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Abstract

We consider a class of noncoercive hemivariational inequalities involving-theplacian at reso-
nance. We use the unilateral growth condition so the energy functional is nonsmooth, nonconvex and
its effective domain does not coincide with the whole spa@”(.@). To avoid this difficulty we
study the problem in finite-dimensional spaces using the mountain-pass theorem for locally Lipschitz
functionals and then we pass to the limit to obtain the existence of solutions.
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1. Introduction

Let 2 € R" be a bounded domain with a compact connectdeboundaryd 2. The
problem under consideration is as follows: Find W17 (£2) such that

{ div(| Du(x)|P~2Du(x)) + A1|lu(x)|P"2u(x) € 3j (x, u(x)) a.e.ons, (1.1)

ulge =0, 2<p<oo.

By 9j (x,u) we denote the generalized gradient for locally Lipschitz functionals due to
Clarke [4]. For the right hand side of (1.1) we suppose only that it satisfies the unilateral
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growth condition due to Naniewicz [14]. Thus the functigfé., «; v) and;j (-, u) is notin

general summable for evesy v € W&’p(Q). Therefore the energy functional has no longer

as its effective domain the whole spakVé”’(.Q), S0 we cannot use directly the mountain-
pass theorem but we have to study the problem in finite-dimensional spaces (subspaces of
W(}’p(Q) N L°(£2)), in which we can use the mountain-pass theorem and then pass to the
limit using the Dunford—Pettis criterion.

In order to prove that our energy functional satisfies the (PS) condition we use an ex-
tended Poincaré inequality which appears very recently in the paper of Fleckinger-Pellé
and Tak& [7]. So for this purpose we assume that our boundary is a compact connected
C?-manifold.

Hemivariational inequalities have been introduced by Panagiotopoulos (cf. [17,18], see
also [13,16]) in order to describe mechanical problems with nonmonotone and multivalued
conditions. For hemivariational inequalities with resonance involving the classical growth
conditions we refer to [8,11,13].

Let us recall some facts and definitions from the critical point theory for locally Lip-
schitz functionals and the subdifferential of Clarke [4].

Let Y be a subset of a Banach spake A function f:Y — R is said to satisfy a
Lipschitz condition (ort’) provided that, for some nonnegative scatgrone has

lfO) = FO|< Ky —xlIx

for all pointsx,y € Y. Let f be Lipschitz near a given point, and letv be any other
vector inX. The generalized directional derivative pfat x in the directiorw, denoted by
£Ox; v), is defined as follows:

£ v) = lim Supf(y +tv) — f(y)’
y—=x t
10
wherey is a vector inX and: a positive scalar. Iff is Lipschitz of rankK nearx then
the functionv — f9(x; v) is finite, positively homogeneous, subadditive and satisfies the
conditions| f%(x; v)| < K |lvllx and fO(x; —v) = (— /)°(x; v). Now we are ready to in-
troduce the generalized gradigift(x) defined by [4]

Af () ={weX*: fO;v) = (w,v)x forallve X}.

Some basic properties of the generalized gradient of locally Lipschitz functionals are the
following:

(a) af (x) is a nonempty, convex, weakly compact subsetdvtind||w| x» < K for every
win af(x).
(b) Forevery in X, one has

£Ox; v) = max{(w, v): wedf(x)}.

If f1, f2 are locally Lipschitz functions then

a(fi+ f2) Cof1+0f2.
Let us recall the (PS) condition introduced by Chang [3].
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Definition 1.1. We say that a Lipschitz functiofi satisfies the Palais—Smale condition if
any sequencegx, } along which| f (x,,)| is bounded and
A(xp)= min [w|x«—0
weadf (xn)

possesses a convergent subsequence.
The (PS) condition can also be formulated as follows (see Costa and Goncalves [5]).

(P$1‘,Jr Whenever(x,) € X, (g,), (6,) € R4 are sequences with, — 0, §, — 0, and
such that

f(xn) — C,
J ) < f(x) +enllx = xnll 0 flx — xpll < 8n

then(x,) possesses a convergent subsequences> x.

Similarly, we define th&PS; condition from below(PS7 _, by interchanging and
xn inthe above inequality. Finally we say thasatisfiesPS: provided it satisfiesPS; |
and(PS; _.

Note that these two definitions are equivalent wifes locally Lipschitz functional.

Let us mention some facts about the first eigenvalue ofpttheplacian. Consider the
first eigenvalue.; of (—A,, W&”’(Q)). From Lindqvist [10] we know that; > 0O is iso-
lated and simple, that any two solutiomsv of

—Apu = —div(|Du|P~2Du) = r1|u|""%u a.e.ons2, (1.2)
ulage=0, 2<p<oo, '

satisfyu = cv for somec € R. In addition, the\1-eigenfunctions do not change signsh

Finally we have the following variational characterization.@f(Rayleigh quotient):

D p
A= inf[w: we Wyl (2), u o}.
llllp
We are going to use the mountain-pass theorem of Chang [3] and the generalization of

the Poincaré inequality of Fleckinger-Pellé and T@kd: There exists a positive constant

¢ > 0 such that
/|Dﬁ|pdx>,

/IDu|pdx—klflulpdx>c(|e|pZ/IDGIPZIDzﬂde—i—
2 2 2 2

Vue Wy (), (1.3)

where 11 is the first eigenvalue of—A,, W&’p(ﬂ)), ¢ is the A1-eigenfunction and
u = ef + i is an orthogonal decomposition af in L?(£2), e = ||9||222(9)<u,9)L2(9),
(l/i, Q)LZ(Q) =0.

Theorem 1.1. If a locally Lipschitz functionalf : X — R on the reflexive Banach spa&e
satisfies théPS)condition and the hypotheses



N. Halidias, Z. Naniewicz / J. Math. Anal. Appl. 289 (2004) 584—607 587

(i) there exist positive constangsanda such that
fw)>a forallue X with|u| = p;
(i) f(0) =0and there is a poin¢ € X such that

lel >p and f(e) <O,

then there exists a critical value> a of f determined by

= inf max 1)),
¢ gthe[O,l]f(g( ))

where

G={geC([0,1], X): g0)=0, g(1) =e}.

2. Preliminary results

Let us denote byp = {s6};cr the one-dimensional eigenspace spanned by the eigen-
function 6 corresponding to the first eigenvalug of (—A4,, Wol’p(ﬂ)), normalized by
0>0ing and||9||W1,p(9) =1. Due to Anane [1] we hauwge L>°(£2). By V- we denote

0

the orthogonal complement it?(§2) of Vo. Thus for any: € W&”’(SZ) the decomposition
follows

u=ef+i Withe>0, 0 e{+0}C Vo, i€V, (2.1)

whereV := VLN Wy ().
Lemma 2.1. Assume that

(HO) j(-,0) € LY(£2) and j(x, ) is Lipschitz continuous on the bounded subset® of
uniformly with respectta € £2,i.e.,Vr > 03K, > 0 such thatv |y1|, |y2| < r,

|j (e, y0) = j(x, y2)| < Krlyr—y2l, foraexe;
(H1) There exisit > p, 1< o < p, a € L1(£2) and a constant > 0 such that
wji(x, &) — jO%x, & 6) > —a(x) —k|E|°, V& eRandfora.ex € 2;
(H2) Assume that

Lo 1 .0 a 2} i )
iminf = /_] (v, 1(0): =B(0)dx > 0. V8 € Vowith [8],,1,6 = 1.
n—0 2

Moreover, suppose that for a sequerag} C W(}’p(fz) there existg;, N\ 0 such that the
conditions below are fulfilled



588 N. Halidias, Z. Naniewicz / J. Math. Anal. Appl. 289 (2004) 584—-607

/\Dun(x)\”‘z(l)u,,(x), Du(x) — Dity (x))gy dx
2

—k1/|un(X)|p72un(x)(v(x) — up(x)) dx
2

+ / jo(x, Un(x); V(x) — Uy (x)) dx = —epllv — ”"”W&"’(fz)’
2
Vv € Lin({un, 6}), @2

and
1 p )\'l P .
—/|Dun(x)| dx—;/‘un(x)‘ dx+/](x,un(x))dx<C, C>0, (2.3)
p
2 2 2

whereLin({u,, 6}) is the linear subspace difol”’(.Q) spanned by, u,}. Then the se-
guenceu,} is bounded irW&”’(.Q), i.e., there existd/ > 0 such that

””n”WOLP(Q) <M. (2.4)
Proof. Suppose on the contrary that the claim is not true, i.e., there exists a sequence

{un}o2, C Wol”’(.(z) with ||un||W1,p — oo for which (2.2) and (2.3) hold. Combining
0
(2.3) and (2.2) withy = 2u,, yields

(£2)

“—p
Ctenllunllyrr g > — (||Du,,||1’j,,(9;RN) — Mllunll}pie)
+/(uj(un) — j%un; uy)) dx. (2.5)
2

By the generalization of the Poincaré inequality (1.3) the decomposition resulfs=n

enBn + lin, Whereil, € V, e, > 0,6, € {6}, 1611r o, = L, such that
0
1D}y vy = 2allunll7 o)
>cle?™2 | 1D6,17 72| Ditp 2 dx + || Din || 2.6
/C en | i’l| | I/lnl x+|| un”LP(Q;RN) . ( . )
2

Thus by (H1) we have

r=r

-2 —2| yn
C+£n||u,,||Wé,p(m>c el /|D9|P 2\ Diip|? dx
2

H=p

+ec | D@7 @imry = ctlunlfo o) (2.7)

Hence
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K—Dp

A A p A
C+5n(””n”Wévp +€n) zc ||Dun||Lp(9;RN) _Cl””n”(]ip(g) _C2€Z~

(2.8)

Thus it follows thate, — oo because, otherwise, we would have the boundedngss pf
in W&”’ (£2). Consequently we arrive at the estimate

(£2)

Cc i _ — i\ ||?
—+e,,( tn +1)>e,’,’ et pHD(—”)
én en llwg? (@) p en / llLr(2:RN)
A o
u
— eg_lcl - — eg_lcz, (2.9)
nliLr(2)
which in view ofe, — oo leads to the conclusion that
i
il — 0. (2.10)
en lwy? @)

Now let us turn back to (2.2). By passing to a subsequence one can suppose @se-that
(or 6, = —0). Thus, substituting = i1,, into (2.2) yields

iin PRy
e,’,’/‘z)(—> + Do <D(—> +D9,—D9> dx
€én €én RN
Q
=204, iy
—e,’,’)q/ <—+9)(—9)dx+en/jo<en(—+9);—9)dx
en €n
Q Q
= —é&pey.
1 .
&y 2 l/—j0<en(u—n+9>;—9>dx
e en
n
Q
PRI (i
+ D\ — |+ D6 D| — |+ D6, Do dx
én én RN
Q

N p—2 i
—+6 (—" +9)9dx. (2.11)
€n

u
_M/
2

€n

Zie

€n

Now we are ready to pass to the limit with— co. For this purpose notice that in view of

(2.10) it results
p—2 ~
Up
<D<_) + Do, De> dx
€n RN

. 7
lim {/‘D(—) + D6
n—oo e,
2
p—2 fin
(— +9)9 dx § = 1DO17, .y = 21101750y =0,

—M/
€n
2

21

€n
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and by (iii) we have

L .
liminf —— / —jo(en<“—” +9>; —9) dx > 0.
n—00 erll’_ en

2

Thus from (2.11) we arrive at the inequality=00 which is a contradiction. Thus the proof
of Lemma 2.1 is complete.O

Lemma 2.2. Assume thaHO) and the hypotheses below hold
(H3) The unilateral growth conditiofil4]: there existp < ¢ < p* = Np/(N — p), and a
constantc > 0 such that
jO(x, & —8) <« (1+1£|7), V& eRandforaexe2;
(H4) Uniformly for a.ex € £2,

liminf 24 &8
£—>0  |&]P

Z¢(x) =0,
with ¢ (x) € L*°(£2) and¢ (x) > 0 on a set of positive measure.
Then there exists > 0 such that

1 Al ;
Ru) := ;||Du||ip(Q;RN) — ;||u||’£1,(9) + / jw)dx>=n, n=const>0,

2
(2.12)

. . 1 .
is valid for anyu € W5°? (£2) with ||u| . 1. = p.

Proof. Suppose the assertion is not true. Thus there exist sequgnges W&”’(SZ) and

on \ 0 such that|u,, ||W1,p(9) = p, andR(u,) < p,erl. So we have
0
. 1
1Dunl} iy = 1ltnl 7o) + / P (un)dx < ppl ™. (2.13)

2

Further, from (H4) it follows that for any > 0, uniformly for allx € £2 one can find > 0
such that

pj(x,&) = o(x)|EI" —el€]P, |&] <8,
Moreover, (H3) allows to conclude that (see Lemma 2.1 in [15, pp. 119-120])

j(x, &) = —ko(1+|€]7), V& e€R, ko= const>0. (2.14)
Thus it is easy to see that
pj(x. &) = (¢(x) —e)lg|” —yI|7, VEeR, (2.15)

for some positiveyr = y(§) > 0. Then by (2.13) it follows
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1D} p vy = AllunllZ oy + / (@) — &) |un(x)|" dx
2

<pol ™4y [lunwl”ax (2.16)
2

Let us sety, = (1/p,)u,. Dividing inequality (2.16) by,” yields

IDYall} p mny = A2l oo + / (#(x) — &) yn(x)|" dx
2

<pontypi " / [yn(0)|* dx. (2.17)
2

SinceW&”’(Q) is continuously embedded inft? (£2) we have

1DYall} ) emny = 22l ooy + / (B () — &) [yn ()| dx
2

< ppn+y1on ¥, y1=const> 0. (2.18)

Taking into account tha|ty,,||W1,p(m =1 we can suppose that for a subsequence (again
0

denoted by the same symbg)) — y weakly in W(}’p(fz) andy, — y strongly inL?(£2)
(the Rellich theorem) for some € W(}’p(fz). Passing to the limit and the weak lower
semicontinuity of the norm allows the conclusion

IDYIT ) @y = AUV IEo(e) + / (¢(x) —¢)[y(0)]"dx <0, (2.19)
2
which is valid for an arbitrarg > 0. Therefore we get

IDYIT ) @y = AUV IT o) + / ¢ (x)|y(x)|" dx <O0. (2.20)
2

Using the Rayleigh quotient characterizatiorh@fand (H4) leads to the equalities

/qﬁ(x)\y(x)\pdx:O. (2.22)
2

Now we show thay # 0. Indeed, from the results obtained it follows that
1Dyall}p @emny = *1Nynll7 (@) = O,
and by the compactness of the embeddlqb”(ﬂ) C LP(£2) we get

lyallLe2) = lIyIlLr(2)-
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Sincel| Dyl Lro:ryy = cliynll Wit (@) = ¢, ¢ > 0 (the equivalence of the norms), we arrive

atk1||y||’L’p(_Q) > cP which establishes the assertion. Therefore, taking into account (2.21)
we conclude thap # 0 is ani1-eigenfunction. Since (x) > 0 on a set of positive measure
(by (H4)), and, as it is well known (cf. [10])y(x)| > O for a.e.x € £2, we are led to the
contradiction with (2.22). The proof of Lemma 2.2 is completel

Lemma 2.3. Assume thatHO)—(H1)hold and that
(H5) [, j(x,0)ds2 < 0and either for somé € Vo, 6 #0,

|iminf/j(x,s§(x)) dx <0, (2.23)
§—> 400
2

or there existag € W&"’(Q) N L*°(£2) such that

Iiminfs_(’/j(x,svo(x))dx<

§s—>—+00
2

with the positive constants u, o entering(H1).

Z oo, 2.24
G—;LHUOHL (2) ( )

Then there exists e Wol”’(.Q) N L*®(£2), e # 0, such that
R(se) <0, Vs>1

Proof. If (2.23) is fulfilled then the assertion holds fer= sof with sufficiently large
so > 0.

For the case (2.24) we follow the lines of [13]. For alk£ 0, x € 2 and¢ € R, the
formula below of generalized gradient (with respect ydolds:

O (T (. 18)) = T g (x, TE) + B j (x, TE) (1)

for the constani > p fulfilling (H1). Since the functionr — t7#j(x, &) is differ-
entiable a.e. oR, the equality above and a classical property of Clarke’s generalized
directional derivative imply that

t

d
r—“j(x,tS)—j(x,s>=/5(r—“j(x,r5))dr
1

t
g/r—ﬂ—l[—uj(x,rg)+j°(x,r§; t8)]dr, Vt>1 aexef, éck
1
In view of assumption (H1) we infer that
t
£ G tE) — (. 6) <fr—“—1[a(x>+kf0|s|"]dt

1
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1 _ 1 1 _ 1
=[a(x)(——t “-l——)+k|«§|‘r<—t‘7 *— >i|
jZ % o— [ o—u
<plax)+(n—o0) kg7, Vi>1 aexef, Ec€R. (2.25)
Seté = svg(x) with x € 2 ands > 0. We find from (2.25) the estimate

J(x tsvo(0) < [ (x, svo() + 1 ta(x) + (1 — o) ks [vo(x)] 7],
Vi>1, 5s>0, aexef. (2.26)

Combining (2.26) with (2.24) yields

1
R(tsv0) < ;t”s”(anmVL’pm;RN) — llvollfp ()

4+ tHs? |:s_0/j(x,svo(x))dx—i—k(u—cr)_lllvoll‘za(g)
Q

+s_U;L_1||a||L1(_Q):|, Vi>1, s>0. (2.27)
Assumption (2.24) allows to fix some numbegr> 0 such that

507 / J(x.sov0(x)) dx + k(i — o) Hvoll 7o o) + 55 1 Hlall 1oy <0, (2.28)
2

With such ansg > 0 we can pass to the limit as— +oo in (2.27) and obtain (in view
of u > p) thatR(tsgvg) — —o0 ast — +oo. Consequently, setting= rgsovg with suffi-
ciently largerg > 0 we establish the assertion. This completes the proof of Lemma 213.

3. Finite-dimensional approximation

Let us denote byA the family of all finite-dimensional subspacé&sof W&”’(Q) N
L°°(£2) satisfying the conditions:
FeA <& F=Vy+ F for some finite-dimensional subspake- V N L>(£2)
ande € F, (3.1)
with e € W&”’(Q) N L*°(£2) as explained in Lemma 2.3.

For every subspacfg € A we introduce the functiondRr : F — R which is the re-
striction of R to F, i.e.,

1 A .
Rr(v) = ;llvllip(Q;RN) - ;”v“ip(g) + / J(x, U(x)) dx, YveF. (3.2)
Q

It is obvious that the functionak  is locally Lipschitz and its generalized gradient is
expressed by

ARF(v) CiyAipv+i%dJ(v), YveF, (3.3)
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whereip: F — Wol”’(sz) andip : F — L*(£2) are the inclusion maps with their dual pro-
jectionsit: W17 (2) — F* andi%: LY(22) — F*, respectively, whileA : W&’p(fz) N
w17 (£2) is defined by

(Au,v)wl,p(g)=/|Du|p_2(Du,Dv)RN d.(z—)\1/|u|l’—2uvd:2,
0
2 2

u,ve Wyl (). (3.4)
By aJ () the generalized Clarke gradientbf L°°(£2) — R given by

J(v):/j(x,v(x))dx, Yv e L*(£2),
2

has been denoted. Notice that in view of (HB)is locally Lipschitz onL®>(£2), so the
generalized gradierttJ (-) is well defined. The pairing oveF* x F will be denoted by

('7 ')F-

Proposition 3.1. Assume the hypothesg$0)—(H5). Then for eachF € A problem(Pr):
Find ur € F such as to satisfy the hemivariational inequality

/ |Dup|”~2(Dup, Dv — Dup)gy dS2 — )\1/ lup|P2up(v—up)ds2
2 2

+/j°(uF;v—uF)dQ>o, Vv e F, (3.5)
2
has at least one solutianr # 0. Moreover, there exist constants > 0, 1 > 0andy2 > 0
not depending o € A such that
IIMFIIWgtp(_Q) <M, VFeA, (3.6)
< R(ur)<y2, VFeA. (3.7)

Proof. First we show that the function@ r : F — R satisfies the Palais—Smale condition
in the sense of Chang [3]. Lét,} C F and{w,} C F* be sequences such th& ¢ (u,)|
<c, foralln > 1, with a constant > 0, andw,, € R r(u,,), |w, || F+ = &, — 0 asn — oo.
SinceF is finite-dimensional, it remains to show that,} is bounded inF. According to
(3.3) we see thab, can be expressed as follows:

Wy =i} Ay +i%xn,  With x, € 0J (up). (3.8)

Let us notice that the hypothesis of Theorem 2.7.3 in [4, p. 80] is verified. Therefore we
obtain

8J(U)C/8j(x,v(x))dx, Yv e L®(2). (3.9)
2
Thus
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(Aup,v— M”>Wé'p(9) + / jo(un; V—up)dS2 =2 (W, v —uy)F = —&4l|lv — uy|lF
2
> —ceyllv — un||W§,p(_Q), Vv e F, ¢ =const> 0,
because the norms- || and|| - ||W1,p(m are equivalent inF (F is finite-dimensional).
0

Since Lin®, u,) C F, the hypotheses of Lemma 2.1 are verified. Consequénfly is
bounded inW&”’(Q) which means that

”MF”WOLP(Q) < Mr (3.10)

for someMg > 0.
Following the lines of the proof of Lemma 2.2 (wiW&”’(Q) replaced byF) we con-
clude the existence of positive constapts> 0 andnr > 0 such that
Rr() 2nr, Yve{weF: |wlr=pr}. (3.11)

By Lemma 2.3 we know thaR(ze) < O for anyr > 1, thereforeor < |le||r. Thus taking
into account thafR x(0) < 0 andR r(e) < 0 we are allowed to apply the mountain-pass
theorem and deduce the existence of a critical pointe F of Rr. This leads to the
finite-dimensional hemivariational inequality (3.5) (cf. [13]).

Let us recall that the critical valuR ¢ (u ) is characterized by (cf. [13])

Rr(ur) = y'e”cfmre‘?&’f] Rre(y (@), (3.12)

where
Cr={yeC([0,1], F): y(0)=0, y(1) =e}

is the family of all continuous curves if joining points 0 ana: in F, i.e.,y(0) =0 and
y(1) = e, y(t) C F. Further, from Lemma 2.2 it follows that for a certain positive- O
one can findy > 0 with

R@)=n, VveS,:={veWy"(®): lllyr o) = o}, (3.13)

while Lemma 2.3 ensures the existence eszOl”’(Q), e # 0, such that
R(te) <0, Ve>1 (3.14)

Therefore, for anyF € A, if y € Cr([0, 1]; F) theny meets points of, which means
that

max R 1)) >=n. 3.15

max Fly®)=n ( )
Hence

<R = inf maxR 1)) < max R(te), VFeA, 3.16

n (ur) ot max Fly (@) max (te) € ( )

and (3.7) results.
Now we are ready to show thafr > 0 in (3.10) is independent af € A. For this
purpose suppose that a sequeficg, } 5,4 Of solutions of (Pr,) has the property that
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lur, ||W1,p(m — oo. Taking into account (3.5) and (3.16) it is easy to check that the hy-
0

potheses (2.3) and (2.2) of Lemma 2.1 hold (witheplaced byF,, ande, = 0). Following
the lines of the proof of Lemma 2.1 we arrive at the contradiction which establishes the
assertion. The proof of Proposition 3.1 is completel

For the restriction of/ to F, Jp :==J|r: F — R, we havedJr(ur) C f;aj(up).
Therefore Proposition 3.1 can be reformulated as follows.

Corollary 3.1. Assume the hypotheg¢t0)—(H5). Then for each’ € A there exisuy € F
and xr € L1(£2) such that

/lDuplp_z(DuF,Dv—Dup)RN dQ—k1/|uF|p_2uF(v—uF)dS2
2 2
+/xp(v—up)d9=0, Yve F, andxr €9j(ur) a.e.ins2. (3.17)
2

According to the results obtained we know that to afiye A a pair (ur, xr) €
F x L1(£2) can be assigned for which (3.17) holds. Moreover, the farily} rc 4 is

uniformly bounded irW&”’(.Q) ((3.6) holds). The question arises concerning the behavior
of {xrlrea.

Proposition 3.2. Assume thatur, xr) € F x L1(£2) satisfie{3.17) Then the seltxr} re
is weakly precompact in1(£2).

Proof. Sinces2 is bounded, according to the Dunford—Pettis theorem (see, e.g., [6, p. 239])
it suffices to show that for each> 0 a numbes > 0 can be determined such that for any
w C 2 with |o| < 8,

/|Xp|dx<8, VF e A. (3.18)
w

Choosej € (¢, p*). Then the injectiorW&”’(!Z) C L4(£2) is compact. Further, from (H3)
it follows that there exists a functiam: R, — R, such that (cf. Remark 5.6 [16, p. 156]
and Lemma 1 [12, p. 95])

O, Ein—8) <a(r)(1+1519), Ve neR, In<r, r>0. (3.19)

Fix r > 0 and lety € R be such thaty| < r. Then, by (3.17)xr(n — ur) < jox, ur;
n —ur), from which we get

XFN < XFUF +a(r)(l+|up|q) fora.e.x € 2. (3.20)

Let us setp = r sgnyr(x) where sgry =1 if y >0, sgny =0 if y =0, sgny = —1 if
y < 0. One obtains that)| < r and xr(x)n = r|xr(x)| for almost allx € £2. Therefore
from (3.20) it results

rlxrl < xrur +oa(r)(1+url?).
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Integrating this inequality ovep C £2 yields

1 1 1 o

/ xrldx <= / xrurdx + =a@)|ol + el T up|]; . (3:21)
r r r

w w

Consequently, from (3.6) and (3.21) it follows that

1 1 1 e

f Ixpldx < = / xFurFdx + =a@)|o| + Za@)|w| 9Dy pm1, (3.22)
r r r

w w

wherey > 0 is a constant satisfying- || ,z.o) < ¥ | - 522 (which holds sincg < p*).
We claim

/XFMF dx<C (3.23)

w

for some positive constaiit not depending om C £2 andF € A. Indeed, from (3.19) we
derive that

xrur +a0)(jupl?+1) >0 fora.e.ing.
Thus it follows

/XFMF dx <

w

(xrur +a©)(jur|? +1))dx

< [ (xrur +a©)(Jurl? +1))dx

< updx +ki(|lur)? + |82]),
Xrpur (ler W g, +12)

O O —— &~

wherek > 0 is a constant. By (3.6) and (3.17) (with= 0) it turns out that

/Xpup dx:—/|Dup|pdx+)»1/|up|pdx<0.
2 2 2

The estimates above imply (3.23).
Further, (3.22) and (3.23) entail

1.1 1 .

/ Ixrldx < =C+ =a(r)|o| + —a(r)|w| @ P/Ayipme,  vr 0. (3.24)
r r r

w

Corresponding te > 0, fix r > 0 with

&

2

and then také > 0 small enough to have

1
ZC < (3.25)
-

1 1 GV /F
Za(r)|w] + —ar)| o@Dy e < % (3.26)
r r
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provided thatjw| < §. Using this together with (3.24) and (3.25) it follows that (3.18) is
justified whenevejw| < §. This completes the proof.O

4. Main result
To formulate the main result we shall need the following hypothesis:

(H6) For any sequenday} C L°(£2), vy — 0 strongly inL?(£2), if

/min{w(x)vk(x): Y (x) €9 (x, v (x))}d2 <0,
2
then

limsup j(x, vk(x)) d$2 <0.

k— 00

Theorem 4.1. Assume the hypothes@40)—(H6). Then there exists e W&”’ (£2) with
u#0and;j(u) e L1(£2), such as to satisfy the hemivariational inequality

/|Du|p*2(Du,Dv—Du)RN d.Q—)Ll/Iulpfzu(v—u)d.Q
2 2

+/j°(u;u—u)ds2>o, Vo e Wy (). (4.1)
2

Moreover, there existg € L1(£2) with the property that

/|Du|p*2(Du,Dv—Du)RN dQ—)Ll/Iulp*Zu(v—u)d.Q
2 2

—i—/x(v—u)d.Q:O, Vo e Wy (2)NL™(Q), (4.2)
2
xuel'(2) and xe€djm) a.e.ing. (4.3)

Proof. The proofis carried out in a sequence of steps.

Stepl. For everyF € A we introduce

Urp={ure Wol”’(Q): for somexr € L1(2; RY), (ur, xr) is a solution of( Pr)}

and

wr= | Up.

F'eA
F'DF
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By Proposition 3.1, W is nonempty (ever/r is nonempty) and contained in the ball
By ={ve W&"’(Q): ol o) < M} We denote by weakeWr) the closure ofWr in

the weak topology oW&”’(ﬁQ). Proposition 3.1 ensures that weakk}.) is weakly com-

pact in W(}’p(fz). We claim that the familjweakc(Wr)}reca has the finite intersection
property. Indeed, iy, ..., Fr € AthenWg, N---NWg, D Wr,with F=F1 +--- + Fy

and the assertion follows. Thus we are allowed to conclude that there exists an element
u e WyP (£2) with

ue ﬂ weakclWr).
FeA

Let us choosé& € A arbitrarily. SinceWOl”’ (£2) is reflexive, one can extract an increas-
ing sequence of subspacgs, }, each containings, and for eacl an element,, € Ug,
such thatu, — u weakly in W&"’(Q) asn — oo (Proposition 11 [2, p. 274]). Let us de-
note by {x,} c L1(£2) the corresponding sequence with the property that for @aah
pair (u,, x») is a solution of(Pg,). By Proposition 3.2 we can suppose without loss of
generality thaty, — x¢ weakly in L1(£2) for somex© e L1(£2). Thus we have asserted
that

u, — u weakly in W&’p(fz), (4.4)
xn— x¢ weaklyinL1(£2), (4.5)
and that (3.17) withF replaced byG, reads
(Au,,,v—un)Wé,p(Q)+/Xn(v—un)d.(2=0, Yv e Gy, (4.6)
2

whereA: Wy'? (2) — WL/ () is defined by (3.4).

Step2. Now we prove thag ¢ € 3/ (1) a.e. inf2. SinceW&”’(Q) is compactly embed-
ded intoL”(£2), due to (3.6) one may suppose that

u, — u strongly inL?(£2). 4.7)

This implies that for a subsequence{af,} (again denoted by the same symbol) one gets
u, — u a.e. in§2. Thus Egoroff's theorem can be applied from which it follows that for
anye > 0 a subset C 2 with |w| < ¢ can be determined such that — « uniformly in

2\ o withu € L*(£2\ w). Letv € L*°(£2 \ w) be an arbitrary function. From the estimate

[ wwde< [ Puivas
2\w 2\w
combined with the weak convergencelit(£2) of yx, to x¢, (4.7) and with the upper
semicontinuity of
L®(2\ o) 3 u, > / 7Pun; v)d$2
2\w
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it follows
/xGucmg/jo(u;u)dQ, Yo e L¥(R \ w).
2\w 2\w

But the last inequality amounts to saying thét € 9/ (1) a.e. inf2 \ w. Since|w| < & and
& was chosen arbitrarily,

x%€dju) ae.ing, (4.8)

as claimed.

Step3. Now it will be shown that

n—oo

limsup | jun; v —uy)ds2 < /jo(u; v—u)dS2 (4.9)
2

holds for anyv € W&”’(SZ) N L*°(£2). It can be supposed thaf, — u a.e. ing2, since
u, — uin L1(£2). Fix v e L*°(£2) arbitrarily. In view ofx, € d; (u,) and (3.19) we get
70unz v = un) < a(lvllooe)) (14 lual?). (4.10)

From Egoroff’'s theorem it follows that for any > 0 a subsetw C 2 with || < ¢
can be determined such that — u uniformly in 2 \ w. One can also suppose that
w is small enough to fulfill [ a(lvliz~@2)d + |ux|9)ds2 < e, n=12..., and
[, alvllzeo @) 1+ |ul?) ds2 < e. Hence

/jo(un;v—un>d:2< / GO v —un)d2 + ¢
2 2\w

which by Fatou’s lemma and upper semicontinuityi8¢- ; -) yields

limsup jo(un; vV—u,)dS2 < /jo(u; v—u)d§2 + 2e.
n—oo o

By arbitrariness of > 0 one obtains (4.9), as required.

Step4. Now we show that

xCue L), (4.11)
liminf X,,u,,d:z>/xGud:2. (4.12)
n—oo

2 2

For this purpose lefe;} € L°°(£2) be such that [9]

[(Q—epu} cWFP(@)NL®(Q), 0<e <],
i = (1—ex)u — u strongly inWOI’P(.(Z) ask — oo. (4.13)
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Without loss of generality it can be assumed that—> u a.e. in£2. Since it is already
known thaty ¢ € 3/ (1), one can apply (H3) to obtain® (—u) < jO®u; —u) <« (1+ |u]9).
Hence

xCir=1—e)x%u>—r(1+ul). (4.14)

This implies that the sequen¢gii;} is bounded from below by integrable function and
x%iiy — x%u a.e. ins2. On the other hand, one gets

/Xn(ftk —up)d$2 < /jo(un; Up —un)ds2.
2 2
Thus passing to the limit with — oo yields
/XGsz d$2 — liminf / Xntn d$2 < limsup jo(un; U —up)dS$2,
n—00 n—00
2 2 2
and due to (4.9) we are led to the estimate

/XGIde.Qg|iminf/xnund9+/j0(u;llk—u)d.Q
n—o0
2 2 2

gliminf/Xnund9+/j°(u;—eku)d:z

n—00
2 2

<liminf | y,u,d$2 + / exk(1+|u|?)d2 < C, C=const
n—o0
2 2

Thus by Fatou’s lemma we are allowed to conclude jfai € L1(£2), i.e., (4.11) holds.
Taking into account thady — 0 a.e. in{2 ask — oo (passing to a subsequence if neces-
sary) we establish (4.12), as required.

Step5. It will be shown that

o0
(Au,v—u)wg,p(m+/XG(v—u)d.Q=O, Yv e UG,,DG, Xceaj(u).
0 n=1

Q%)
Since A is bounded andup}rea C {v € W&”’(Q): ||v||W1,p(m < M}, there exists
0

K > 0 such thafAur}rea C {l € WL7(2): 1lly-1 () < K'}. From (4.6) it follows
that for any fixedG € A we get

/XGvd.Q

2

becausdG,} is an increasing sequence. Further, by making use of (4.11) and (4.12) we
havey%u e L1(£2) and

o0
<Klvllv. Yvel JGu xCe€djw. (4.15)
n=1
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o0
M SUP( Attt — 1) 19 ) < / xCw—wd2, Vel G (4.16)
n=1

n—00
2

Sinceu, € G, andu, — u weakly in W&”’(Q), the closure ot J;2; G, in the strong
topology of W(}’p(fz), UsZ1 Gn, must containu. Thus there exists a sequenfae;} C

(U, =1 G« converging strongly tar in W&”’(Q) asi — oo. We claim that for such a se-
guence,

/chidﬂefxcud[? asi — oo. (4.17)
2 2
Indeed, let{ii; };° , be given by (4.13). From (4.14) it follows

—ic (L4 ul?) < x% ik < 1x%ul, k=1,2,..., (4.18)

with the bounds-« (1+ |u|?) and| x “u| being integrable i2. Thus there exists a constant
C > 0 such that

/XGﬁkd.Q

2

< Cliiglly 1 k=1,2,.... (4.19)

£2)’

Denote byA a linear subspace spanned fi}7° ; and define a linear functioné)lc :
U2, G + A — R by the formula

o
fxc(v) ::/XGvd.Q, UEUG,, + A.

Q n=1

Taking into account (4.15) and (4.19), from the Hahn—Banach theorem it foIIowI%(that

admits its linear continuous extension om’é”’(.@), L6 € w—Lr' (). By the dominated
convergence,

/xcﬁkdﬂe /XGud.Q, ask — oo,
2 2
sowe get, ¢ (u) = fg x S u d$2 which, in particular, implies (4.17), as claimed.
Taking into account (4.16) and (4.17) we conclude

limsup(Auy, u, —u)

n—oo

which by the pseudomonotonicity df implies

W(Z)I.,p(g) < 0, (420)

Au, — Au  weakly in W&”’(Q), (4.21)

(Auy,, u,,)Wg,p(_Q) — (Au, u)Wé,p(g). (4.22)

Hence from (4.6) we are led @), as desired. Notice that (4.21) and (4.22) imply the
strong convergenae, — u in WOI’P(Q).
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Step6. It remains to show that there existss d; (u) with the associated linear func-
tional defined by

iy () ::/de.Q, Vo e Wyl (2) NL=(9),
2

admitting a continuous extensidpe w17 (£2) such that

Au+1, =0, <1X’”>W§"’(Q)=/X”d‘9' (4.23)
2
For everyG € A let us introduce

VO =1x% e L™(£2): (0°) holdg
and

29 = | v,

GeA
G'OG

As in the proof of Proposition 3.2 we show that the fanfif’ } g 4 is weakly precompact
in L1(£2). Denoting by weakelz(©)) the closure ofZ(©) in the weak topology o.1(£2)
we prove analogously that the famijweakclZ(©))} <4 has the finite intersection prop-
erty. Thus there exists an element 9 (1) such that for anys € A it holds

(Au,v)Wg,p(Q)+/xvd.Q=0, YveG.
Q

SinceG € A has been chosen arbitrarily antis dense inWOl”’(.Q), (4.23) results, as
desired.

Step7. It remains to show (4.1). From (4.2) we obtain easily its validity for ary
WP (2)NL¥(82).

Let us consider the cas®(u; v — u) € L1(2) with v € Wol”’(.Q). There exists a se-
quencery = (1 — ¢;)v such thafo,} C W&’p(Q) NL*(£2), vy — v strongly inW&”’(Q).
Since, as already has been established,

~ .0, .~
(A =)y g + [ P55 =0 d2 >0
2
so in order to show (4.1) it remains to deduce that
limsup [ j%u; o —u)ds2 < / PP v—u)ds.
k— o0

2

For this purpose let us observe that— u = (1 — €;) (v — u) + € (—u) which combined
with the convexity ofj%(u; -) yields the estimate
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(L — )% v —u) + e jOu; —u)
7% v —w)| + K (14 |u]9).

7O ok —u) <
<

Thus Fatou’s lemma implies the assertion.

Consider the casg®(u; v — u) ¢ L1(2). Recall that if j%(u; v — u) ¢ L1(2) then ac-
cording to the convention thatoco — oo = +0co we have

/jo(u; v—u)d$2

2
+oo i [olj%w; v —w)]tdR = oo,
| —oo i [ li%us v —w)]Td2 < 400 and [, [j0u; v —u)]” d2 = +oo,
where the following notation has been used::= maxr, 0} andr~ := max—r, 0} for
anyr € R.

Thus, iffg j%u; v — u) d2 = +o0 then (4.1) holds immediately.

Now we show that the casﬁg jO%®u; v — u)ds2 = —oo is not allowed for any €
W(}’p(fz). Indeed, if we suppose that for some W(}’p(.(z), Jo 7% v —u)d2 = —o0;
then one can find a sequenge= (1 — ¢;)v such thafv,} C W&”’(Q) NL®(2), 0 —> v
strongly in W&’P(Q). Since, as already has been established,

~ 0, .~
(Au,vk—u)Wé,p(g)—i—/] (u; 0 —u)ds$2 >0,

2
we get
/jo(u; U —u)d$2 > (Au, —vx + ”>w§'1’(m z—-C, C=const
2
and consequently
0. ~ + 00 .~ -
/[] (u; Ok — )| d:2>/[] (u; O — )|~ dS2 — C. (4.24)

2
By the hypothesis we havg,[j%u; v — u)]~ d2 = o0 and [, [%(u; v — u)]Td2 <
+00. Since
1— ) %u; v —u) + € jOu; —u)

70 B —u) < (
<@ — )0 v—u) + i (1+ ul?),

SO we obtain
/[jo(u; Vg — u)]+d.Q < /[jo(u; v— u)]+d.Q +/K(1+ |u|q)d.Q
Q2 Q Q

<D, D=const
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which combined with (4.24) yields

/[J'O(u; Uk —u)]"dR<C+D.
2

The application of Fatou’s lemma concludes

/[jo(u;v—u)]fd.QgC—i—D,
Q

which is a contradiction with the assumption ttfgtjo(u; v—u)dS$2 = —oo. This contra-
diction completes the proof of (4.1).

Steps8. In order to show thag(u) € L1(£2) it is enough to use (2.14) and (3.7) to get

/j(un)dﬂéyz——

1 P 1 p
p ||Dun||Lp(Q;RN) + P ””n“Lp(_Q) <SP
2

and
Jun) > _K0(1+ |”n|q)-

Sincej(u,) — j(u) a.e.in2 asn — oo, we are allowed to apply Fatou’s lemma which
yields the assertion.

Ste. The existence of a nontrivial solutiar O follows from (H6). Indeed, if we sup-
pose that: = 0 then we havéu,} C W&’p(fz) N L (§2) andu, — 0 strongly inW&”’(Q).
By making use of (4.6) with = 2u,, and the Rayleigh quotient characterizatiomef it
follows

/min{wn: Y €dj(u)}ds2 < / Xnitn dS2 < 0.
2 2
Hence, by (H6),
limsup | j(u,)d2 <0
n—oo

2

and consequently

limsupR(u,) <0,

n—oo

which contradicts to (3.7). This contradiction yields the assertion. The proof of Theo-
rem 4.1 is complete. O

From (4.2) and (4.3) we obtain the result.
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Corollary 4.1. Assume the hypothes@30)—(H6). Then the problemfind u € W&”’(Q)
and xy € L1(£2) such that

Apu+rlulP~?u = x inthe distributional sense

X €0j(u) a.e.ing2,

xu e LY(£2), (P)
Jjw) e LX),

u=0 onds?2 (in the sense of tracgs

has at least one nontrivial solutiof  0).

Remark 4.1. The energy functionalk is finite at a solutionu of (P), i.e., R(u) =

1Dull? oy = 2l (207 + [ j(w) dS2 € R.

Remark 4.2. In the case of the unilateral growth condition as formulated in (H3), the func-
tion J(v) = f_Q j)ds2, v e WOI’P(Q), is not upper semicontinuous. Thus the problem
concerning the existence of a nontrivial solution of (P) arises because we are not allowed
to conclude by making use of the estimate (3.7) tRak) > n1 > 0. To overcome this
difficulty the hypothesis (H6) has been introduced.

Note that when the classical growth conditidni (£)| < ¢(1+ |£]271), V& € R, holds
then the upper semicontinuity dfis ensured.
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