 
mensional calculus of variations, an area that was being developed at that 
time. 

In 1941, L. Dines [17] used convexity type arguments for the first time. 
In his paper, (II) is called the “Bliss-Albert theorem” in Corollary 2. It is 
intriguing to read the following footnote there [17, p. 4941: “While the 
present paper was in press, Professor N. H. McCoy kindly called the author’s 
attention to the fact that this theorem was first proven by Paul Finsler: ‘iiber 
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das Vorkommen . . . ’ ([21] in our bibliography). Apparently this work had 
been overlooked by the authors referred to above.” The authors mentioned 
by Dines [17] were Albert [2], Reid [47] and Hestenes and McShane [271. 

Dines [18] also proved this result about r forms: 

(Dl) (a) P(T,,..., T,) is a d-pencil iff there exist no O#z, E R n with 
2?_(kyT$$=Ofor mi>O,for all k> 1 and all i=l,...,r. 

i,. . . , T, are linearly independent, then P( T,, . . . , T,) is a s.d. pencil 

iff 
(i) there exist z,#O and m!>O with E~,,mi~(zi)=O for all i=l,...,r 

and some k>l, and 
(ii) {(a,,..., a,)~ai=~~=ImjT,(zi), q#O, mj>O}#R’. 

These results were combined with work by F. John [30] to yield still 
other classifications of d-, s.d. and i-pencils of r real quadratic forms in Dines 
[19]: 

032) (a) P(T,,..., T,) is a d-pencil iff trace(ST,) =0 for S= S’ and all i 
implies S is indefinite, 

(b) P(T,,..., Tr) is a s.d. pencil iff there exists a semi&finite S= S’ with 
trace( ST,) =0 f&r all i, but rw such definite S, 

(c) P(T,,..., TI) is an i-pencil iff there exists a definite S = S’ with 
trace(ST,)=O f6r all i. 

Surprisingly, none of Dines’s work on the classification of symmetric pencils 
was quoted for nearly 20 years: in 1960, R. Bellman [lO,p. 881 quoted both 
[17] and [19]. 

In between, in 1958, (I) was given as a problem in the first edition of W. 

Greub’s book Linear Algebra [W, p. 263, Problem l]-erroneously, though, 
without any restriction on n. The problem was posed after J. Mihror’s proof 
[44] of the following theorem on the simultaneous diagonalization of two 
symmetric matrices, a theorem which will be studied more closely in the 
section on “Extensions,” subsection (b): 

(PM) Zf Qs n QT = { 0}, then S and T can be diagonalized simultuneously 
by a real congruence transf~tion, prooio!.ed n > 3. 

This theorem was originally discovered by E. Pesonen [45, Satz 1.21 for pairs 
of hermitian matrices. Further proofs of (PM) are due to K. N. Majindar [39, 
401, H. Kraljevic [32], M. Wonenburger [72] and W. C. Waterhouse [69, 
Theorem 5.21. Pesonen [45, Satz 1.11 also showed that QH n QK = (0) implies 
that X*HX does not change sign for x E Qx, as did R. Kiihne [35, Lemma 1.11, 
i.e., (III) implies (II). 
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In Hilbert space, pairs of symmetric operators A, B with QA n QB = (0) 
are called Pesonen operator pairs by J. Bognar [12, Chapter 11.91, since 
Pesonen had originated work on (PM) and Finsler type problems in Hilbert 
space. But it was E. Calabi [14, Theorem 21 who first showed that Pesonen 
operator pairs admit a semidefinite linear combination. This result was later 
given a quantitative form by R. Kiihne [34, Satz 1.1; 35, Lemma 1.21 and by 
M. G. Krein and J. L. Smuljan [33, Theorem 1.11: 

(CKKS) Zf A,B are symmetric operators in a Hilbert space X such that 
x*Ax > 0 for all O#x E QB, where B is indefinite, then 

(a) inf,.,= i x*Ax = : m, > - co and 
(b) A - m,B is positive semidefinite on X. 

An even earlier-but rather complicated-extension of Finsler’s theorem 
to Hilbert space is due to M. R. Hestenes [29, Sec. 13, pp. 559-5621. He 
considers Legendre pairs of quadratic forms P, Q, that satisfy several weak- 
strong continuity conditions; see [29, p. 5591 or [28, p. 404, 4051. For these 
pairs, Hestenes [29, Theorem 13.11 shows that there always is a positive 
definite linear combination P + bQ provided that P(x) < 0, Q(x) < 0 implies 
x=0. Further sufficient conditions for the existence of positive definite 
linear combinations P-t- bQ are given in [29, Lemma 13.1, Theorems 13.2, 
13.31. 

For further results on Finsler’s problem in Hilbert space, and specifically 
on Pesonen operators, see J. Bognar [12, Chapter II.91 and the “Notes to 
Chapter II” in [12, pp. 56, 571, as well as [12, Chapter II, Theorem 6.21. 
Note, though, that none of [12], [33], [34], [35], [45] contain any references to 
previous work on Finsler’s problem. Another extension of (PM)-this time 
for finite dimensional spaces only-is due to M. Marcus [42]: Assuming 
(detX’SX)2 + (detX’TX)2 > 0 for ah n X 2 real matrices X of rank 2, Marcus 
uses Thompson’s real pair form theorem in [59] to determine the finest 
simultaneous block diagonalizations possible for such S and T. 

It is not known whether Greub’s problem of deducing (I) from (PM) in 
[25] had been solved before 1964; in fact, the problem was omitted in the 
latest edition (Heiddbmgm Taschenbiicher, Bd. 179, 1976) of Greub’s book. 
In 1964, in a remark added to E. Calabi’s paper [14], 0. Taussky indicated 
how this could be done via Stiemke’s theorem (see [54] or Theorem (1.6.4) in 

[551). 
Calabi [14] was led to consider (I) from studying differential geometry 

and matrix differential equations. Unaware of any previous work on the 
subject, he gave a new and short topological proof of (I), together with the 
just-mentioned extension of (I) to infinite dimensional spaces. 
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Taussky later detailed her proof of (I) via Stiemke’s transposition theorem 
in [56, pp. 313, 3141. In [56, pp. 314, 3151 she also deduced (I) from 
Brickman’s theorem [13], which proved the convexity of the “real field of 
values.” By the same argument, (III) can actually be proved for arbitrary n. 
In [56], there is a quotation of unpublished work by H. F. Bohnenblust on 
more than two forms, as well as a hint about work by H. Wielandt-also 
unpublished, as I have recently learned. 

Bohnenblust’s result was given a different proof by S. Friedland and R. 
Loewy in [23]: 

(BFL) Let V be a k-dimensional subs-pace of R,,, consisting only of 
symmetric matrices, and let 1 <r <n - 1. If X~=lx,lSxi =0 for every S E V 
implies x,=0 fm i=l;*. ,T, where k<(r+l)(r+2)/2-a,,,,,, then Vcon- 
tains a definite matrix. 

Through Dines’s work, Bellman [lo, Chapter 51 also learned about 
Finsler’s results, but unfortunately he attributes only a very special case of (I) 
and (II) to Finsler, namely: 

(Be) Let T= T’E R,,, be positive semidefinite. If X’SX >0 for all xE 
Ker T, then P( S, T) is a d-pencil. 

In a later edition [lo, 1970, Chapter 5, Exercise 21, p. 881, Calabi [14] is 
given credit for Theorem (I). 

Theorem (Be) has nevertheless found various applications in equilibrium 
studies by economic analysts:. see e.g. A. Afriat [l], G. Debreu [16, Theorem 
31, R. Farebrother [20], K. Lancaster [37, Part IV, R6.3, p. 3011 or P. 
Samuelson [48, Math. Appendix A, Sec. V, pp. 376-3791. 

Later M. Hestenes [28] studied the set of “multipliers” a, b such that 
aS+ bT >0 (or > 0) and reestablished (I) with methods similar to Dines’s 
[17]. Hestenes’s bibliography includes the papers that came forth from Bliss’s 
seminar, as well as Calabi [14] and Taussky [56], but surprisingly neither 
Finsler nor Dines is quoted, though Hestenes had written the MR review of 
[ 191 himself. 

More recently, Y.-H. Au-Yeung [4]-only mentioning Greub [25] and 
Calabi [14] in the bibliography-re-proved (I) and (PM) for real symmetric 
and complex or quatemion hermitian matrix pairs. (I) was also proved by the 
author via (PM) in [64, p. 5661. And A. Berman and A. Ben-Israel [ll] 
re-proved Dines’s result (D2)( a via the theory of convex cones, unaware of ) 
Dines’s earlier proof. Most recently, D. Saunders [49] studied convexity 
properties of the norm-numerical range V,(A) = { y*Ax](x, y) EII} where 
II:-{(x,~)EC”XC”]~(~)=~J~(~)=~*X==~} foranarbitrarynormvofC” 
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and the dual norm v “( y) = sup{ 1 y*x] 1 v(x) = l} as introduced by F. Bauer 
[9]. If v is the euclidean norm, then V,(A) = W,, the field of values of A. And 
the following analog to the Hausdorff-Toeplitz theorem for W, holds for 
V,(A) [49, Theorem 71: 

(S) Zf A and B are v-hennitiun for a vector norm v of C”, then 
V,,(A + iB) is convex. 

Here A is called v-hmmitian if V,(A) c R. 
Hence by Taussky’s proof in [56] one obtains: 

(SLS) Zf A, B EC,,,, are v-hennitiun matrices, then the folbwing are 
equivalent: 

(i) For all (x,y)EII either y*Ax#O or y*Bx#O, and 
(ii) P(A,B) is a v-positive definite pencil, 

“SLS” here stands for D. Saunders, R. Loewy and H. Schneider, who 
communicated this result to me. For the euclidean norm, (i) just says that 
QA n QB = (0) as in (I). 

MATHEMATICS 

In this section we outline various proofs for the Main Theorem and show 
their relationships to each other. It has proved quite useful to use a “field of 
values” approach: For a square matrix A, the field of values W, = { x*Ax] x E 
C”, 1) xJJ = l} is convex and contains all the eigenvalues of A (see Marcus and 
Mint [41, pp. 168, 1691, for example). Specifically, for S symmetric, Ws= 

hnin(S)~Lx(S)I CR, since symmetric matrices are normal and have only 
real eigenvalues. 

With this notation, S is said to be definite iff 0 @ W,. 
For pairs of symmetric matrices S and T, these concepts and results can 

be generalized thus: If (0,O) @ W, X W, C R ‘, then clearly one of S or T is 
definite and hence P( S, T) is a d-pencil. The converse is false, though: take 
S=diag(l,- l), T=diag( -2,1) f or example. Then 4 S + 3 T = diag( - 2, - 1) is 
definite, while 0 E W, n W,. 

Hence more useful results have come from looking at 

N(S,T):={(r’Sr,r’Tx)~xER”}~R2 

instead. Namely, (I) states (for n > 3) that P( S, T) is a d-pencil iff O= 
(x’Sx,x’Tx)EN(S,T) imph ‘es x = 0. Dines [17, Theorem l] showed that 
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N( S, T) is convex and if Qs n Qr = {0}, then N( S, T) is closed and either 
N(S, T) = R2 or N(S, T) is an angular sector with angle less than 180” [17, 
Theorem 21. Whence he concludes (I) for rr > 3 in Corollary 2. (Dl) is proved 
in [ 181 by considering the convex hull of N( I’,, . . . , T,), for N( I’,, . . . , T,) need 
not be convex if r>2. (D2) is proved directly in [19] by a very short 
manipulation with trace( ST). 

In [28, Theorem 21, Hestenes also showed that N( S, T) is a convex cone 
-even for infinite dimensional vector spaces. Moreover if cc > n > 3 and 
Qs n Qr = { 0} then S and T ll a ow a nonzero semidefinite linear combination 
[28, Theorem 31, re-proving the result of Calabi [14, Theorem 21. M. R. 
Hestenes then proved that the two assumptions Qs n Qr= {0}, N(S, T) 
closed (and for n =2 additionally N( S, T)#R “) together imply that there is a 
closed set M C R 2 such that AS + pT > 0 for all (A, p) E M (Theorem 5). Such 
sets of “multipliers” M are also studied for Legendre pairs of quadratic forms 
in Hilbert space (Theorem 8). 

Instead of considering the cone N(S, T) itself, several authors have 
worked with its cross-sections in order to prove Theorem (I). In [56], Taussky 
makes use of Brickman’s theorem [ 131: 

(Br) Zf n > 3, then R(S, T): = {( x’ S x,x’Tx)~x~R”, ]]x]]=l}cR2 is con- 
vex. 

To prove (I), Taussky notices that if Qs n Qr = {0}, then R( S, T) is separated 
from (0,O) E R2 by a line G through (0,O); hence the angle R(x) between G 1 
and any point (x’Sx,x’Tx) ER(S, T) is less than 90”, i.e., 

ax’% + bx’ TX 
cost= 11. . . II. II.. . 11 >O* 

where a, b E R are the constants defining G ‘-, i.e. aS + bT is positive 
definite. In fact, (Br) holds in a more general context too, as has been shown 
by Y.-H. Au-Yeung [7]: 

(AY) Zf n Z 3 and P= P’ E R,, is positive definite, then Rp(S, T) : = 
{(x’Sx,x’Tx)~xER”, x’Px=l} is convex. 

This result also holds over C and the quatemions for hermitian pairs. 
R. Loewy-in private communication-remarked that the set 

C(H,K):={(x*H x,x*Kx)]x~C”, ]]x]]=l}CR2 is closed and convex as well 
for every n, since W,,, is closed and convex. Hence Taussky’s argument 
above can be applied to prove (III) for hermitian matrix pairs and arbitrary 
n. The proof of (SLS) hinges on the same principle again. 
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It should be noted here that an effective criterion for checking whether 
OER(S,T) [or C(H, K)] has recently been developed by C. S. Ballantine in 
[8, Fact 2.31; see specificalIy Remark 1.10 on p. 127 there. 

In [3] and [4], Au-Yeung takes still another cross-section of N( S, T): He 
studies the map 

for x CZ Qs n QT. 

For finite 12 > 3 and real symmetric S and T, or for co >n >2 and H,K 
complex (or quatemion) hermitian, Au-Yeung [3, Theorem l] shows by 
algebraic manipulations with two simultaneous quadratic equations that the 
image under f is either the whole real unit circle, an arc (relatively open, 
half-open or closed) of length <a or two opposite points. In [3, Theorem 21, 
the result about semidefinite pencils of E. Calabi [14, Theorem 21 is 
reestablished, while in [4] it is shown for n as above but finite that Imf is a 
closed arc for an angle less than 180” if Qs n QT = (0) (or QH n Qx = (0)). 
From this, (I) and (III) are deduced in [4, p. 54q, as well as (PM) in [4, 
Lemma 21. 

Assuming that Qs n QT = {0}, Calabi [14] considered the same mapping f 
for xERn with l]xl] = 1 as a ‘map of real projective spaces Pk, namely, 
f:P”_l(R)+P’(R). His p roo uses concepts from algebraic topology. Since f 
the fundamental group satisfies 

(see e.g. Schubert [SO, p. 282]), th e induced map f* between the fundamen- 
tal groups must be trivial. Thus f,(l&(P”-l(R))) = (0) is clearly contained in 
II,(P’(R)), so that one can factor f via the universal covering map h of R 
onto P’(R): 

P”-‘(R) yP’(R) 

Calabi then shows that L: = h( g(P”-l(R))) !,z P’(R) and that L is closed, 
two results that are reminiscent of Au-Yeung’s results in [4,Theorem l] and 
[3,Theorem 11. Continuing with the proof of (I), the relative complement of 
L is nonempty and open, and a definite linear combination of S and T can be 
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exhibited. This is then applied to give a slightly weaker result than (CKKS) 
in [I4, Theorem 21 for infinite dimensional spaces. 

Unfortunately, though, Calabi’s proof does not carry over to hermitian 
matrix pairs, since there II,(Pk( C)) = (0) for all k (see e.g. Schubert [SO, p. 
2821). But Calabi’s method seems to come closest mathematically to Finsler’s 
original proof [21], done in homogeneous coordinates too. Finsler [21] uses 
the fact that a quadratic hypersurface Qs is arcwise connected for n > 3- 
this same fact helped Calabi show that L $Z P’(R) [14, p. 845, first para- 
graph]. Since the sets {xER”]x’Sr>O} and {x~R”]x’Sx<0} are also 
arcwise connected, then if Qs n Qr = { 0}, Qs and Qr cannot “cross” each 
other, or-in Bliss’s formulation-“x’Sx does not change sign for x E QT.” 
Finsler then completes his proof by continuity arguments on QS+XT as h 
ranges over R u {co}. In [21, Satz 41 he also gives results for more than two 
forms as long as 2<n<4. 

The proof of (CKKS) is based on a powerful lemma about pairs of “inner 
products,” which we state for finite dimensions here only : 

(KKS) Let H= H* be indefinite and K = K* be arbitrary. If fm all 

XEQ~ r*KxZO, then y*Ky/y*Hy<x*Kz/z*Hz for every pair y,zEC” 
with y*Hy<O,z*Hz>O. 

This follows easily from Hestenes’s observation in [28] that N(H, K) is always 
convex. R. Kiihne [34, Lemma 1.21 and M. G. Krein and J. L. Smuljan [33, 
Theorem 1.11 give proofs that hold in Hilbert spaces too (see J. Bognar [12, 

Lemma 6.1, p. 421). Their proof, in fact, also underlies Au-Yeung’s methods 
in [4, p. 5461. 

The proofs of (II) stemming from Bliss’s seminar (i.e., [2], [271 and [471) 
generally seem to be less involved with modem concepts like algebraic 
topology, convexity theory etc. Albert [2] determines explicitly all real X such 
that S-AT is definite by simultaneously diagonalizing the generators of a 
d-pencil. His proof of (II) is by induction on n. Hestenes and McShane, in 
their proof of (II) for r forms in [27], use minimax type arguments on the 
quadratic form x’( S + Xi& K)x by considering max& min,,X,, = i x’( S + 2 i&T& 
in [27, Lemmas A,B, Theorem 11. 

In order to prove (II), Reid [47] shows analytically that the roots of 
g(h):=det(S-XT) are all simple and real, given that X’SX does not change 
sign for x E Qr. Reid then specifies an interval A CR from the roots of g 
such that S -AT is positive definite for all A E A [47, p. 4401. 

Very recently, K. N. Majindar [40] re-proved (I), (III) and (I’M) all by 
elementary means. For his proof the pencil P(S, T) [or P(H, K)] is reduced to 
a suitable equivalent form from which it is easy to read off the properties of 
g(x) =det (S - XT) if Qs n QT = {0}, i.e., Reid’s results [47, Lemmas 1,2,3]. 
Finsler’s theorem is then proved by induction. 
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RECENT EXTENSIONS 

Extensions of Finsler’s original results (I) and (II) to the hermitian, 
quatemion hermitian, v-hermitian and Hilbert space cases and to semidefi- 
nite and indefinite pencils as well as to more than two forms have already 
been treated in the previous sections. In this section we will deal with rather 
new extensions in the following directions: 

(a) How else can semidefinite or indefinite pencils be characterized? 
(b) How does Theorem (PM) of Pesonen and Milnor relate to Finsler’s 

Theorems (I) and (II)? 
(c) Do Finsler type results hold for arbitrary base fields F? 
(d) The stability analysis of the generalized eigenvalue problem ZZx= 

AZ& 

Several aspects of these questions cannot be answered fully as of today. 
We will try to give as complete a picture as possible of the answers that do 
exist already, but many open questions will remain. 

Two symmetric matrices S, T form a rwn.singuZur pair if S is nonsingular. 
P( S, T) is called a nonsingular pencil if there is a nonsingular matrix in 

P(S, T). 
With these notions, the following answer to question (a) has been 

obtained by the author in [65]-an answer that has no apparent relationship 
to Dines’s classification of s.d. and i-pencils (D2) in [lQ], but seems much 
closer in spirit to (I) than (D2): 

(Ul) Let 1: =max { kithere exist k lin. indep. vectors in Qs II QT}. Zf 
n > 3, then 

(a) P(S, T) is a d-pencil iff Z=O, 

and for a nonsingular pair S, T: 

(b) P(S,T) is a s.d. pencil iff l<l<n-1 and in case l=n-1, S and T 
are simultaneously congruent to 

kdiag((y i),e3 ,..., .Y~) and &diag((f ~),EJ ,..., c,,h) (D) 

fi?r n > 4, A E R, ei = +- 1 such that E,,,E~ = - 1 for at least one pair of indices 
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S<m,k<n, or to 

diag(e,,..., en) and diag(e,A ,..., e,_rX,e,p), (E) 

withh,~~R,A#~,~~=~1andq,,e~=-1forsome1~m,k<n-1. 
(c) P(S,T)i.sani-penciliffn-l<l~nandincasel=n-l,SandTare 

simultaneously congruent to 

with XE R, or to 

?diag(( y A),l,...,l) 

and fdiag(( E :J,A,...,X) 

(4 

with a,b,hER and b#O. 

The actual proof in [64], [65] and [66] is based on the author’s thesis [63] 
and specifically on the real canonical pair form as developed there and in 
[61] for nonsingular real symmetric pairs S, T. Such pair forms go back more 
than 100 years to both Kronecker and Weierstrass. Recently R. C. Thompson 
[59, 601 has worked on a canonical pair form for arbitrary symmetric or 
hermitian pairs S and T or H and K. The resulting canonical form is similar 
to Uhlig’s [61] for the nonsingular part of S and T, while the singular parts of 
S and T can be made congruent to a more complicated but st.iII very sparse 
block configuration. Thus one may hope that a result similar to Theorem 
(Ul) can be proved by means analogous to those in [64], [65] and [66], for 
both arbitrary symmetric pairs S and T and hermitian pairs H and K. 

It is classical knowledge that S and T can be diagonahzed simultaneously 
by real congruence if one of S or T is definite. Thus Theorem (PM) becomes 
obvious, once Finsler’s theorem (I) is presupposed. 
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Clearly neither S nor T need be definite in order that S and T can be 
diagonalized simultaneously. In fact, the following theorem-most likely due 
to Greub [25, p. 255]-holds regarding simultaneous diagonability (see also 
Gantmacher [24, Vol. 2, Theorem 7, p. 431, Uhlig [62, 681, M. Wonenburger 
[72], Rao and Mitra [73, Chapter 61, Au-Yeung [74] and Becker [75]). 

(Gr) A nonsingular pair of symmetric matrices S and T over an arbitrary 
field F can be diagonaliwd simultaneously by F-congruence iff S -lT is 
similar to a diagonal matrix over F. 

Specifically, for F = R,n > 3 and a nonsingular pair S and T, we thus 
obtain two levels of “if and only if’ theorems with the following implications 
in between: 

to Taussky in the diagram is part of 

simultaneously 
diagonable 

The implication ((T)) attributed 
Taussky’s theorem from [57], [58]: 

(T) Let A be a real square matrix. Then there exists P positive definite 
and T symmetric such that A = P- ‘T i@ A is similar to a real diagonal 
matrix. 

And the theorem associated with Weierstrass goes back to his 1868 paper 
[71]. This paper-historically speaking-is the earliest work on a real 
canonical pair form for nonsingular symmetric pairs. The following appears 
as a corollary there [71, p. 337, 3381: 

(W) If P(S, T) is a d-pencil, then S and T are simultaneously diagonabb 
over R by congruence. 

The problem of simultaneous diagonability for nonsingular pans S and T 
has been further extended via the real and rational pair form theorems in 
[61], [67] and [68] to treat the concept of the finest simultaneous block 
diagonal structure that can be obtained by congruence for a given pair S and 
T; see Uhlig [62, 67, 681. Au-Yeung [5, 61 has obtained results on simuha- 
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neous two-block diagonalizations for arbitrary real symmetric, hermitian and 
quaternion hermitian matrix pairs. His results-considered only for the 
nonsingular real symmetric case-are weaker than and contained in the 
corresponding results in [66]. The methods used are different, though. 

Here we will mention some current results for arbitrary fields F with 
char F # 2, namely by W. Givens on anisotropic matrix pencils, by the author 
on a generalization of Taussky’s theorem (T) and by W. C. Waterhouse on 
classiting: fields via (T). 

for nonsingular symmetric G E F,, and gives the 

WI Gyvens (unpubhshed) considers the Lyapunov map 

L,(G):=$(GA+A’G) 

DEFINITION. Let G, H E F,, be symmetric and char F#2. 

(i) Then we set %(G,H):={A(L,(G)=H). Moreover, 
(ii) G is called anic if x’Gx=O for x E F” implies x=0. 
(iii) G is called positive definite if X’GX > 0 for all x # 0 and all orderings 

of F, provided F is formally real. 
(iv) index G : = max {dim VI V c F” subspace with U’GU =O for all u E V]. 

Givens is able to classify both anic matrices and anic pencils via the set 
%(G, H): 

(Gil) H is anic iff every rumzero matrix in %( G, H) is nonsingular. 
(Gi2) P( G, H) is an anic pencil with H - UC anic ifl m rumzero matrix 

in 9l( G, H) has a E F as an eigenvalue. 

Via the rational canonical pair form theorem for nonsingular symmetric 
matrix pairs S, Tin [67], [68], th e author started to investigate generalizations 
of (T) for arbitrary fields F with char F#2 in [671. The current results-to 
be published elsewhere in detail-are these: 

(W (4 If A EL h as elementary divisors pi4 over F, then every non&- 
gular symmetric S E F,,,, with SA =A’S satisfies 

indexS > T degp,[ 21. 
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(b) Zf S = S’ E F,,, is nonsingular, then the elementary divisors p: of 
every A E F,,, with SA = A’S satisfy 

T degp,[ 21 <indexS. 

Here [-I denotes the greatest integer function. 
Hence this partial analog to Taussky’s theorem (T) holds for arbitrary 

fields: 

COROLLARY. Zf S = S’ is anic, then every A with SA = A’S is F-similur 
to a direct sum of companion matrices fm F-irreducible polyrwmials. 

This result was also found by C. S. Ballantine (unpublished) and by W. 
C. Waterhouse [70, Proposition 11, where in addition it is shown via 
Springer’s theorem (see e.g. T. Y. Lam [36, ‘Theorem 2.3, p. 198]) that the 
characteristic polynomial of any such A must be separable. 

An intriguing phenomenon occurs when the “greatest integer” brackets 
[-I are applied differently in the formulas of (U2). W. C. Waterhouse [70, 
Theorem 8, Proposition 91, using his version of the rational pair form in [69], 
has shown: 

(Wal) (a) Zf F is hereditarily euclidean and S = S’ E F,,,,, then the ele- 
mentary divimrs p: of all A E F,,,, with SA = A’S satisfy 

indexS > c [degp,f 1. 
i 

(b) Zf Ei[degp,ti/2]<indexS for all AEF,, such that SA-A’S for a 
fixed S = S’, then F is herediturily euclidean or every element of F is a 
square. 

For an introduction to euclidean and hereditarily euclidean fields see 
A. Prestel and M. Ziegler [46]. For F= R, such relations between the index 
of a symmetrizer S and the elementary divisors of a symmetrized matrix A 
were first obtained about 80 years ago by F. Klein [31, Section 161 and A. 

hwy [381* 
Waterhouse [70, Theorem 2, Proposition 61 was also able to settle part of 

the open question from [67, Sec. 7]: classify the fields for which (T) holds. 

(Wd) (a) If 
(T anic) For A E Fnn there exists an anic P with PA = A’P iff A is F-diugon- 

able 
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holds over F for every n, then F is euclidean or every element in F is a 
square. 

(b) Zf F is fnmally real, then 

(T pos. def.) For A E F,, there exists a positive definite P with PA = A’P ifl 
A is F-diagmbk 

holds for F and every n iff F is the intersection of its real closures. 

The stability analysis of the definite generalized eigenvalue problem, i.e. 
of Hx = Mx with P( H, K) a d-pencil, has recently been linked to our Main 
Theorem by G. W. Stewart in [5‘3]. One sets 

where C(H, K): = {(r*Hx,x*Kx)IxE C”, ljxll= l} as before. But instead of 
the relation c(H,K) >0 alone as in (I), the actual value of c(H, K) plays the 
key role here. This was first noticed by C. R. Crawford in [15]. 

Stewart [53, Theorem 2.21 proves that for a d-pencil there is a matrix 
H,,EP(H,K) with X,&H,,)=c(H,K). Since c(H+E,K+F)>c(H,K)- 
(llEl12+ llFl12)‘/2 (see [Q m eorem 2.4]), the perturbed problem (H + E)x = 
h(K + F)x remains definite as long as E and F are small relative to c( H, K). 
Thus Stewart [53, Theorem 3.21 can prove: 

(St) If the definite problem Hx = Xx has eigemalws h, < & < * * * < &,,, 
and E and F are such that the perturbed problem (H + E)x =X(K + F)x is 
definite, then 

wherei,<i,<**. < &, are the eigenvalues for the perturbed problem. 

If h = CL/V, i = F/F, then this result can also be expressed in terms of the 
chordal metric 

I CL;-PI 
X(XJ):= II( w)ll Il( P,fi)lI ’ 

namely, 
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(see [53, p. 131). Stewart [53, Chapter 41 also studies perturbation bounds for 
the associated eigenspaces via the chordal metric. For earlier uses of the 
chordal metric with respect to perturbation analysis see Stewart [Sl, 521. 

I am indebted to H. Schneider, R. Loewy and 0. Taussky for their 
welcome suggestions during the preparation of this paper. I also thank A. 

Pfister, A. Prestel and 0. Volk. The referaces were checked against the 
computer based Linear Algebra Bibliography (LAB) at UC Santa Barbara 
during the 1977 NSF Matrix Conference there. 
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