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Abstract

We consider a class of noncoercive hemivariational inequalities involving thep-Laplacian at reso
nance. We use the unilateral growth condition so the energy functional is nonsmooth, noncon

its effective domain does not coincide with the whole spaceW
1,p
0 (Ω). To avoid this difficulty we

study the problem in finite-dimensional spaces using the mountain-pass theorem for locally Li
functionals and then we pass to the limit to obtain the existence of solutions.
 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Let Ω ⊆ R
N be a bounded domain with a compact connectedC2-boundary∂Ω . The

problem under consideration is as follows: Findu ∈W1,p(Ω) such that{
div(|Du(x)|p−2Du(x))+ λ1|u(x)|p−2u(x) ∈ ∂j (x,u(x)) a.e. onΩ,
u|∂Ω = 0, 2 � p <∞. (1.1)

By ∂j (x,u) we denote the generalized gradient for locally Lipschitz functionals du
Clarke [4]. For the right hand side of (1.1) we suppose only that it satisfies the unil
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growth condition due to Naniewicz [14]. Thus the functionsj0(·, u; v) andj (·, u) is not in
general summable for everyu,v ∈W1,p

0 (Ω). Therefore the energy functional has no lon
as its effective domain the whole spaceW1,p

0 (Ω), so we cannot use directly the mounta
pass theorem but we have to study the problem in finite-dimensional spaces (subsp
W

1,p
0 (Ω)∩L∞(Ω)), in which we can use the mountain-pass theorem and then pass

limit using the Dunford–Pettis criterion.
In order to prove that our energy functional satisfies the (PS) condition we use a

tended Poincaré inequality which appears very recently in the paper of Fleckinge
and Taká̌c [7]. So for this purpose we assume that our boundary is a compact conn
C2-manifold.

Hemivariational inequalities have been introduced by Panagiotopoulos (cf. [17,18
also [13,16]) in order to describe mechanical problems with nonmonotone and multiv
conditions. For hemivariational inequalities with resonance involving the classical g
conditions we refer to [8,11,13].

Let us recall some facts and definitions from the critical point theory for locally
schitz functionals and the subdifferential of Clarke [4].

Let Y be a subset of a Banach spaceX. A function f :Y → R is said to satisfy a
Lipschitz condition (onY ) provided that, for some nonnegative scalarK, one has∣∣f (y)− f (x)∣∣�K‖y − x‖X
for all pointsx, y ∈ Y . Let f be Lipschitz near a given pointx, and letv be any other
vector inX. The generalized directional derivative off atx in the directionv, denoted by
f 0(x; v), is defined as follows:

f 0(x; v)= lim sup
y→x
t↓0

f (y + tv)− f (y)
t

,

wherey is a vector inX and t a positive scalar. Iff is Lipschitz of rankK nearx then
the functionv→ f 0(x; v) is finite, positively homogeneous, subadditive and satisfies
conditions|f 0(x; v)|� K‖v‖X andf 0(x;−v)= (−f )0(x; v). Now we are ready to in
troduce the generalized gradient∂f (x) defined by [4]

∂f (x)= {w ∈X∗: f 0(x; v)� 〈w,v〉X for all v ∈X}.
Some basic properties of the generalized gradient of locally Lipschitz functionals a
following:

(a) ∂f (x) is a nonempty, convex, weakly compact subset ofX� and‖w‖X� �K for every
w in ∂f (x).

(b) For everyv in X, one has

f 0(x; v)=max
{〈w,v〉: w ∈ ∂f (x)}.

If f1, f2 are locally Lipschitz functions then

∂(f1+ f2)⊆ ∂f1+ ∂f2.

Let us recall the (PS) condition introduced by Chang [3].
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Definition 1.1. We say that a Lipschitz functionf satisfies the Palais–Smale condition
any sequence{xn} along which|f (xn)| is bounded and

λ(xn)= min
w∈∂f (xn)

‖w‖X�→ 0

possesses a convergent subsequence.

The (PS) condition can also be formulated as follows (see Costa and Goncalves

(PS)∗c,+ Whenever(xn) ⊆ X, (εn), (δn) ⊆ R+ are sequences withεn→ 0, δn→ 0, and
such that

f (xn)→ c,

f (xn)� f (x)+ εn‖x − xn‖ if ‖x − xn‖� δn,
then(xn) possesses a convergent subsequence:xn′ → x̂.

Similarly, we define the(PS)∗c condition from below,(PS)∗c,−, by interchangingx and
xn in the above inequality. Finally we say thatf satisfies(PS)∗c provided it satisfies(PS)∗c,+
and(PS)∗c,−.

Note that these two definitions are equivalent whenf is locally Lipschitz functional.
Let us mention some facts about the first eigenvalue of thep-Laplacian. Consider th

first eigenvalueλ1 of (−∆p,W1,p
0 (Ω)). From Lindqvist [10] we know thatλ1> 0 is iso-

lated and simple, that any two solutionsu,v of{−∆pu := −div(|Du|p−2Du)= λ1|u|p−2u a.e. onΩ,
u |∂Ω= 0, 2 � p <∞, (1.2)

satisfyu= cv for somec ∈R. In addition, theλ1-eigenfunctions do not change sign inΩ .
Finally we have the following variational characterization ofλ1 (Rayleigh quotient):

λ1= inf

[‖Du‖pp
‖u‖pp

: u ∈W1,p
0 (Ω), u �= 0

]
.

We are going to use the mountain-pass theorem of Chang [3] and the generaliza
the Poincaré inequality of Fleckinger-Pellé and Takáč [7]: There exists a positive consta
c > 0 such that∫

Ω

|Du|p dx − λ1

∫
Ω

|u|p dx � c
(
|e|p−2

∫
Ω

|Dθ |p−2|Dû|2dx +
∫
Ω

|Dû|p dx
)
,

∀u ∈W1,p
0 (Ω), (1.3)

where λ1 is the first eigenvalue of(−∆p,W1,p
0 (Ω)), θ is the λ1-eigenfunction and

u = eθ + û is an orthogonal decomposition ofu in L2(Ω), e= ‖θ‖−2
L2(Ω)

〈u, θ〉L2(Ω),
〈û, θ〉L2(Ω) = 0.

Theorem 1.1. If a locally Lipschitz functionalf :X→R on the reflexive Banach spaceX
satisfies the(PS)condition and the hypotheses
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(i) there exist positive constantsρ anda such that

f (u)� a for all u ∈X with ‖u‖ = ρ;
(ii) f (0)= 0 and there is a pointe ∈X such that

‖e‖> ρ and f (e)� 0,

then there exists a critical valuec� a of f determined by

c= inf
g∈G max

t∈[0,1]
f
(
g(t)

)
,

where

G= {g ∈C([0,1],X): g(0)= 0, g(1)= e}.

2. Preliminary results

Let us denote byV0= {sθ}s∈R the one-dimensional eigenspace spanned by the e
function θ corresponding to the first eigenvalueλ1 of (−∆p,W1,p

0 (Ω)), normalized by
θ > 0 inΩ and‖θ‖

W
1,p
0 (Ω)

= 1. Due to Anane [1] we haveθ ∈L∞(Ω). By V ⊥ we denote

the orthogonal complement inL2(Ω) of V0. Thus for anyu ∈W1,p
0 (Ω) the decomposition

follows

u= eθ + û with e� 0, θ ∈ {±θ} ⊂ V0, û ∈ V̂ , (2.1)

whereV̂ := V ⊥ ∩W1,p
0 (Ω).

Lemma 2.1. Assume that

(H0) j (·,0) ∈ L1(Ω) and j (x, ·) is Lipschitz continuous on the bounded subsets oR

uniformly with respect tox ∈Ω , i.e.,∀ r > 0 ∃Kr > 0 such that∀ |y1|, |y2|� r,∣∣j (x, y1)− j (x, y2)
∣∣�Kr |y1− y2|, for a.e.x ∈Ω;

(H1) There existµ> p, 1 � σ < p, a ∈ L1(Ω) and a constantk � 0 such that

µj(x, ξ)− j0(x, ξ; ξ)�−a(x)− k|ξ |σ , ∀ξ ∈R and for a.e.x ∈Ω;
(H2) Assume that

lim inf
t→+∞
η→θ

1

tp−1

∫
Ω

−j0(x, tη(x);−θ(x))dx > 0, ∀θ ∈ V0 with ‖θ‖
W

1,p
0 (Ω)

= 1.

Moreover, suppose that for a sequence{un} ⊂W1,p
0 (Ω) there existsεn↘ 0 such that the

conditions below are fulfilled:
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∫
Ω

∣∣Dun(x)∣∣p−2〈
Dun(x),Dv(x)−Dun(x)

〉
RN
dx

− λ1

∫
Ω

∣∣un(x)∣∣p−2
un(x)

(
v(x)− un(x)

)
dx

+
∫
Ω

j0(x,un(x); v(x)− un(x))dx �−εn‖v − un‖W1,p
0 (Ω)

,

∀v ∈ Lin
({un, θ}), (2.2)

and

1

p

∫
Ω

∣∣Dun(x)∣∣p dx − λ1

p

∫
Ω

∣∣un(x)∣∣p dx +
∫
Ω

j
(
x,un(x)

)
dx � C, C > 0, (2.3)

whereLin({un, θ}) is the linear subspace ofW1,p
0 (Ω) spanned by{θ,un}. Then the se

quence{un} is bounded inW1,p
0 (Ω), i.e., there existsM > 0 such that

‖un‖W1,p
0 (Ω)

�M. (2.4)

Proof. Suppose on the contrary that the claim is not true, i.e., there exists a seq
{un}∞n=1 ⊂W1,p

0 (Ω) with ‖un‖W1,p
0 (Ω)

→∞ for which (2.2) and (2.3) hold. Combinin

(2.3) and (2.2) withv = 2un yields

C + εn‖un‖W1,p
0 (Ω)

� µ− p
p

(‖Dun‖pLp(Ω;RN) − λ1‖un‖pLp(Ω)
)

+
∫
Ω

(
µj(un)− j0(un;un)

)
dx. (2.5)

By the generalization of the Poincaré inequality (1.3) the decomposition results inun =
enθn + ûn, whereûn ∈ V̂ , en � 0, θn ∈ {±θ}, ‖θ‖W1,p

0 (Ω)
= 1, such that

‖Dun‖pLp(Ω;RN) − λ1‖un‖pLp(Ω)

� c
(
e
p−2
n

∫
Ω

|Dθn|p−2|Dûn|2dx + ‖Dûn‖pLp(Ω;RN)
)
. (2.6)

Thus by (H1) we have

C + εn‖un‖W1,p
0 (Ω)

� cµ− p
p

e
p−2
n

∫
Ω

|Dθ |p−2|Dûn|2dx

+ cµ− p
p

∥∥D(ûn)∥∥pLp(Ω;RN) − c1‖un‖σLp(Ω). (2.7)

Hence
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of
C + εn
(‖ûn‖W1,p

0 (Ω)
+ en

)
� cµ− p

p
‖Dûn‖pLp(Ω;RN) − c1‖ûn‖σLp(Ω) − c2eσn .

(2.8)

Thus it follows thaten→∞ because, otherwise, we would have the boundedness of{un}
in W1,p

0 (Ω). Consequently we arrive at the estimate

C

en
+ εn

(∥∥∥∥ ûnen
∥∥∥∥
W

1,p
0 (Ω)

+ 1

)
� ep−1

n c
µ− p
p

∥∥∥∥D
(
ûn

en

)∥∥∥∥
p

Lp(Ω;RN)

− eσ−1
n c1

∥∥∥∥ ûnen
∥∥∥∥
σ

Lp(Ω)

− eσ−1
n c2, (2.9)

which in view ofen→∞ leads to the conclusion that∥∥∥∥ ûnen
∥∥∥∥
W

1,p
0 (Ω)

→ 0. (2.10)

Now let us turn back to (2.2). By passing to a subsequence one can suppose also thaθn = θ
(or θn =−θ ). Thus, substitutingv = ûn into (2.2) yields

e
p
n

∫
Ω

∣∣∣∣D
(
ûn

en

)
+Dθ

∣∣∣∣
p−2〈

D

(
ûn

en

)
+Dθ,−Dθ

〉
RN

dx

− epn λ1

∫
Ω

∣∣∣∣ ûnen + θ
∣∣∣∣
p−2(

ûn

en
+ θ
)
(−θ) dx + en

∫
Ω

j0
(
en

(
ûn

en
+ θ
)
;−θ

)
dx

�−εnen.
Hence

εn � 1

e
p−1
n

∫
Ω

−j0
(
en

(
ûn

en
+ θ
)
;−θ

)
dx

+
∫
Ω

∣∣∣∣D
(
ûn

en

)
+Dθ

∣∣∣∣
p−2〈

D

(
ûn

en

)
+Dθ,Dθ

〉
RN

dx

− λ1

∫
Ω

∣∣∣∣ ûnen + θ
∣∣∣∣
p−2(

ûn

en
+ θ
)
θ dx. (2.11)

Now we are ready to pass to the limit withn→∞. For this purpose notice that in view
(2.10) it results

lim
n→∞

{∫
Ω

∣∣∣∣D
(
ûn

en

)
+Dθ

∣∣∣∣
p−2〈

D

(
ûn

en

)
+Dθ,Dθ

〉
RN

dx

− λ1

∫ ∣∣∣∣ ûnen + θ
∣∣∣∣
p−2(

ûn

en
+ θ
)
θ dx

}
= ‖Dθ‖p

Lp(Ω;RN) − λ1‖θ‖pLp(Ω) = 0,
Ω
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lim inf
n→∞

1

e
p−1
n

∫
Ω

−j0
(
en

(
ûn

en
+ θ
)
;−θ

)
dx > 0.

Thus from (2.11) we arrive at the inequality 0> 0 which is a contradiction. Thus the pro
of Lemma 2.1 is complete.✷
Lemma 2.2. Assume that(H0) and the hypotheses below hold:

(H3) The unilateral growth condition[14]: there existp < q < p∗ =Np/(N − p), and a
constantκ � 0 such that

j0(x, ξ;−ξ)� κ(1+ |ξ |q), ∀ξ ∈R and for a.e.x ∈Ω;
(H4) Uniformly for a.e.x ∈Ω ,

lim inf
ξ→0

pj (x, ξ)

|ξ |p � φ(x)� 0,

with φ(x) ∈L∞(Ω) andφ(x) > 0 on a set of positive measure.

Then there existsρ > 0 such that

R(u) := 1

p
‖Du‖p

Lp(Ω;RN) −
λ1

p
‖u‖pLp(Ω) +

∫
Ω

j (u) dx � η, η= const> 0,

(2.12)

is valid for anyu ∈W1,p
0 (Ω) with ‖u‖

W
1,p
0 (Ω)

= ρ.

Proof. Suppose the assertion is not true. Thus there exist sequences{un} ⊂W1,p
0 (Ω) and

ρn↘ 0 such that‖un‖W1,p
0 (Ω)

= ρn andR(un)� ρp+1
n . So we have

‖Dun‖pLp(Ω;RN) − λ1‖un‖pLp(Ω) +
∫
Ω

pj (un) dx � pρp+1
n . (2.13)

Further, from (H4) it follows that for anyε > 0, uniformly for allx ∈Ω one can findδ > 0
such that

pj (x, ξ)� φ(x)|ξ |p − ε|ξ |p, |ξ |� δ.
Moreover, (H3) allows to conclude that (see Lemma 2.1 in [15, pp. 119–120])

j (x, ξ)�−κ0
(
1+ |ξ |q), ∀ξ ∈R, κ0= const> 0. (2.14)

Thus it is easy to see that

pj (x, ξ)�
(
φ(x)− ε)|ξ |p − γ |ξ |q , ∀ξ ∈R, (2.15)

for some positiveγ = γ (δ) > 0. Then by (2.13) it follows
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‖Dun‖pLp(Ω;RN) − λ1‖un‖pLp(Ω) +
∫
Ω

(
φ(x)− ε)∣∣un(x)∣∣p dx

� pρp+1
n + γ

∫
Ω

∣∣un(x)∣∣q dx. (2.16)

Let us setyn = (1/ρn)un. Dividing inequality (2.16) byρ pn yields

‖Dyn‖pLp(Ω;RN) − λ1‖yn‖pLp(Ω) +
∫
Ω

(
φ(x)− ε)∣∣yn(x)∣∣p dx

� pρn + γρq−pn

∫
Ω

∣∣yn(x)∣∣q dx. (2.17)

SinceW1,p
0 (Ω) is continuously embedded intoLq(Ω) we have

‖Dyn‖pLp(Ω;RN) − λ1‖yn‖pLp(Ω) +
∫
Ω

(
φ(x)− ε)∣∣yn(x)∣∣p dx

� pρn + γ1ρ
q−p
n , γ1= const> 0. (2.18)

Taking into account that‖yn‖W1,p
0 (Ω)

= 1 we can suppose that for a subsequence (a

denoted by the same symbol)yn→ y weakly inW1,p
0 (Ω) andyn→ y strongly inLp(Ω)

(the Rellich theorem) for somey ∈ W1,p
0 (Ω). Passing to the limit and the weak low

semicontinuity of the norm allows the conclusion

‖Dy‖p
Lp(Ω;RN) − λ1‖y‖pLp(Ω) +

∫
Ω

(
φ(x)− ε)∣∣y(x)∣∣p dx � 0, (2.19)

which is valid for an arbitraryε > 0. Therefore we get

‖Dy‖p
Lp(Ω;RN) − λ1‖y‖pLp(Ω) +

∫
Ω

φ(x)
∣∣y(x)∣∣p dx � 0. (2.20)

Using the Rayleigh quotient characterization ofλ1 and (H4) leads to the equalities

‖Dy‖p
Lp(Ω;RN) = λ1‖y‖pLp(Ω), (2.21)∫

Ω

φ(x)
∣∣y(x)∣∣p dx = 0. (2.22)

Now we show thaty �= 0. Indeed, from the results obtained it follows that

‖Dyn‖pLp(Ω;RN) − λ1‖yn‖pLp(Ω)→ 0,

and by the compactness of the embeddingW
1,p
0 (Ω)⊂ Lp(Ω) we get

‖yn‖Lp(Ω)→‖y‖Lp(Ω).
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Since‖Dyn‖Lp(Ω;RN) � c‖yn‖W1,p
0 (Ω)

= c, c > 0 (the equivalence of the norms), we arr

atλ1‖y‖pLp(Ω) � cp which establishes the assertion. Therefore, taking into account (
we conclude thaty �= 0 is anλ1-eigenfunction. Sinceφ(x) > 0 on a set of positive measu
(by (H4)), and, as it is well known (cf. [10]),|y(x)|> 0 for a.e.x ∈Ω , we are led to the
contradiction with (2.22). The proof of Lemma 2.2 is complete.✷
Lemma 2.3. Assume that(H0)–(H1)hold and that

(H5)
∫
Ω j (x,0) dΩ � 0 and either for someθ ∈ V0, θ �= 0,

lim inf
s→+∞

∫
Ω

j
(
x, sθ(x)

)
dx < 0, (2.23)

or there existsv0 ∈W1,p
0 (Ω)∩L∞(Ω) such that

lim inf
s→+∞ s

−σ
∫
Ω

j
(
x, sv0(x)

)
dx <

k

σ −µ‖v0‖σLσ (Ω), (2.24)

with the positive constantsk, µ, σ entering(H1).

Then there existse ∈W1,p
0 (Ω)∩L∞(Ω), e �= 0, such that

R(se)� 0, ∀s � 1.

Proof. If (2.23) is fulfilled then the assertion holds fore = s0θ with sufficiently large
s0> 0.

For the case (2.24) we follow the lines of [13]. For allτ �= 0, x ∈ Ω andξ ∈ R, the
formula below of generalized gradient (with respect toτ ) holds:

∂τ
(
τ−µj (x, τξ)

)= τ−µ−1[−µj(x, τξ)+ ∂ξ j (x, τξ)(τξ)],
for the constantµ > p fulfilling (H1). Since the functionτ �→ τ−µj (x, τξ) is differ-
entiable a.e. onR, the equality above and a classical property of Clarke’s genera
directional derivative imply that

t−µj (x, tξ)− j (x, ξ)=
t∫

1

d

dτ

(
τ−µj (x, τξ)

)
dτ

�
t∫

1

τ−µ−1[−µj(x, τξ)+ j0(x, τξ; τξ)]dτ, ∀t > 1, a.e.x ∈Ω, ξ ∈R.

In view of assumption (H1) we infer that

t−µj (x, tξ)− j (x, ξ)�
t∫
τ−µ−1[a(x)+ kτσ |ξ |σ ]dτ
1
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.

is
=
[
a(x)

(
− 1

µ
t−µ + 1

µ

)
+ k|ξ |σ

(
1

σ −µt
σ−µ − 1

σ −µ
)]

� µ−1a(x)+ (µ− σ)−1k|ξ |σ , ∀t > 1, a.e.x ∈Ω, ξ ∈R. (2.25)

Setξ = sv0(x) with x ∈Ω ands > 0. We find from (2.25) the estimate

j
(
x, tsv0(x)

)
� tµ

[
j
(
x, sv0(x)

)+µ−1a(x)+ (µ− σ)−1ksσ
∣∣v0(x)

∣∣σ ],
∀t > 1, s > 0, a.e.x ∈Ω. (2.26)

Combining (2.26) with (2.24) yields

R(tsv0)�
1

p
tpsp

(‖Dv0‖pLp(Ω;RN) − λ1‖v0‖pLp(Ω)
)

+ tµsσ
[
s−σ

∫
Ω

j
(
x, sv0(x)

)
dx + k(µ− σ)−1‖v0‖σLσ (Ω)

+ s−σµ−1‖a‖L1(Ω)

]
, ∀t > 1, s > 0. (2.27)

Assumption (2.24) allows to fix some numbers0> 0 such that

s−σ0

∫
Ω

j
(
x, s0v0(x)

)
dx + k(µ− σ)−1‖v0‖σLσ (Ω) + s−σ0 µ−1‖a‖L1(Ω) < 0. (2.28)

With such ans0 > 0 we can pass to the limit ast →+∞ in (2.27) and obtain (in view
of µ> p) thatR(ts0v0)→−∞ ast→+∞. Consequently, settinge= t0s0v0 with suffi-
ciently larget0> 0 we establish the assertion. This completes the proof of Lemma 2.3✷

3. Finite-dimensional approximation

Let us denote byΛ the family of all finite-dimensional subspacesF of W1,p
0 (Ω) ∩

L∞(Ω) satisfying the conditions:

F ∈Λ ⇔ F = V0+ F̂ for some finite-dimensional subspaceF̂ ⊂ V̂ ∩L∞(Ω)
ande ∈ F, (3.1)

with e ∈W1,p
0 (Ω)∩L∞(Ω) as explained in Lemma 2.3.

For every subspaceF ∈ Λ we introduce the functionalRF : F → R which is the re-
striction ofR to F , i.e.,

RF (v)= 1

p
‖v‖p

Lp(Ω;RN) −
λ1

p
‖v‖pLp(Ω) +

∫
Ω

j
(
x, v(x)

)
dx, ∀v ∈ F. (3.2)

It is obvious that the functionalRF is locally Lipschitz and its generalized gradient
expressed by

∂RF (v)⊂ i�FAiF v+ i�F ∂J (v), ∀v ∈ F, (3.3)
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whereiF :F →W
1,p
0 (Ω) andiF :F →L∞(Ω) are the inclusion maps with their dual pr

jectionsi�F :W−1,p′(Ω)→ F� andi�F :L1(Ω)→ F�, respectively, whileA :W1,p
0 (Ω)→

W−1,p′(Ω) is defined by

〈Au,v〉
W

1,p
0 (Ω)

=
∫
Ω

|Du|p−2〈Du,Dv〉RN dΩ − λ1

∫
Ω

|u|p−2uv dΩ,

u, v ∈W1,p
0 (Ω). (3.4)

By ∂J (·) the generalized Clarke gradient ofJ :L∞(Ω)→R given by

J (v)=
∫
Ω

j
(
x, v(x)

)
dx, ∀v ∈L∞(Ω),

has been denoted. Notice that in view of (H0),J is locally Lipschitz onL∞(Ω), so the
generalized gradient∂J (·) is well defined. The pairing overF� × F will be denoted by
〈·, ·〉F .

Proposition 3.1. Assume the hypotheses(H0)–(H5). Then for eachF ∈Λ problem(PF ):
Find uF ∈ F such as to satisfy the hemivariational inequality∫

Ω

|DuF |p−2〈DuF ,Dv −DuF 〉RN dΩ − λ1

∫
Ω

|uF |p−2uF (v − uF ) dΩ

+
∫
Ω

j0(uF ; v− uF ) dΩ � 0, ∀v ∈ F, (3.5)

has at least one solutionuF �= 0. Moreover, there exist constantsM > 0, γ1> 0 andγ2> 0
not depending onF ∈Λ such that

‖uF ‖W1,p
0 (Ω)

�M, ∀F ∈Λ, (3.6)

γ1 � R(uF )� γ2, ∀F ∈Λ. (3.7)

Proof. First we show that the functionalRF :F →R satisfies the Palais–Smale conditi
in the sense of Chang [3]. Let{un} ⊂ F and{wn} ⊂ F� be sequences such that|RF (un)|
� c, for all n� 1, with a constantc > 0, andwn ∈ ∂RF (un), ‖wn‖F� = εn→ 0 asn→∞.
SinceF is finite-dimensional, it remains to show that{un} is bounded inF . According to
(3.3) we see thatwn can be expressed as follows:

wn = i�FAun + i�F χn, with χn ∈ ∂J (un). (3.8)

Let us notice that the hypothesis of Theorem 2.7.3 in [4, p. 80] is verified. Therefo
obtain

∂J (v)⊂
∫
Ω

∂j
(
x, v(x)

)
dx, ∀v ∈L∞(Ω). (3.9)

Thus
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〈Aun, v − un〉W1,p
0 (Ω)

+
∫
Ω

j0(un; v− un) dΩ � 〈wn,v − un〉F �−εn‖v − un‖F

�−cεn‖v − un‖W1,p
0 (Ω)

, ∀v ∈ F, c= const> 0,

because the norms‖ · ‖F and‖ · ‖
W

1,p
0 (Ω)

are equivalent inF (F is finite-dimensional)

Since Lin(θ, un) ⊂ F , the hypotheses of Lemma 2.1 are verified. Consequently{un} is
bounded inW1,p

0 (Ω) which means that

‖uF ‖W1,p
0 (Ω)

�MF (3.10)

for someMF > 0.
Following the lines of the proof of Lemma 2.2 (withW1,p

0 (Ω) replaced byF ) we con-
clude the existence of positive constantsρF > 0 andηF > 0 such that

RF (v)� ηF , ∀v ∈
{
w ∈ F : ‖w‖F = ρF

}
. (3.11)

By Lemma 2.3 we know thatR(te)� 0 for anyt � 1, thereforeρF < ‖e‖F . Thus taking
into account thatRF (0) � 0 andRF (e)� 0 we are allowed to apply the mountain-pa
theorem and deduce the existence of a critical pointuF ∈ F of RF . This leads to the
finite-dimensional hemivariational inequality (3.5) (cf. [13]).

Let us recall that the critical valueRF (uF ) is characterized by (cf. [13])

RF (uF )= inf
γ∈CF

max
t∈[0,1]

RF
(
γ (t)

)
, (3.12)

where

CF =
{
γ ∈ C([0,1],F ): γ (0)= 0, γ (1)= e}

is the family of all continuous curves inF joining points 0 ande in F , i.e.,γ (0)= 0 and
γ (1)= e, γ (t) ⊂ F . Further, from Lemma 2.2 it follows that for a certain positiveρ > 0
one can findη > 0 with

R(v)� η, ∀v ∈ Sρ :=
{
v ∈W1,p

0 (Ω): ‖v‖
W

1,p
0 (Ω)

= ρ}, (3.13)

while Lemma 2.3 ensures the existence ofe ∈W1,p
0 (Ω), e �= 0, such that

R(te)� 0, ∀t � 1. (3.14)

Therefore, for anyF ∈ Λ, if γ ∈ CF ([0,1];F) thenγ meets points ofSρ which means
that

max
t∈[0,1]RF

(
γ (t)

)
� η. (3.15)

Hence

η� R(uF )= inf
γ∈CF

max
t∈[0,1]RF

(
γ (t)

)
� max
t∈[0,1]R(te), ∀F ∈Λ, (3.16)

and (3.7) results.
Now we are ready to show thatMF > 0 in (3.10) is independent ofF ∈ Λ. For this

purpose suppose that a sequence{uFn}Fn∈Λ of solutions of(PFn) has the property tha
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6]
‖uFn‖W1,p
0 (Ω)

→∞. Taking into account (3.5) and (3.16) it is easy to check that the

potheses (2.3) and (2.2) of Lemma 2.1 hold (withF replaced byFn andεn = 0). Following
the lines of the proof of Lemma 2.1 we arrive at the contradiction which establishe
assertion. The proof of Proposition 3.1 is complete.✷

For the restriction ofJ to F , JF := J |F : F → R, we have∂JF (uF ) ⊂ i�F ∂J (uF ).
Therefore Proposition 3.1 can be reformulated as follows.

Corollary 3.1. Assume the hypotheses(H0)–(H5). Then for eachF ∈Λ there existuF ∈ F
andχF ∈ L1(Ω) such that∫

Ω

|DuF |p−2〈DuF ,Dv −DuF 〉RN dΩ − λ1

∫
Ω

|uF |p−2uF (v − uF ) dΩ

+
∫
Ω

χF (v − uF ) dΩ = 0, ∀v ∈ F, andχF ∈ ∂j (uF ) a.e. inΩ. (3.17)

According to the results obtained we know that to anyF ∈ Λ a pair (uF ,χF ) ∈
F × L1(Ω) can be assigned for which (3.17) holds. Moreover, the family{uF }F∈Λ is
uniformly bounded inW1,p

0 (Ω) ((3.6) holds). The question arises concerning the beha
of {χF }F∈Λ.

Proposition 3.2. Assume that(uF ,χF ) ∈ F×L1(Ω) satisfies(3.17). Then the set{χF }F∈Λ
is weakly precompact inL1(Ω).

Proof. SinceΩ is bounded, according to the Dunford–Pettis theorem (see, e.g., [6, p.
it suffices to show that for eachε > 0 a numberδ > 0 can be determined such that for a
ω⊂Ω with |ω|< δ,∫

ω

|χF |dx < ε, ∀F ∈Λ. (3.18)

Chooseq ∈ (q,p�). Then the injectionW1,p
0 (Ω)⊂ Lq(Ω) is compact. Further, from (H3

it follows that there exists a functionα :R+ → R+ such that (cf. Remark 5.6 [16, p. 15
and Lemma 1 [12, p. 95])

j0(x, ξ;η− ξ)� α(r)(1+ |ξ |q), ∀ξ, η ∈R, |η|� r, r � 0. (3.19)

Fix r > 0 and letη ∈ R be such that|η| � r. Then, by (3.17),χF (η − uF ) � j0(x,uF ;
η− uF ), from which we get

χF η � χFuF + α(r)
(
1+ |uF |q

)
for a.e.x ∈Ω. (3.20)

Let us setη ≡ r sgnχF (x) where sgny = 1 if y > 0, sgny = 0 if y = 0, sgny = −1 if
y < 0. One obtains that|η| � r andχF (x)η = r|χF (x)| for almost allx ∈Ω . Therefore
from (3.20) it results

r|χF |� χFuF + α(r)
(
1+ |uF |q

)
.
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Integrating this inequality overω⊂Ω yields∫
ω

|χF |dx � 1

r

∫
ω

χFuF dx + 1

r
α(r)|ω| + 1

r
α(r)|ω|(q−q)/q‖uF ‖qLq(Ω). (3.21)

Consequently, from (3.6) and (3.21) it follows that∫
ω

|χF |dx � 1

r

∫
ω

χFuF dx + 1

r
α(r)|ω| + 1

r
α(r)|ω|(q−q)/qγ qMq, (3.22)

whereγ > 0 is a constant satisfying‖ · ‖Lq(Ω) � γ ‖ · ‖H1
0 (Ω)

(which holds sincêq < p�).
We claim∫

ω

χFuF dx � C (3.23)

for some positive constantC not depending onω⊂Ω andF ∈Λ. Indeed, from (3.19) we
derive that

χFuF + α(0)
(|uF |q + 1

)
� 0 for a.e. inΩ.

Thus it follows∫
ω

χFuF dx �
∫
ω

(
χFuF + α(0)

(|uF |q + 1
))
dx

�
∫
Ω

(
χFuF + α(0)

(|uF |q + 1
))
dx

�
∫
Ω

χFuF dx + k1
(‖uF ‖q

H1
0 (Ω)
+ |Ω |),

wherek1> 0 is a constant. By (3.6) and (3.17) (withv = 0) it turns out that∫
Ω

χFuF dx =−
∫
Ω

|DuF |p dx + λ1

∫
Ω

|uF |p dx � 0.

The estimates above imply (3.23).
Further, (3.22) and (3.23) entail∫

ω

|χF |dx � 1

r
C + 1

r
α(r)|ω| + 1

r
α(r)|ω|(q−q)/qγ qMq, ∀r > 0. (3.24)

Corresponding toε > 0, fix r > 0 with

1

r
C <

ε

2
(3.25)

and then takeδ > 0 small enough to have

1
α(r)|ω| + 1

α(r)|ω|(q−q)/qγ qMq <
ε

(3.26)

r r 2



598 N. Halidias, Z. Naniewicz / J. Math. Anal. Appl. 289 (2004) 584–607

) is
provided that|ω| < δ. Using this together with (3.24) and (3.25) it follows that (3.18
justified whenever|ω|< δ. This completes the proof.✷

4. Main result

To formulate the main result we shall need the following hypothesis:

(H6) For any sequence{vk} ⊂ L∞(Ω), vk→ 0 strongly inLp(Ω), if∫
Ω

min
{
ψ(x)vk(x): ψ(x) ∈ ∂j

(
x, vk(x)

)}
dΩ � 0,

then

lim sup
k→∞

∫
Ω

j
(
x, vk(x)

)
dΩ � 0.

Theorem 4.1. Assume the hypotheses(H0)–(H6). Then there existsu ∈ W1,p
0 (Ω) with

u �= 0 andj (u) ∈L1(Ω), such as to satisfy the hemivariational inequality∫
Ω

|Du|p−2〈Du,Dv −Du〉RN dΩ − λ1

∫
Ω

|u|p−2u(v − u) dΩ

+
∫
Ω

j0(u; v− u) dΩ � 0, ∀v ∈W1,p
0 (Ω). (4.1)

Moreover, there existsχ ∈L1(Ω) with the property that∫
Ω

|Du|p−2〈Du,Dv −Du〉
RN dΩ − λ1

∫
Ω

|u|p−2u(v − u) dΩ

+
∫
Ω

χ(v − u) dΩ = 0, ∀v ∈W1,p
0 (Ω)∩L∞(Ω), (4.2)

χu ∈ L1(Ω) and χ ∈ ∂j (u) a.e. inΩ. (4.3)

Proof. The proof is carried out in a sequence of steps.

Step1. For everyF ∈Λ we introduce

UF =
{
uF ∈W1,p

0 (Ω): for someχF ∈L1(Ω;RN), (uF ,χF ) is a solution of(PF )
}

and

WF =
⋃
F ′∈Λ′

UF ′ .
F ⊃F
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By Proposition 3.1,WF is nonempty (evenUF is nonempty) and contained in the b
BM = {v ∈W1,p

0 (Ω): ‖v‖
W

1,p
0 (Ω)

�M}. We denote by weakcl(WF ) the closure ofWF in

the weak topology ofW1,p
0 (Ω). Proposition 3.1 ensures that weakcl(WF ) is weakly com-

pact inW1,p
0 (Ω). We claim that the family{weakcl(WF )}F∈Λ has the finite intersectio

property. Indeed, ifF1, . . . ,Fk ∈Λ thenWF1 ∩ · · · ∩WFk ⊃WF , with F = F1+ · · · + Fk
and the assertion follows. Thus we are allowed to conclude that there exists an e
u ∈W1,p

0 (Ω) with

u ∈
⋂
F∈Λ

weakcl(WF ).

Let us chooseG ∈Λ arbitrarily. SinceW1,p
0 (Ω) is reflexive, one can extract an increa

ing sequence of subspaces{Gn}, each containingG, and for eachn an elementun ∈ UGn
such thatun→ u weakly inW1,p

0 (Ω) asn→∞ (Proposition 11 [2, p. 274]). Let us de
note by{χn} ⊂ L1(Ω) the corresponding sequence with the property that for eachn a
pair (un,χn) is a solution of(PGn). By Proposition 3.2 we can suppose without loss
generality thatχn→ χG weakly inL1(Ω) for someχG ∈ L1(Ω). Thus we have asserte
that

un→ u weakly inW1,p
0 (Ω), (4.4)

χn→ χG weakly inL1(Ω), (4.5)

and that (3.17) withF replaced byGn reads

〈Aun, v − un〉W1,p
0 (Ω)

+
∫
Ω

χn(v− un) dΩ = 0, ∀v ∈Gn, (4.6)

whereA :W1,p
0 (Ω)→W−1,p′(Ω) is defined by (3.4).

Step2. Now we prove thatχG ∈ ∂j (u) a.e. inΩ . SinceW1,p
0 (Ω) is compactly embed

ded intoLp(Ω), due to (3.6) one may suppose that

un→ u strongly inLp(Ω). (4.7)

This implies that for a subsequence of{un} (again denoted by the same symbol) one g
un→ u a.e. inΩ . Thus Egoroff’s theorem can be applied from which it follows that
anyε > 0 a subsetω ⊂Ω with |ω|< ε can be determined such thatun→ u uniformly in
Ω \ω with u ∈ L∞(Ω \ω). Letv ∈L∞(Ω \ω) be an arbitrary function. From the estima∫

Ω\ω
χnv dΩ �

∫
Ω\ω

j0(un; v) dΩ

combined with the weak convergence inL1(Ω) of χn to χG, (4.7) and with the uppe
semicontinuity of

L∞(Ω \ ω) % un �→
∫
j0(un; v) dΩ
Ω\ω
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at
it follows∫
Ω\ω

χGv dΩ �
∫
Ω\ω

j0(u; v) dΩ, ∀v ∈L∞(Ω \ω).

But the last inequality amounts to saying thatχG ∈ ∂j (u) a.e. inΩ \ω. Since|ω|< ε and
ε was chosen arbitrarily,

χG ∈ ∂j (u) a.e. inΩ, (4.8)

as claimed.

Step3. Now it will be shown that

lim sup
n→∞

∫
Ω

j0(un; v− un) dΩ �
∫
Ω

j0(u; v− u) dΩ (4.9)

holds for anyv ∈ W1,p
0 (Ω) ∩ L∞(Ω). It can be supposed thatun→ u a.e. inΩ , since

un→ u in Lq(Ω). Fix v ∈ L∞(Ω) arbitrarily. In view ofχn ∈ ∂j (un) and (3.19) we get

j0(un; v− un)� α
(‖v‖L∞(Ω))(1+ |un|q). (4.10)

From Egoroff’s theorem it follows that for anyε > 0 a subsetω ⊂ Ω with |ω| < ε
can be determined such thatun → u uniformly in Ω \ ω. One can also suppose th
ω is small enough to fulfill

∫
ω α(‖v‖L∞(Ω))(1 + |un|q) dΩ � ε, n = 1,2, . . . , and∫

ω α(‖v‖L∞(Ω))(1+ |u|q) dΩ � ε. Hence∫
Ω

j0(un; v− un) dΩ �
∫
Ω\ω

j0(un; v− un) dΩ + ε

which by Fatou’s lemma and upper semicontinuity ofj0(· ; ·) yields

lim sup
n→∞

∫
Ω

j0(un; v− un) dΩ �
∫
Ω

j0(u; v− u) dΩ + 2ε.

By arbitrariness ofε > 0 one obtains (4.9), as required.

Step4. Now we show that

χGu ∈L1(Ω), (4.11)

lim inf
n→∞

∫
Ω

χnun dΩ �
∫
Ω

χGudΩ. (4.12)

For this purpose let{εk} ⊂ L∞(Ω) be such that [9]{
(1− εk)u

}⊂W1,p
0 (Ω)∩L∞(Ω), 0 � εk � 1,

ũk := (1− εk)u→ u strongly inW1,p
(Ω) ask→∞. (4.13)
0
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Without loss of generality it can be assumed thatũk → u a.e. inΩ . Since it is already
known thatχG ∈ ∂j (u), one can apply (H3) to obtainχG(−u)� j0(u;−u)� κ(1+|u|q).
Hence

χGũk = (1− εk)χGu�−κ(1+ |u|q). (4.14)

This implies that the sequence{χGũk} is bounded from below by integrable function a
χGũk→ χGu a.e. inΩ . On the other hand, one gets∫

Ω

χn(ũk − un) dΩ �
∫
Ω

j0(un; ũk − un) dΩ.

Thus passing to the limit withn→∞ yields∫
Ω

χGũk dΩ − lim inf
n→∞

∫
Ω

χnun dΩ � lim sup
n→∞

∫
Ω

j0(un; ũk − un) dΩ,

and due to (4.9) we are led to the estimate∫
Ω

χGũk dΩ � lim inf
n→∞

∫
Ω

χnun dΩ +
∫
Ω

j0(u; ũk − u) dΩ

� lim inf
n→∞

∫
Ω

χnun dΩ +
∫
Ω

j0(u;−εku) dΩ

� lim inf
n→∞

∫
Ω

χnun dΩ +
∫
Ω

εkκ
(
1+ |u|q)dΩ � C, C = const.

Thus by Fatou’s lemma we are allowed to conclude thatχGu ∈ L1(Ω), i.e., (4.11) holds
Taking into account thatεk→ 0 a.e. inΩ ask→∞ (passing to a subsequence if nec
sary) we establish (4.12), as required.

Step5. It will be shown that

〈Au,v − u〉
W

1,p
0 (Ω)

+
∫
Ω

χG(v − u) dΩ = 0, ∀v ∈
∞⋃
n=1

Gn ⊃G, χG ∈ ∂j (u).

(QG)

SinceA is bounded and{uF }F∈Λ ⊂ {v ∈ W1,p
0 (Ω): ‖v‖

W
1,p
0 (Ω)

� M}, there exists

K > 0 such that{AuF }F∈Λ ⊂ {l ∈W−1,p′(Ω): ‖l‖
W−1,p′ (Ω) �K}. From (4.6) it follows

that for any fixedG ∈Λ we get∣∣∣∣∣
∫
Ω

χGv dΩ

∣∣∣∣∣�K‖v‖V , ∀v ∈
∞⋃
n=1

Gn, χ
G ∈ ∂j (u), (4.15)

because{Gn} is an increasing sequence. Further, by making use of (4.11) and (4.1
haveχGu ∈L1(Ω) and
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nt

t

the
lim sup
n→∞

〈Aun,un − u〉W1,p
0 (Ω)

�
∫
Ω

χG(v − u) dΩ, ∀v ∈
∞⋃
n=1

Gn. (4.16)

Sinceun ∈ Gn andun→ u weakly inW1,p
0 (Ω), the closure of

⋃∞
n=1Gn in the strong

topology ofW1,p
0 (Ω),

⋃∞
n=1Gn, must containu. Thus there exists a sequence{wi} ⊂⋃∞

n=1Gn converging strongly tou in W1,p
0 (Ω) as i→∞. We claim that for such a se

quence,∫
Ω

χGwi dΩ→
∫
Ω

χGudΩ asi→∞. (4.17)

Indeed, let{ũk}∞k=1 be given by (4.13). From (4.14) it follows

−κ(1+ |u|q)� χG ũk � |χGu|, k = 1,2, . . . , (4.18)

with the bounds−κ(1+|u|q) and|χGu| being integrable inΩ . Thus there exists a consta
C > 0 such that∣∣∣∣∣

∫
Ω

χG ũk dΩ

∣∣∣∣∣� C‖ũk‖W1,p
0 (Ω)

, k = 1,2, . . . . (4.19)

Denote byA a linear subspace spanned by{ũk}∞k=1 and define a linear functionall̂χG :⋃∞
n=1Gn +A→R by the formula

l̂χG(v) :=
∫
Ω

χGv dΩ, v ∈
∞⋃
n=1

Gn +A.

Taking into account (4.15) and (4.19), from the Hahn–Banach theorem it follows thal̂χG

admits its linear continuous extension ontoW1,p
0 (Ω), lχG ∈W−1,p′(Ω). By the dominated

convergence,∫
Ω

χGũk dΩ→
∫
Ω

χGudΩ, ask→∞,

so we getlχG(u)=
∫
Ω χ

GudΩ which, in particular, implies (4.17), as claimed.
Taking into account (4.16) and (4.17) we conclude

lim sup
n→∞

〈Aun,un − u〉W1,p
0 (Ω)

� 0, (4.20)

which by the pseudomonotonicity ofA implies

Aun→Au weakly inW1,p
0 (Ω), (4.21)

〈Aun,un〉W1,p
0 (Ω)

→〈Au,u〉
W

1,p
0 (Ω)

. (4.22)

Hence from (4.6) we are led to(QG), as desired. Notice that (4.21) and (4.22) imply
strong convergenceun→ u in W1,p

(Ω).
0
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Step6. It remains to show that there existsχ ∈ ∂j (u) with the associated linear fun
tional defined by

l̂χ (v) :=
∫
Ω

χv dΩ, ∀v ∈W1,p
0 (Ω)∩L∞(Ω),

admitting a continuous extensionlχ ∈W−1,p′(Ω) such that

Au+ lχ = 0, 〈lχ , u〉W1,p
0 (Ω)

=
∫
Ω

χudΩ. (4.23)

For everyG ∈Λ let us introduce

V (G) = {χG ∈ L∞(Ω): (QG) holds
}

and

Z(G) =
⋃
G′∈Λ
G′⊃G

V (G
′).

As in the proof of Proposition 3.2 we show that the family{χG}G∈Λ is weakly precompac
in L1(Ω). Denoting by weakcl(Z(G)) the closure ofZ(G) in the weak topology ofL1(Ω)

we prove analogously that the family{weakcl(Z(G))}G∈Λ has the finite intersection prop
erty. Thus there exists an elementχ ∈ ∂j (u) such that for anyG ∈Λ it holds

〈Au,v〉
W

1,p
0 (Ω)

+
∫
Ω

χv dΩ = 0, ∀v ∈G.

SinceG ∈ Λ has been chosen arbitrarily andΛ is dense inW1,p
0 (Ω), (4.23) results, a

desired.

Step7. It remains to show (4.1). From (4.2) we obtain easily its validity for anyv ∈
W

1,p
0 (Ω)∩L∞(Ω).
Let us consider the casej0(u; v − u) ∈ L1(Ω) with v ∈W1,p

0 (Ω). There exists a se

quencẽvk = (1− εk)v such that{ṽk} ⊂W1,p
0 (Ω)∩L∞(Ω), ṽk→ v strongly inW1,p

0 (Ω).
Since, as already has been established,

〈Au, ṽk − u〉W1,p
0 (Ω)

+
∫
Ω

j0(u; ṽk − u) dΩ � 0,

so in order to show (4.1) it remains to deduce that

lim sup
k→∞

∫
Ω

j0(u; ṽk − u) dΩ �
∫
Ω

j0(u; v− u) dΩ.

For this purpose let us observe thatṽk − u= (1− εk)(v − u)+ εk(−u) which combined
with the convexity ofj0(u; ·) yields the estimate
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j0(u; ṽk − u)� (1− εk)j0(u; v− u)+ εkj0(u;−u)
�
∣∣j0(u; v− u)∣∣+ κ(1+ |u|q).

Thus Fatou’s lemma implies the assertion.
Consider the casej0(u; v − u) /∈ L1(Ω). Recall that ifj0(u; v − u) /∈ L1(Ω) then ac-

cording to the convention that+∞−∞=+∞ we have∫
Ω

j0(u; v− u) dΩ

=
{+∞ if

∫
Ω [j0(u; v− u)]+ dΩ =+∞,

−∞ if
∫
Ω [j0(u; v− u)]+ dΩ <+∞ and

∫
Ω [j0(u; v− u)]− dΩ =+∞,

where the following notation has been used:r+ := max{r,0} and r− := max{−r,0} for
anyr ∈R.

Thus, if
∫
Ω j

0(u; v− u) dΩ =+∞ then (4.1) holds immediately.
Now we show that the case

∫
Ω
j0(u; v − u) dΩ = −∞ is not allowed for anyv ∈

W
1,p
0 (Ω). Indeed, if we suppose that for somev ∈W1,p

0 (Ω),
∫
Ω
j0(u; v− u) dΩ =−∞;

then one can find a sequenceṽk = (1− εk)v such that{ṽk} ⊂W1,p
0 (Ω)∩L∞(Ω), ṽk→ v

strongly inW1,p
0 (Ω). Since, as already has been established,

〈Au, ṽk − u〉W1,p
0 (Ω)

+
∫
Ω

j0(u; ṽk − u) dΩ � 0,

we get∫
Ω

j0(u; ṽk − u) dΩ � 〈Au,−ṽk + u〉W1,p
0 (Ω)

�−C, C = const,

and consequently∫
Ω

[
j0(u; ṽk − u)

]+
dΩ �

∫
Ω

[
j0(u; ṽk − u)

]−
dΩ −C. (4.24)

By the hypothesis we have
∫
Ω
[j0(u; v − u)]− dΩ = +∞ and

∫
Ω
[j0(u; v − u)]+ dΩ <

+∞. Since

j0(u; ṽk − u)� (1− εk)j0(u; v− u)+ εkj0(u;−u)
� (1− εk)j0(u; v− u)+ κ(1+ |u|q),

so we obtain∫
Ω

[
j0(u; vk − u)

]+
dΩ �

∫
Ω

[
j0(u; v− u)]+ dΩ + ∫

Ω

κ
(
1+ |u|q)dΩ

�D, D = const,
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ch

-

heo-
which combined with (4.24) yields∫
Ω

[
j0(u; ṽk − u)

]−
dΩ �C +D.

The application of Fatou’s lemma concludes∫
Ω

[
j0(u; v− u)]− dΩ � C +D,

which is a contradiction with the assumption that
∫
Ω
j0(u; v−u) dΩ =−∞. This contra-

diction completes the proof of (4.1).

Step8. In order to show thatj (u) ∈L1(Ω) it is enough to use (2.14) and (3.7) to get∫
Ω

j (un) dΩ � γ2− 1

p
‖Dun‖pLp(Ω;RN) +

λ1

p
‖un‖pLp(Ω) � γ2

and

j (un)�−κ0
(
1+ |un|q

)
.

Sincej (un)→ j (u) a.e. inΩ asn→∞, we are allowed to apply Fatou’s lemma whi
yields the assertion.

Step9. The existence of a nontrivial solutionu �= 0 follows from (H6). Indeed, if we sup
pose thatu= 0 then we have{un} ⊂W1,p

0 (Ω)∩L∞(Ω) andun→ 0 strongly inW1,p
0 (Ω).

By making use of (4.6) withv = 2un and the Rayleigh quotient characterization ofλ1, it
follows∫

Ω

min
{
ψun: ψ ∈ ∂j (un)

}
dΩ �

∫
Ω

χnun dΩ � 0.

Hence, by (H6),

lim sup
n→∞

∫
Ω

j (un) dΩ � 0

and consequently

lim sup
n→∞

R(un)� 0,

which contradicts to (3.7). This contradiction yields the assertion. The proof of T
rem 4.1 is complete. ✷

From (4.2) and (4.3) we obtain the result.
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Corollary 4.1. Assume the hypotheses(H0)–(H6). Then the problem: find u ∈W1,p
0 (Ω)

andχ ∈ L1(Ω) such that


∆pu+ λ1|u|p−2u= χ in the distributional sense,
χ ∈ ∂j (u) a.e. inΩ,
χu ∈L1(Ω),

j (u) ∈L1(Ω),

u= 0 on∂Ω (in the sense of traces)

(P)

has at least one nontrivial solution(u �= 0).

Remark 4.1. The energy functionalR is finite at a solutionu of (P), i.e.,R(u) =
‖Du‖p

Lp(Ω;RN) − λ1‖u‖pL(Ω)p +
∫
Ω
j (u) dΩ ∈R.

Remark 4.2. In the case of the unilateral growth condition as formulated in (H3), the f
tion J (v) = ∫

Ω
j (v) dΩ , v ∈ W1,p

0 (Ω), is not upper semicontinuous. Thus the probl
concerning the existence of a nontrivial solution of (P) arises because we are not a
to conclude by making use of the estimate (3.7) thatR(u) � η1 > 0. To overcome this
difficulty the hypothesis (H6) has been introduced.

Note that when the classical growth condition|∂j (ξ)| � c(1+ |ξ |q−1), ∀ξ ∈ R, holds
then the upper semicontinuity ofJ is ensured.
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