On a class of hemivariational inequalities at resonance

N. Halidias ${ }^{\mathrm{a}, *}$ and Z. Naniewicz ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Statistics and Actuarial Science, University of the Aegean, Karlovassi 83200, Samos, Greece
${ }^{\mathrm{b}}$ Department of Mathematics and Science, Cardinal Stefan Wyszyński University, Dewajtis 5, 01-815 Warsaw, Poland
Received 13 March 2003
Submitted by J. Horvath

Abstract

We consider a class of noncoercive hemivariational inequalities involving the p-Laplacian at resonance. We use the unilateral growth condition so the energy functional is nonsmooth, nonconvex and its effective domain does not coincide with the whole space $W_{0}^{1, p}(\Omega)$. To avoid this difficulty we study the problem in finite-dimensional spaces using the mountain-pass theorem for locally Lipschitz functionals and then we pass to the limit to obtain the existence of solutions. © 2003 Elsevier Inc. All rights reserved.

Keywords: Noncoercive hemivariational inequality; Resonance; Critical point theory; Locally Lipschitz functionals; Unilateral growth condition

1. Introduction

Let $\Omega \subseteq \mathbb{R}^{N}$ be a bounded domain with a compact connected C^{2}-boundary $\partial \Omega$. The problem under consideration is as follows: Find $u \in W^{1, p}(\Omega)$ such that

$$
\left\{\begin{array}{l}
\operatorname{div}\left(|D u(x)|^{p-2} D u(x)\right)+\lambda_{1}|u(x)|^{p-2} u(x) \in \partial j(x, u(x)) \quad \text { a.e. on } \Omega \tag{1.1}\\
\left.u\right|_{\partial \Omega}=0, \quad 2 \leqslant p<\infty
\end{array}\right.
$$

By $\partial j(x, u)$ we denote the generalized gradient for locally Lipschitz functionals due to Clarke [4]. For the right hand side of (1.1) we suppose only that it satisfies the unilateral

[^0]growth condition due to Naniewicz [14]. Thus the functions $j^{0}(\cdot, u ; v)$ and $j(\cdot, u)$ is not in general summable for every $u, v \in W_{0}^{1, p}(\Omega)$. Therefore the energy functional has no longer as its effective domain the whole space $W_{0}^{1, p}(\Omega)$, so we cannot use directly the mountainpass theorem but we have to study the problem in finite-dimensional spaces (subspaces of $W_{0}^{1, p}(\Omega) \cap L^{\infty}(\Omega)$), in which we can use the mountain-pass theorem and then pass to the limit using the Dunford-Pettis criterion.

In order to prove that our energy functional satisfies the (PS) condition we use an extended Poincaré inequality which appears very recently in the paper of Fleckinger-Pellé and Takáč [7]. So for this purpose we assume that our boundary is a compact connected C^{2}-manifold.

Hemivariational inequalities have been introduced by Panagiotopoulos (cf. [17,18], see also $[13,16]$) in order to describe mechanical problems with nonmonotone and multivalued conditions. For hemivariational inequalities with resonance involving the classical growth conditions we refer to $[8,11,13]$.

Let us recall some facts and definitions from the critical point theory for locally Lipschitz functionals and the subdifferential of Clarke [4].

Let Y be a subset of a Banach space X. A function $f: Y \rightarrow \mathbb{R}$ is said to satisfy a Lipschitz condition (on Y) provided that, for some nonnegative scalar K, one has

$$
|f(y)-f(x)| \leqslant K\|y-x\|_{X}
$$

for all points $x, y \in Y$. Let f be Lipschitz near a given point x, and let v be any other vector in X. The generalized directional derivative of f at x in the direction v, denoted by $f^{0}(x ; v)$, is defined as follows:

$$
f^{0}(x ; v)=\limsup _{\substack{y \rightarrow x \\ t \downarrow 0}} \frac{f(y+t v)-f(y)}{t}
$$

where y is a vector in X and t a positive scalar. If f is Lipschitz of rank K near x then the function $v \rightarrow f^{0}(x ; v)$ is finite, positively homogeneous, subadditive and satisfies the conditions $\left|f^{0}(x ; v)\right| \leqslant K\|v\|_{X}$ and $f^{0}(x ;-v)=(-f)^{0}(x ; v)$. Now we are ready to introduce the generalized gradient $\partial f(x)$ defined by [4]

$$
\partial f(x)=\left\{w \in X^{*}: f^{0}(x ; v) \geqslant\langle w, v\rangle_{X} \text { for all } v \in X\right\} .
$$

Some basic properties of the generalized gradient of locally Lipschitz functionals are the following:
(a) $\partial f(x)$ is a nonempty, convex, weakly compact subset of X^{\star} and $\|w\|_{X^{\star}} \leqslant K$ for every w in $\partial f(x)$.
(b) For every v in X, one has

$$
f^{0}(x ; v)=\max \{\langle w, v\rangle: w \in \partial f(x)\} .
$$

If f_{1}, f_{2} are locally Lipschitz functions then

$$
\partial\left(f_{1}+f_{2}\right) \subseteq \partial f_{1}+\partial f_{2}
$$

Let us recall the (PS) condition introduced by Chang [3].

Definition 1.1. We say that a Lipschitz function f satisfies the Palais-Smale condition if any sequence $\left\{x_{n}\right\}$ along which $\left|f\left(x_{n}\right)\right|$ is bounded and

$$
\lambda\left(x_{n}\right)=\min _{w \in \partial f\left(x_{n}\right)}\|w\|_{X^{\star}} \rightarrow 0
$$

possesses a convergent subsequence.
The (PS) condition can also be formulated as follows (see Costa and Goncalves [5]).
$(\mathrm{PS})_{c,+}^{*}$ Whenever $\left(x_{n}\right) \subseteq X,\left(\varepsilon_{n}\right),\left(\delta_{n}\right) \subseteq R_{+}$are sequences with $\varepsilon_{n} \rightarrow 0, \delta_{n} \rightarrow 0$, and such that

$$
\begin{aligned}
& f\left(x_{n}\right) \rightarrow c \\
& f\left(x_{n}\right) \leqslant f(x)+\varepsilon_{n}\left\|x-x_{n}\right\| \quad \text { if }\left\|x-x_{n}\right\| \leqslant \delta_{n}
\end{aligned}
$$ then $\left(x_{n}\right)$ possesses a convergent subsequence: $x_{n^{\prime}} \rightarrow \hat{x}$.

Similarly, we define the $(\mathrm{PS})_{c}^{*}$ condition from below, $(\mathrm{PS})_{c,-}^{*}$, by interchanging x and x_{n} in the above inequality. Finally we say that f satisfies $(\mathrm{PS})_{c}^{*}$ provided it satisfies $(\mathrm{PS})_{c,+}^{*}$ and (PS) ${ }_{c,-}^{*}$.

Note that these two definitions are equivalent when f is locally Lipschitz functional.
Let us mention some facts about the first eigenvalue of the p-Laplacian. Consider the first eigenvalue λ_{1} of $\left(-\Delta_{p}, W_{0}^{1, p}(\Omega)\right)$. From Lindqvist [10] we know that $\lambda_{1}>0$ is isolated and simple, that any two solutions u, v of

$$
\left\{\begin{array}{l}
-\Delta_{p} u:=-\operatorname{div}\left(|D u|^{p-2} D u\right)=\lambda_{1}|u|^{p-2} u \quad \text { a.e. on } \Omega, \tag{1.2}\\
\left.u\right|_{\partial \Omega}=0, \quad 2 \leqslant p<\infty,
\end{array}\right.
$$

satisfy $u=c v$ for some $c \in \mathbb{R}$. In addition, the λ_{1}-eigenfunctions do not change sign in Ω. Finally we have the following variational characterization of λ_{1} (Rayleigh quotient):

$$
\lambda_{1}=\inf \left[\frac{\|D u\|_{p}^{p}}{\|u\|_{p}^{p}}: u \in W_{0}^{1, p}(\Omega), u \neq 0\right] .
$$

We are going to use the mountain-pass theorem of Chang [3] and the generalization of the Poincaré inequality of Fleckinger-Pellé and Takáč [7]: There exists a positive constant $c>0$ such that

$$
\begin{align*}
& \int_{\Omega}|D u|^{p} d x-\lambda_{1} \int_{\Omega}|u|^{p} d x \geqslant c\left(|e|^{p-2} \int_{\Omega}|D \theta|^{p-2}|D \hat{u}|^{2} d x+\int_{\Omega}|D \hat{u}|^{p} d x\right), \\
& \forall u \in W_{0}^{1, p}(\Omega) \tag{1.3}
\end{align*}
$$

where λ_{1} is the first eigenvalue of $\left(-\Delta_{p}, W_{0}^{1, p}(\Omega)\right), \theta$ is the λ_{1}-eigenfunction and $u=e \theta+\hat{u}$ is an orthogonal decomposition of u in $L^{2}(\Omega), e=\|\theta\|_{L^{2}(\Omega)}^{-2}\langle u, \theta\rangle_{L^{2}(\Omega)}$, $\langle\hat{u}, \theta\rangle_{L^{2}(\Omega)}=0$.

Theorem 1.1. If a locally Lipschitz functional $f: X \rightarrow \mathbb{R}$ on the reflexive Banach space X satisfies the (PS) condition and the hypotheses
(i) there exist positive constants ρ and a such that

$$
f(u) \geqslant a \quad \text { for all } u \in X \text { with }\|u\|=\rho ;
$$

(ii) $f(0)=0$ and there is a point $e \in X$ such that

$$
\|e\|>\rho \quad \text { and } \quad f(e) \leqslant 0
$$

then there exists a critical value $c \geqslant a$ of f determined by

$$
c=\inf _{g \in G} \max _{t \in[0,1]} f(g(t))
$$

where

$$
G=\{g \in C([0,1], X): g(0)=0, g(1)=e\} .
$$

2. Preliminary results

Let us denote by $V_{0}=\{s \theta\}_{s \in \mathbb{R}}$ the one-dimensional eigenspace spanned by the eigenfunction θ corresponding to the first eigenvalue λ_{1} of $\left(-\Delta_{p}, W_{0}^{1, p}(\Omega)\right)$, normalized by $\theta>0$ in Ω and $\|\theta\|_{W_{0}^{1, p}(\Omega)}=1$. Due to Anane [1] we have $\theta \in L^{\infty}(\Omega)$. By V^{\perp} we denote the orthogonal complement in $L^{2}(\Omega)$ of V_{0}. Thus for any $u \in W_{0}^{1, p}(\Omega)$ the decomposition follows

$$
\begin{equation*}
u=e \bar{\theta}+\hat{u} \quad \text { with } e \geqslant 0, \bar{\theta} \in\{ \pm \theta\} \subset V_{0}, \hat{u} \in \hat{V} \tag{2.1}
\end{equation*}
$$

where $\hat{V}:=V^{\perp} \cap W_{0}^{1, p}(\Omega)$.
Lemma 2.1. Assume that
(H0) $j(\cdot, 0) \in L^{1}(\Omega)$ and $j(x, \cdot)$ is Lipschitz continuous on the bounded subsets of \mathbb{R} uniformly with respect to $x \in \Omega$, i.e., $\forall r>0 \exists K_{r}>0$ such that $\forall\left|y_{1}\right|,\left|y_{2}\right| \leqslant r$,

$$
\left|j\left(x, y_{1}\right)-j\left(x, y_{2}\right)\right| \leqslant K_{r}\left|y_{1}-y_{2}\right|, \quad \text { for a.e. } x \in \Omega ;
$$

(H1) There exist $\mu>p, 1 \leqslant \sigma<p, a \in L^{1}(\Omega)$ and a constant $k \geqslant 0$ such that

$$
\mu j(x, \xi)-j^{0}(x, \xi ; \xi) \geqslant-a(x)-k|\xi|^{\sigma}, \quad \forall \xi \in \mathbb{R} \text { and for a.e. } x \in \Omega
$$

(H2) Assume that

$$
\liminf _{\substack{t \rightarrow+\infty \\ \eta \rightarrow \bar{\theta}}} \frac{1}{t^{p-1}} \int_{\Omega}-j^{0}(x, t \eta(x) ;-\bar{\theta}(x)) d x>0, \quad \forall \bar{\theta} \in V_{0} \text { with }\|\bar{\theta}\|_{W_{0}^{1, p}(\Omega)}=1
$$

Moreover, suppose that for a sequence $\left\{u_{n}\right\} \subset W_{0}^{1, p}(\Omega)$ there exists $\varepsilon_{n} \searrow 0$ such that the conditions below are fulfilled:

$$
\begin{align*}
& \int_{\Omega}\left|D u_{n}(x)\right|^{p-2}\left\langle D u_{n}(x), D v(x)-\left.D u_{n}(x)\right|_{\mathbb{R}^{N}} d x\right. \\
& \quad-\lambda_{1} \int_{\Omega}\left|u_{n}(x)\right|^{p-2} u_{n}(x)\left(v(x)-u_{n}(x)\right) d x \\
& \quad+\int_{\Omega} j^{0}\left(x, u_{n}(x) ; v(x)-u_{n}(x)\right) d x \geqslant-\varepsilon_{n}\left\|v-u_{n}\right\|_{W_{0}^{1, p}(\Omega)}, \\
& \quad \forall v \in \operatorname{Lin}\left(\left\{u_{n}, \theta\right\}\right), \tag{2.2}
\end{align*}
$$

and

$$
\begin{equation*}
\frac{1}{p} \int_{\Omega}\left|D u_{n}(x)\right|^{p} d x-\frac{\lambda_{1}}{p} \int_{\Omega}\left|u_{n}(x)\right|^{p} d x+\int_{\Omega} j\left(x, u_{n}(x)\right) d x \leqslant C, \quad C>0 \tag{2.3}
\end{equation*}
$$

where $\operatorname{Lin}\left(\left\{u_{n}, \theta\right\}\right)$ is the linear subspace of $W_{0}^{1, p}(\Omega)$ spanned by $\left\{\theta, u_{n}\right\}$. Then the sequence $\left\{u_{n}\right\}$ is bounded in $W_{0}^{1, p}(\Omega)$, i.e., there exists $M>0$ such that

$$
\begin{equation*}
\left\|u_{n}\right\|_{W_{0}^{1, p}(\Omega)} \leqslant M . \tag{2.4}
\end{equation*}
$$

Proof. Suppose on the contrary that the claim is not true, i.e., there exists a sequence $\left\{u_{n}\right\}_{n=1}^{\infty} \subset W_{0}^{1, p}(\Omega)$ with $\left\|u_{n}\right\|_{W_{0}^{1, p}(\Omega)} \rightarrow \infty$ for which (2.2) and (2.3) hold. Combining (2.3) and (2.2) with $v=2 u_{n}$ yields

$$
\begin{align*}
C+\varepsilon_{n}\left\|u_{n}\right\|_{W_{0}^{1, p}(\Omega)} \geqslant & \frac{\mu-p}{p}\left(\left\|D u_{n}\right\|_{L^{p}\left(\Omega ; \mathbb{R}^{N}\right)}^{p}-\lambda_{1}\left\|u_{n}\right\|_{L^{p}(\Omega)}^{p}\right) \\
& +\int_{\Omega}\left(\mu j\left(u_{n}\right)-j^{0}\left(u_{n} ; u_{n}\right)\right) d x . \tag{2.5}
\end{align*}
$$

By the generalization of the Poincaré inequality (1.3) the decomposition results in $u_{n}=$ $e_{n} \theta_{n}+\hat{u}_{n}$, where $\hat{u}_{n} \in \hat{V}, e_{n} \geqslant 0, \theta_{n} \in\{ \pm \theta\},\|\theta\|_{W_{0}^{1, p}(\Omega)}=1$, such that

$$
\begin{align*}
& \left\|D u_{n}\right\|_{L^{p}\left(\Omega ; \mathbb{R}^{N}\right)}^{p}-\lambda_{1}\left\|u_{n}\right\|_{L^{p}(\Omega)}^{p} \\
& \quad \geqslant c\left(e_{n}^{p-2} \int_{\Omega}\left|D \theta_{n}\right|^{p-2}\left|D \hat{u}_{n}\right|^{2} d x+\left\|D \hat{u}_{n}\right\|_{L^{p}\left(\Omega ; \mathbb{R}^{N}\right)}^{p}\right) . \tag{2.6}
\end{align*}
$$

Thus by (H1) we have

$$
\begin{align*}
C+\varepsilon_{n}\left\|u_{n}\right\|_{W_{0}^{1, p}(\Omega)} \geqslant & c \frac{\mu-p}{p} e_{n}^{p-2} \int_{\Omega}|D \theta|^{p-2}\left|D \hat{u}_{n}\right|^{2} d x \\
& +c \frac{\mu-p}{p}\left\|D\left(\hat{u}_{n}\right)\right\|_{L^{p}\left(\Omega ; \mathbb{R}^{N}\right)}^{p}-c_{1}\left\|u_{n}\right\|_{L^{p}(\Omega)}^{\sigma} . \tag{2.7}
\end{align*}
$$

Hence

$$
\begin{equation*}
C+\varepsilon_{n}\left(\left\|\hat{u}_{n}\right\|_{W_{0}^{1, p}(\Omega)}+e_{n}\right) \geqslant c \frac{\mu-p}{p}\left\|D \hat{u}_{n}\right\|_{L^{p}\left(\Omega ; \mathbb{R}^{N}\right)}^{p}-c_{1}\left\|\hat{u}_{n}\right\|_{L^{p}(\Omega)}^{\sigma}-c_{2} e_{n}^{\sigma} \tag{2.8}
\end{equation*}
$$

Thus it follows that $e_{n} \rightarrow \infty$ because, otherwise, we would have the boundedness of $\left\{u_{n}\right\}$ in $W_{0}^{1, p}(\Omega)$. Consequently we arrive at the estimate

$$
\begin{align*}
\frac{C}{e_{n}}+\varepsilon_{n}\left(\left\|\frac{\hat{u}_{n}}{e_{n}}\right\|_{W_{0}^{1, p}(\Omega)}+1\right) \geqslant & e_{n}^{p-1} c \frac{\mu-p}{p}\left\|D\left(\frac{\hat{u}_{n}}{e_{n}}\right)\right\|_{L^{p}\left(\Omega ; \mathbb{R}^{N}\right)}^{p} \\
& -e_{n}^{\sigma-1} c_{1}\left\|\frac{\hat{u}_{n}}{e_{n}}\right\|_{L^{p}(\Omega)}^{\sigma}-e_{n}^{\sigma-1} c_{2}, \tag{2.9}
\end{align*}
$$

which in view of $e_{n} \rightarrow \infty$ leads to the conclusion that

$$
\begin{equation*}
\left\|\frac{\hat{u}_{n}}{e_{n}}\right\|_{W_{0}^{1, p}(\Omega)} \rightarrow 0 \tag{2.10}
\end{equation*}
$$

Now let us turn back to (2.2). By passing to a subsequence one can suppose also that $\theta_{n}=\theta$ (or $\theta_{n}=-\theta$). Thus, substituting $v=\hat{u}_{n}$ into (2.2) yields

$$
\begin{aligned}
& e_{n}^{p} \int_{\Omega}\left|D\left(\frac{\hat{u}_{n}}{e_{n}}\right)+D \theta\right|^{p-2}\left\langle D\left(\frac{\hat{u}_{n}}{e_{n}}\right)+D \theta,-\left.D \theta\right|_{\mathbb{R}^{N}} d x\right. \\
& \quad-e_{n}^{p} \lambda_{1} \int_{\Omega}\left|\frac{\hat{u}_{n}}{e_{n}}+\theta\right|^{p-2}\left(\frac{\hat{u}_{n}}{e_{n}}+\theta\right)(-\theta) d x+e_{n} \int_{\Omega} j^{0}\left(e_{n}\left(\frac{\hat{u}_{n}}{e_{n}}+\theta\right) ;-\theta\right) d x \\
& \quad \geqslant-\varepsilon_{n} e_{n} .
\end{aligned}
$$

Hence

$$
\begin{align*}
\varepsilon_{n} \geqslant & \frac{1}{e_{n}^{p-1}} \int_{\Omega}-j^{0}\left(e_{n}\left(\frac{\hat{u}_{n}}{e_{n}}+\theta\right) ;-\theta\right) d x \\
& +\int_{\Omega}\left|D\left(\frac{\hat{u}_{n}}{e_{n}}\right)+D \theta\right|^{p-2}\left\langle D\left(\frac{\hat{u}_{n}}{e_{n}}\right)+D \theta, D \theta\right\rangle_{\mathbb{R}^{N}} d x \\
& -\lambda_{1} \int_{\Omega}\left|\frac{\hat{u}_{n}}{e_{n}}+\theta\right|^{p-2}\left(\frac{\hat{u}_{n}}{e_{n}}+\theta\right) \theta d x . \tag{2.11}
\end{align*}
$$

Now we are ready to pass to the limit with $n \rightarrow \infty$. For this purpose notice that in view of (2.10) it results

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left\{\int_{\Omega}\left|D\left(\frac{\hat{u}_{n}}{e_{n}}\right)+D \theta\right|^{p-2}\left\langle D\left(\frac{\hat{u}_{n}}{e_{n}}\right)+D \theta, D \theta\right\rangle_{\mathbb{R}^{N}} d x\right. \\
& \left.\quad-\lambda_{1} \int_{\Omega}\left|\frac{\hat{u}_{n}}{e_{n}}+\theta\right|^{p-2}\left(\frac{\hat{u}_{n}}{e_{n}}+\theta\right) \theta d x\right\}=\|D \theta\|_{L^{p}\left(\Omega ; \mathbb{R}^{N}\right)}^{p}-\lambda_{1}\|\theta\|_{L^{p}(\Omega)}^{p}=0,
\end{aligned}
$$

and by (iii) we have

$$
\liminf _{n \rightarrow \infty} \frac{1}{e_{n}^{p-1}} \int_{\Omega}-j^{0}\left(e_{n}\left(\frac{\hat{u}_{n}}{e_{n}}+\theta\right) ;-\theta\right) d x>0
$$

Thus from (2.11) we arrive at the inequality $0>0$ which is a contradiction. Thus the proof of Lemma 2.1 is complete.

Lemma 2.2. Assume that $(\mathrm{H} 0)$ and the hypotheses below hold:
(H3) The unilateral growth condition [14]: there exist $p<q<p^{*}=N p /(N-p)$, and a constant $\kappa \geqslant 0$ such that

$$
j^{0}(x, \xi ;-\xi) \leqslant \kappa\left(1+|\xi|^{q}\right), \quad \forall \xi \in \mathbb{R} \text { and for a.e. } x \in \Omega
$$

(H4) Uniformly for a.e. $x \in \Omega$,

$$
\liminf _{\xi \rightarrow 0} \frac{p j(x, \xi)}{|\xi|^{p}} \geqslant \phi(x) \geqslant 0
$$

with $\phi(x) \in L^{\infty}(\Omega)$ and $\phi(x)>0$ on a set of positive measure.
Then there exists $\rho>0$ such that

$$
\begin{equation*}
\mathcal{R}(u):=\frac{1}{p}\|D u\|_{L^{p}\left(\Omega ; \mathbb{R}^{N}\right)}^{p}-\frac{\lambda_{1}}{p}\|u\|_{L^{p}(\Omega)}^{p}+\int_{\Omega} j(u) d x \geqslant \eta, \quad \eta=\text { const }>0, \tag{2.12}
\end{equation*}
$$

is valid for any $u \in W_{0}^{1, p}(\Omega)$ with $\|u\|_{W_{0}^{1, p}(\Omega)}=\rho$.
Proof. Suppose the assertion is not true. Thus there exist sequences $\left\{u_{n}\right\} \subset W_{0}^{1, p}(\Omega)$ and $\rho_{n} \searrow 0$ such that $\left\|u_{n}\right\|_{W_{0}^{1, p}(\Omega)}=\rho_{n}$ and $\mathcal{R}\left(u_{n}\right) \leqslant \rho_{n}^{p+1}$. So we have

$$
\begin{equation*}
\left\|D u_{n}\right\|_{L^{p}\left(\Omega ; \mathbb{R}^{N}\right)}^{p}-\lambda_{1}\left\|u_{n}\right\|_{L^{p}(\Omega)}^{p}+\int_{\Omega} p j\left(u_{n}\right) d x \leqslant p \rho_{n}^{p+1} \tag{2.13}
\end{equation*}
$$

Further, from (H4) it follows that for any $\varepsilon>0$, uniformly for all $x \in \Omega$ one can find $\delta>0$ such that

$$
p j(x, \xi) \geqslant \phi(x)|\xi|^{p}-\varepsilon|\xi|^{p}, \quad|\xi| \leqslant \delta .
$$

Moreover, (H3) allows to conclude that (see Lemma 2.1 in [15, pp. 119-120])

$$
\begin{equation*}
j(x, \xi) \geqslant-\kappa_{0}\left(1+|\xi|^{q}\right), \quad \forall \xi \in \mathbb{R}, \kappa_{0}=\text { const }>0 \tag{2.14}
\end{equation*}
$$

Thus it is easy to see that

$$
\begin{equation*}
p j(x, \xi) \geqslant(\phi(x)-\varepsilon)|\xi|^{p}-\gamma|\xi|^{q}, \quad \forall \xi \in \mathbb{R}, \tag{2.15}
\end{equation*}
$$

for some positive $\gamma=\gamma(\delta)>0$. Then by (2.13) it follows

$$
\begin{align*}
& \left\|D u_{n}\right\|_{L^{p}\left(\Omega ; \mathbb{R}^{N}\right)}^{p}-\lambda_{1}\left\|u_{n}\right\|_{L^{p}(\Omega)}^{p}+\int_{\Omega}(\phi(x)-\varepsilon)\left|u_{n}(x)\right|^{p} d x \\
& \quad \leqslant p \rho_{n}^{p+1}+\gamma \int_{\Omega}\left|u_{n}(x)\right|^{q} d x . \tag{2.16}
\end{align*}
$$

Let us set $y_{n}=\left(1 / \rho_{n}\right) u_{n}$. Dividing inequality (2.16) by ρ_{n}^{p} yields

$$
\begin{align*}
& \left\|D y_{n}\right\|_{L^{p}\left(\Omega ; \mathbb{R}^{N}\right)}^{p}-\lambda_{1}\left\|y_{n}\right\|_{L^{p}(\Omega)}^{p}+\int_{\Omega}(\phi(x)-\varepsilon)\left|y_{n}(x)\right|^{p} d x \\
& \quad \leqslant p \rho_{n}+\gamma \rho_{n}^{q-p} \int_{\Omega}\left|y_{n}(x)\right|^{q} d x . \tag{2.17}
\end{align*}
$$

Since $W_{0}^{1, p}(\Omega)$ is continuously embedded into $L^{q}(\Omega)$ we have

$$
\begin{align*}
& \left\|D y_{n}\right\|_{L^{p}\left(\Omega ; \mathbb{R}^{N}\right)}^{p}-\lambda_{1}\left\|y_{n}\right\|_{L^{p}(\Omega)}^{p}+\int_{\Omega}(\phi(x)-\varepsilon)\left|y_{n}(x)\right|^{p} d x \\
& \leqslant p \rho_{n}+\gamma_{1} \rho_{n}^{q-p}, \quad \gamma_{1}=\mathrm{const}>0 . \tag{2.18}
\end{align*}
$$

Taking into account that $\left\|y_{n}\right\|_{W_{0}^{1, p}(\Omega)}=1$ we can suppose that for a subsequence (again denoted by the same symbol) $y_{n} \rightarrow y$ weakly in $W_{0}^{1, p}(\Omega)$ and $y_{n} \rightarrow y$ strongly in $L^{p}(\Omega)$ (the Rellich theorem) for some $y \in W_{0}^{1, p}(\Omega)$. Passing to the limit and the weak lower semicontinuity of the norm allows the conclusion

$$
\begin{equation*}
\|D y\|_{L^{p}\left(\Omega ; \mathbb{R}^{N}\right)}^{p}-\lambda_{1}\|y\|_{L^{p}(\Omega)}^{p}+\int_{\Omega}(\phi(x)-\varepsilon)|y(x)|^{p} d x \leqslant 0 \tag{2.19}
\end{equation*}
$$

which is valid for an arbitrary $\varepsilon>0$. Therefore we get

$$
\begin{equation*}
\|D y\|_{L^{p}\left(\Omega ; \mathbb{R}^{N}\right)}^{p}-\lambda_{1}\|y\|_{L^{p}(\Omega)}^{p}+\int_{\Omega} \phi(x)|y(x)|^{p} d x \leqslant 0 . \tag{2.20}
\end{equation*}
$$

Using the Rayleigh quotient characterization of λ_{1} and (H4) leads to the equalities

$$
\begin{align*}
& \|D y\|_{L^{p}\left(\Omega ; \mathbb{R}^{N}\right)}^{p}=\lambda_{1}\|y\|_{L^{p}(\Omega)}^{p}, \tag{2.21}\\
& \int_{\Omega} \phi(x)|y(x)|^{p} d x=0 . \tag{2.22}
\end{align*}
$$

Now we show that $y \neq 0$. Indeed, from the results obtained it follows that

$$
\left\|D y_{n}\right\|_{L^{p}\left(\Omega ; \mathbb{R}^{N}\right)}^{p}-\lambda_{1}\left\|y_{n}\right\|_{L^{p}(\Omega)}^{p} \rightarrow 0
$$

and by the compactness of the embedding $W_{0}^{1, p}(\Omega) \subset L^{p}(\Omega)$ we get

$$
\left\|y_{n}\right\|_{L^{p}(\Omega)} \rightarrow\|y\|_{L^{p}(\Omega)}
$$

Since $\left\|D y_{n}\right\|_{L^{p}\left(\Omega ; \mathbb{R}^{N}\right)} \geqslant c\left\|y_{n}\right\|_{W_{0}^{1, p}(\Omega)}=c, c>0$ (the equivalence of the norms), we arrive at $\lambda_{1}\|y\|_{L^{p}(\Omega)}^{p} \geqslant c^{p}$ which establishes the assertion. Therefore, taking into account (2.21) we conclude that $y \neq 0$ is an λ_{1}-eigenfunction. Since $\phi(x)>0$ on a set of positive measure (by (H4)), and, as it is well known (cf. [10]), $|y(x)|>0$ for a.e. $x \in \Omega$, we are led to the contradiction with (2.22). The proof of Lemma 2.2 is complete.

Lemma 2.3. Assume that $(\mathrm{H} 0)-(\mathrm{H} 1)$ hold and that
(H5) $\int_{\Omega} j(x, 0) d \Omega \leqslant 0$ and either for some $\bar{\theta} \in V_{0}, \bar{\theta} \neq 0$,

$$
\begin{equation*}
\liminf _{s \rightarrow+\infty} \int_{\Omega} j(x, s \bar{\theta}(x)) d x<0 \tag{2.23}
\end{equation*}
$$

or there exists $v_{0} \in W_{0}^{1, p}(\Omega) \cap L^{\infty}(\Omega)$ such that

$$
\begin{equation*}
\liminf _{s \rightarrow+\infty} s^{-\sigma} \int_{\Omega} j\left(x, s v_{0}(x)\right) d x<\frac{k}{\sigma-\mu}\left\|v_{0}\right\|_{L^{\sigma}(\Omega)}^{\sigma} \tag{2.24}
\end{equation*}
$$

with the positive constants k, μ, σ entering (H1).
Then there exists $e \in W_{0}^{1, p}(\Omega) \cap L^{\infty}(\Omega), e \neq 0$, such that

$$
\mathcal{R}(s e) \leqslant 0, \quad \forall s \geqslant 1
$$

Proof. If (2.23) is fulfilled then the assertion holds for $e=s_{0} \bar{\theta}$ with sufficiently large $s_{0}>0$.

For the case (2.24) we follow the lines of [13]. For all $\tau \neq 0, x \in \Omega$ and $\xi \in \mathbb{R}$, the formula below of generalized gradient (with respect to τ) holds:

$$
\partial_{\tau}\left(\tau^{-\mu} j(x, \tau \xi)\right)=\tau^{-\mu-1}\left[-\mu j(x, \tau \xi)+\partial_{\xi} j(x, \tau \xi)(\tau \xi)\right]
$$

for the constant $\mu>p$ fulfilling (H1). Since the function $\tau \mapsto \tau^{-\mu} j(x, \tau \xi)$ is differentiable a.e. on \mathbb{R}, the equality above and a classical property of Clarke's generalized directional derivative imply that

$$
\begin{aligned}
& t^{-\mu} j(x, t \xi)-j(x, \xi)=\int_{1}^{t} \frac{d}{d \tau}\left(\tau^{-\mu} j(x, \tau \xi)\right) d \tau \\
& \quad \leqslant \int_{1}^{t} \tau^{-\mu-1}\left[-\mu j(x, \tau \xi)+j^{0}(x, \tau \xi ; \tau \xi)\right] d \tau, \quad \forall t>1, \text { a.e. } x \in \Omega, \xi \in \mathbb{R} .
\end{aligned}
$$

In view of assumption (H1) we infer that

$$
t^{-\mu} j(x, t \xi)-j(x, \xi) \leqslant \int_{1}^{t} \tau^{-\mu-1}\left[a(x)+k \tau^{\sigma}|\xi|^{\sigma}\right] d \tau
$$

$$
\begin{align*}
& =\left[a(x)\left(-\frac{1}{\mu} t^{-\mu}+\frac{1}{\mu}\right)+k|\xi|^{\sigma}\left(\frac{1}{\sigma-\mu} t^{\sigma-\mu}-\frac{1}{\sigma-\mu}\right)\right] \\
& \leqslant \mu^{-1} a(x)+(\mu-\sigma)^{-1} k|\xi|^{\sigma}, \quad \forall t>1, \text { a.e. } x \in \Omega, \xi \in \mathbb{R} \tag{2.25}
\end{align*}
$$

Set $\xi=s v_{0}(x)$ with $x \in \Omega$ and $s>0$. We find from (2.25) the estimate

$$
\begin{align*}
& j\left(x, t s v_{0}(x)\right) \leqslant t^{\mu}\left[j\left(x, s v_{0}(x)\right)+\mu^{-1} a(x)+(\mu-\sigma)^{-1} k s^{\sigma}\left|v_{0}(x)\right|^{\sigma}\right] \\
& \quad \forall t>1, s>0, \text { a.e. } x \in \Omega \tag{2.26}
\end{align*}
$$

Combining (2.26) with (2.24) yields

$$
\begin{align*}
\mathcal{R}\left(t s v_{0}\right) \leqslant & \frac{1}{p} t^{p} s^{p}\left(\left\|D v_{0}\right\|_{L^{p}\left(\Omega ; \mathbb{R}^{N}\right)}^{p}-\lambda_{1}\left\|v_{0}\right\|_{L^{p}(\Omega)}^{p}\right) \\
& +t^{\mu} s^{\sigma}\left[s^{-\sigma} \int_{\Omega} j\left(x, s v_{0}(x)\right) d x+k(\mu-\sigma)^{-1}\left\|v_{0}\right\|_{L^{\sigma}(\Omega)}^{\sigma}\right. \\
& \left.\quad+s^{-\sigma} \mu^{-1}\|a\|_{L^{1}(\Omega)}\right], \quad \forall t>1, s>0 \tag{2.27}
\end{align*}
$$

Assumption (2.24) allows to fix some number $s_{0}>0$ such that

$$
\begin{equation*}
s_{0}^{-\sigma} \int_{\Omega} j\left(x, s_{0} v_{0}(x)\right) d x+k(\mu-\sigma)^{-1}\left\|v_{0}\right\|_{L^{\sigma}(\Omega)}^{\sigma}+s_{0}^{-\sigma} \mu^{-1}\|a\|_{L^{1}(\Omega)}<0 \tag{2.28}
\end{equation*}
$$

With such an $s_{0}>0$ we can pass to the limit as $t \rightarrow+\infty$ in (2.27) and obtain (in view of $\mu>p$) that $\mathcal{R}\left(t s_{0} v_{0}\right) \rightarrow-\infty$ as $t \rightarrow+\infty$. Consequently, setting $e=t_{0} s_{0} v_{0}$ with sufficiently large $t_{0}>0$ we establish the assertion. This completes the proof of Lemma 2.3.

3. Finite-dimensional approximation

Let us denote by Λ the family of all finite-dimensional subspaces F of $W_{0}^{1, p}(\Omega) \cap$ $L^{\infty}(\Omega)$ satisfying the conditions:

$$
\begin{gather*}
F \in \Lambda \quad \Leftrightarrow \quad F=V_{0}+\hat{F} \text { for some finite-dimensional subspace } \hat{F} \subset \hat{V} \cap L^{\infty}(\Omega) \\
\text { and } e \in F, \tag{3.1}
\end{gather*}
$$

with $e \in W_{0}^{1, p}(\Omega) \cap L^{\infty}(\Omega)$ as explained in Lemma 2.3.
For every subspace $F \in \Lambda$ we introduce the functional $\mathcal{R}_{F}: F \rightarrow \mathbb{R}$ which is the restriction of \mathcal{R} to F, i.e.,

$$
\begin{equation*}
\mathcal{R}_{F}(v)=\frac{1}{p}\|v\|_{L^{p}\left(\Omega ; \mathbb{R}^{N}\right)}^{p}-\frac{\lambda_{1}}{p}\|v\|_{L^{p}(\Omega)}^{p}+\int_{\Omega} j(x, v(x)) d x, \quad \forall v \in F \tag{3.2}
\end{equation*}
$$

It is obvious that the functional \mathcal{R}_{F} is locally Lipschitz and its generalized gradient is expressed by

$$
\begin{equation*}
\partial \mathcal{R}_{F}(v) \subset i_{F}^{\star} A i_{F} v+\bar{i}_{F}^{\star} \partial J(v), \quad \forall v \in F \tag{3.3}
\end{equation*}
$$

where $i_{F}: F \rightarrow W_{0}^{1, p}(\Omega)$ and $\bar{i}_{F}: F \rightarrow L^{\infty}(\Omega)$ are the inclusion maps with their dual projections $i_{F}^{\star}: W^{-1, p^{\prime}}(\Omega) \rightarrow F^{\star}$ and $\bar{i}_{F}^{\star}: L^{1}(\Omega) \rightarrow F^{\star}$, respectively, while $A: W_{0}^{1, p}(\Omega) \rightarrow$ $W^{-1, p^{\prime}}(\Omega)$ is defined by

$$
\begin{align*}
& \langle A u, v\rangle_{W_{0}^{1, p}(\Omega)}=\int_{\Omega}|D u|^{p-2}\langle D u, D v\rangle_{\mathbb{R}^{N}} d \Omega-\lambda_{1} \int_{\Omega}|u|^{p-2} u v d \Omega \\
& \quad u, v \in W_{0}^{1, p}(\Omega) \tag{3.4}
\end{align*}
$$

By $\partial J(\cdot)$ the generalized Clarke gradient of $J: L^{\infty}(\Omega) \rightarrow \mathbb{R}$ given by

$$
J(v)=\int_{\Omega} j(x, v(x)) d x, \quad \forall v \in L^{\infty}(\Omega)
$$

has been denoted. Notice that in view of (H0), J is locally Lipschitz on $L^{\infty}(\Omega)$, so the generalized gradient $\partial J(\cdot)$ is well defined. The pairing over $F^{\star} \times F$ will be denoted by $\langle\cdot, \cdot\rangle_{F}$.

Proposition 3.1. Assume the hypotheses (H0)-(H5). Then for each $F \in \Lambda$ problem (P_{F}): Find $u_{F} \in F$ such as to satisfy the hemivariational inequality

$$
\begin{align*}
& \int_{\Omega}\left|D u_{F}\right|^{p-2}\left\langle D u_{F}, D v-D u_{F}\right\rangle_{\mathbb{R}^{N}} d \Omega-\lambda_{1} \int_{\Omega}\left|u_{F}\right|^{p-2} u_{F}\left(v-u_{F}\right) d \Omega \\
& \quad+\int_{\Omega} j^{0}\left(u_{F} ; v-u_{F}\right) d \Omega \geqslant 0, \quad \forall v \in F \tag{3.5}
\end{align*}
$$

has at least one solution $u_{F} \neq 0$. Moreover, there exist constants $M>0, \gamma_{1}>0$ and $\gamma_{2}>0$ not depending on $F \in \Lambda$ such that

$$
\begin{align*}
& \left\|u_{F}\right\|_{W_{0}^{1, p}(\Omega)} \leqslant M, \quad \forall F \in \Lambda, \tag{3.6}\\
& \gamma_{1} \leqslant \mathcal{R}\left(u_{F}\right) \leqslant \gamma_{2}, \quad \forall F \in \Lambda \tag{3.7}
\end{align*}
$$

Proof. First we show that the functional $\mathcal{R}_{F}: F \rightarrow \mathbb{R}$ satisfies the Palais-Smale condition in the sense of Chang [3]. Let $\left\{u_{n}\right\} \subset F$ and $\left\{w_{n}\right\} \subset F^{\star}$ be sequences such that $\left|\mathcal{R}_{F}\left(u_{n}\right)\right|$ $\leqslant c$, for all $n \geqslant 1$, with a constant $c>0$, and $w_{n} \in \partial \mathcal{R}_{F}\left(u_{n}\right),\left\|w_{n}\right\|_{F^{\star}}=\varepsilon_{n} \rightarrow 0$ as $n \rightarrow \infty$. Since F is finite-dimensional, it remains to show that $\left\{u_{n}\right\}$ is bounded in F. According to (3.3) we see that w_{n} can be expressed as follows:

$$
\begin{equation*}
w_{n}=i_{F}^{\star} A u_{n}+\bar{i}_{F}^{\star} \chi_{n}, \quad \text { with } \chi_{n} \in \partial J\left(u_{n}\right) \tag{3.8}
\end{equation*}
$$

Let us notice that the hypothesis of Theorem 2.7.3 in [4, p. 80] is verified. Therefore we obtain

$$
\begin{equation*}
\partial J(v) \subset \int_{\Omega} \partial j(x, v(x)) d x, \quad \forall v \in L^{\infty}(\Omega) \tag{3.9}
\end{equation*}
$$

Thus

$$
\begin{aligned}
& \left\langle A u_{n}, v-u_{n}\right\rangle_{W_{0}^{1, p}(\Omega)}+\int_{\Omega} j^{0}\left(u_{n} ; v-u_{n}\right) d \Omega \geqslant\left\langle w_{n}, v-u_{n}\right\rangle_{F} \geqslant-\varepsilon_{n}\left\|v-u_{n}\right\|_{F} \\
& \quad \geqslant-c \varepsilon_{n}\left\|v-u_{n}\right\|_{W_{0}^{1, p}(\Omega)}, \quad \forall v \in F, c=\mathrm{const}>0
\end{aligned}
$$

because the norms $\|\cdot\|_{F}$ and $\|\cdot\|_{W_{0}^{1, p}(\Omega)}$ are equivalent in F (F is finite-dimensional). Since $\operatorname{Lin}\left(\theta, u_{n}\right) \subset F$, the hypotheses of Lemma 2.1 are verified. Consequently $\left\{u_{n}\right\}$ is bounded in $W_{0}^{1, p}(\Omega)$ which means that

$$
\begin{equation*}
\left\|u_{F}\right\|_{W_{0}^{1, p}(\Omega)} \leqslant M_{F} \tag{3.10}
\end{equation*}
$$

for some $M_{F}>0$.
Following the lines of the proof of Lemma 2.2 (with $W_{0}^{1, p}(\Omega)$ replaced by F) we conclude the existence of positive constants $\rho_{F}>0$ and $\eta_{F}>0$ such that

$$
\begin{equation*}
\mathcal{R}_{F}(v) \geqslant \eta_{F}, \quad \forall v \in\left\{w \in F:\|w\|_{F}=\rho_{F}\right\} . \tag{3.11}
\end{equation*}
$$

By Lemma 2.3 we know that $\mathcal{R}(t e) \leqslant 0$ for any $t \geqslant 1$, therefore $\rho_{F}<\|e\|_{F}$. Thus taking into account that $\mathcal{R}_{F}(0) \leqslant 0$ and $\mathcal{R}_{F}(e) \leqslant 0$ we are allowed to apply the mountain-pass theorem and deduce the existence of a critical point $u_{F} \in F$ of \mathcal{R}_{F}. This leads to the finite-dimensional hemivariational inequality (3.5) (cf. [13]).

Let us recall that the critical value $\mathcal{R}_{F}\left(u_{F}\right)$ is characterized by (cf. [13])

$$
\begin{equation*}
\mathcal{R}_{F}\left(u_{F}\right)=\inf _{\gamma \in C_{F}} \max _{t \in[0,1]} \mathcal{R}_{F}(\gamma(t)), \tag{3.12}
\end{equation*}
$$

where

$$
C_{F}=\{\gamma \in C([0,1], F): \gamma(0)=0, \gamma(1)=e\}
$$

is the family of all continuous curves in F joining points 0 and e in F, i.e., $\gamma(0)=0$ and $\gamma(1)=e, \gamma(t) \subset F$. Further, from Lemma 2.2 it follows that for a certain positive $\rho>0$ one can find $\eta>0$ with

$$
\begin{equation*}
\mathcal{R}(v) \geqslant \eta, \quad \forall v \in S_{\rho}:=\left\{v \in W_{0}^{1, p}(\Omega):\|v\|_{W_{0}^{1, p}(\Omega)}=\rho\right\} \tag{3.13}
\end{equation*}
$$

while Lemma 2.3 ensures the existence of $e \in W_{0}^{1, p}(\Omega), e \neq 0$, such that

$$
\begin{equation*}
\mathcal{R}(t e) \leqslant 0, \quad \forall t \geqslant 1 \tag{3.14}
\end{equation*}
$$

Therefore, for any $F \in \Lambda$, if $\gamma \in C_{F}([0,1] ; F)$ then γ meets points of S_{ρ} which means that

$$
\begin{equation*}
\max _{t \in[0,1]} \mathcal{R}_{F}(\gamma(t)) \geqslant \eta \tag{3.15}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\eta \leqslant \mathcal{R}\left(u_{F}\right)=\inf _{\gamma \in C_{F}} \max _{t \in[0,1]} \mathcal{R}_{F}(\gamma(t)) \leqslant \max _{t \in[0,1]} \mathcal{R}(t e), \quad \forall F \in \Lambda, \tag{3.16}
\end{equation*}
$$

and (3.7) results.
Now we are ready to show that $M_{F}>0$ in (3.10) is independent of $F \in \Lambda$. For this purpose suppose that a sequence $\left\{u_{F_{n}}\right\}_{F_{n} \in \Lambda}$ of solutions of $\left(P_{F_{n}}\right)$ has the property that
$\left\|u_{F_{n}}\right\|_{W_{0}^{1, p}(\Omega)} \rightarrow \infty$. Taking into account (3.5) and (3.16) it is easy to check that the hypotheses (2.3) and (2.2) of Lemma 2.1 hold (with F replaced by F_{n} and $\varepsilon_{n}=0$). Following the lines of the proof of Lemma 2.1 we arrive at the contradiction which establishes the assertion. The proof of Proposition 3.1 is complete.

For the restriction of J to $F, J_{F}:=\left.J\right|_{F}: F \rightarrow \mathbb{R}$, we have $\partial J_{F}\left(u_{F}\right) \subset \bar{i}_{F}^{\star} \partial J\left(u_{F}\right)$. Therefore Proposition 3.1 can be reformulated as follows.

Corollary 3.1. Assume the hypotheses (H0)-(H5). Then for each $F \in \Lambda$ there exist $u_{F} \in F$ and $\chi_{F} \in L^{1}(\Omega)$ such that

$$
\begin{align*}
& \int_{\Omega}\left|D u_{F}\right|^{p-2}\left\langle D u_{F}, D v-D u_{F}\right\rangle_{\mathbb{R}^{N}} d \Omega-\lambda_{1} \int_{\Omega}\left|u_{F}\right|^{p-2} u_{F}\left(v-u_{F}\right) d \Omega \\
& \quad+\int_{\Omega} \chi_{F}\left(v-u_{F}\right) d \Omega=0, \quad \forall v \in F, \text { and } \chi_{F} \in \partial j\left(u_{F}\right) \text { a.e. in } \Omega \tag{3.17}
\end{align*}
$$

According to the results obtained we know that to any $F \in \Lambda$ a pair $\left(u_{F}, \chi_{F}\right) \in$ $F \times L^{1}(\Omega)$ can be assigned for which (3.17) holds. Moreover, the family $\left\{u_{F}\right\}_{F \in \Lambda}$ is uniformly bounded in $W_{0}^{1, p}(\Omega)$ ((3.6) holds). The question arises concerning the behavior of $\left\{\chi_{F}\right\}_{F \in \Lambda}$.

Proposition 3.2. Assume that $\left(u_{F}, \chi_{F}\right) \in F \times L^{1}(\Omega)$ satisfies (3.17). Then the set $\left\{\chi_{F}\right\}_{F \in \Lambda}$ is weakly precompact in $L^{1}(\Omega)$.

Proof. Since Ω is bounded, according to the Dunford-Pettis theorem (see, e.g., [6, p. 239]) it suffices to show that for each $\varepsilon>0$ a number $\delta>0$ can be determined such that for any $\omega \subset \Omega$ with $|\omega|<\delta$,

$$
\begin{equation*}
\int_{\omega}\left|\chi_{F}\right| d x<\varepsilon, \quad \forall F \in \Lambda . \tag{3.18}
\end{equation*}
$$

Choose $\bar{q} \in\left(q, p^{\star}\right)$. Then the injection $W_{0}^{1, p}(\Omega) \subset L^{\bar{q}}(\Omega)$ is compact. Further, from (H3) it follows that there exists a function $\alpha: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$such that (cf. Remark 5.6 [16, p. 156] and Lemma 1 [12, p. 95])

$$
\begin{equation*}
j^{0}(x, \xi ; \eta-\xi) \leqslant \alpha(r)\left(1+|\xi|^{q}\right), \quad \forall \xi, \eta \in \mathbb{R},|\eta| \leqslant r, r \geqslant 0 \tag{3.19}
\end{equation*}
$$

Fix $r>0$ and let $\eta \in \mathbb{R}$ be such that $|\eta| \leqslant r$. Then, by (3.17), $\chi_{F}\left(\eta-u_{F}\right) \leqslant j^{0}\left(x, u_{F}\right.$; $\eta-u_{F}$), from which we get

$$
\begin{equation*}
\chi_{F} \eta \leqslant \chi_{F} u_{F}+\alpha(r)\left(1+\left|u_{F}\right|^{q}\right) \quad \text { for a.e. } x \in \Omega \text {. } \tag{3.20}
\end{equation*}
$$

Let us set $\eta \equiv r \operatorname{sgn} \chi_{F}(x)$ where $\operatorname{sgn} y=1$ if $y>0, \operatorname{sgn} y=0$ if $y=0, \operatorname{sgn} y=-1$ if $y<0$. One obtains that $|\eta| \leqslant r$ and $\chi_{F}(x) \eta=r\left|\chi_{F}(x)\right|$ for almost all $x \in \Omega$. Therefore from (3.20) it results

$$
r\left|\chi_{F}\right| \leqslant \chi_{F} u_{F}+\alpha(r)\left(1+\left|u_{F}\right|^{q}\right) .
$$

Integrating this inequality over $\omega \subset \Omega$ yields

$$
\begin{equation*}
\int_{\omega}\left|\chi_{F}\right| d x \leqslant \frac{1}{r} \int_{\omega} \chi_{F} u_{F} d x+\frac{1}{r} \alpha(r)|\omega|+\frac{1}{r} \alpha(r)|\omega|^{(\bar{q}-q) / \bar{q}}\left\|u_{F}\right\|_{L^{\bar{q}}(\Omega)}^{q} \tag{3.21}
\end{equation*}
$$

Consequently, from (3.6) and (3.21) it follows that

$$
\begin{equation*}
\int_{\omega}\left|\chi_{F}\right| d x \leqslant \frac{1}{r} \int_{\omega} \chi_{F} u_{F} d x+\frac{1}{r} \alpha(r)|\omega|+\frac{1}{r} \alpha(r)|\omega|^{(\bar{q}-q) / \bar{q}} \gamma^{q} M^{q} \tag{3.22}
\end{equation*}
$$

where $\gamma>0$ is a constant satisfying $\|\cdot\|_{L^{\bar{q}}(\Omega)} \leqslant \gamma\|\cdot\|_{H_{0}^{1}(\Omega)}$ (which holds since $\hat{q}<p^{\star}$).
We claim

$$
\begin{equation*}
\int_{\omega} \chi_{F} u_{F} d x \leqslant C \tag{3.23}
\end{equation*}
$$

for some positive constant C not depending on $\omega \subset \Omega$ and $F \in \Lambda$. Indeed, from (3.19) we derive that

$$
\chi_{F} u_{F}+\alpha(0)\left(\left|u_{F}\right|^{q}+1\right) \geqslant 0 \quad \text { for a.e. in } \Omega .
$$

Thus it follows

$$
\begin{aligned}
\int_{\omega} \chi_{F} u_{F} d x & \leqslant \int_{\omega}\left(\chi_{F} u_{F}+\alpha(0)\left(\left|u_{F}\right|^{q}+1\right)\right) d x \\
& \leqslant \int_{\Omega}\left(\chi_{F} u_{F}+\alpha(0)\left(\left|u_{F}\right|^{q}+1\right)\right) d x \\
& \leqslant \int_{\Omega} \chi_{F} u_{F} d x+\bar{k}_{1}\left(\left\|u_{F}\right\|_{H_{0}^{1}(\Omega)}^{q}+|\Omega|\right)
\end{aligned}
$$

where $\bar{k}_{1}>0$ is a constant. By (3.6) and (3.17) (with $v=0$) it turns out that

$$
\int_{\Omega} \chi_{F} u_{F} d x=-\int_{\Omega}\left|D u_{F}\right|^{p} d x+\lambda_{1} \int_{\Omega}\left|u_{F}\right|^{p} d x \leqslant 0
$$

The estimates above imply (3.23).
Further, (3.22) and (3.23) entail

$$
\begin{equation*}
\int_{\omega}\left|\chi_{F}\right| d x \leqslant \frac{1}{r} C+\frac{1}{r} \alpha(r)|\omega|+\frac{1}{r} \alpha(r)|\omega|^{(\bar{q}-q) / \bar{q}} \gamma^{q} M^{q}, \quad \forall r>0 . \tag{3.24}
\end{equation*}
$$

Corresponding to $\varepsilon>0$, fix $r>0$ with

$$
\begin{equation*}
\frac{1}{r} C<\frac{\varepsilon}{2} \tag{3.25}
\end{equation*}
$$

and then take $\delta>0$ small enough to have

$$
\begin{equation*}
\frac{1}{r} \alpha(r)|\omega|+\frac{1}{r} \alpha(r)|\omega|^{(\bar{q}-q) / \bar{q}} \gamma^{q} M^{q}<\frac{\varepsilon}{2} \tag{3.26}
\end{equation*}
$$

provided that $|\omega|<\delta$. Using this together with (3.24) and (3.25) it follows that (3.18) is justified whenever $|\omega|<\delta$. This completes the proof.

4. Main result

To formulate the main result we shall need the following hypothesis:
(H6) For any sequence $\left\{v_{k}\right\} \subset L^{\infty}(\Omega), v_{k} \rightarrow 0$ strongly in $L^{p}(\Omega)$, if

$$
\int_{\Omega} \min \left\{\psi(x) v_{k}(x): \psi(x) \in \partial j\left(x, v_{k}(x)\right)\right\} d \Omega \leqslant 0
$$

then

$$
\limsup _{k \rightarrow \infty} \int_{\Omega} j\left(x, v_{k}(x)\right) d \Omega \leqslant 0
$$

Theorem 4.1. Assume the hypotheses (H0)-(H6). Then there exists $u \in W_{0}^{1, p}(\Omega)$ with $u \neq 0$ and $j(u) \in L^{1}(\Omega)$, such as to satisfy the hemivariational inequality

$$
\begin{align*}
& \int_{\Omega}|D u|^{p-2}\langle D u, D v-D u\rangle_{\mathbb{R}^{N}} d \Omega-\lambda_{1} \int_{\Omega}|u|^{p-2} u(v-u) d \Omega \\
& \quad+\int_{\Omega} j^{0}(u ; v-u) d \Omega \geqslant 0, \quad \forall v \in W_{0}^{1, p}(\Omega) \tag{4.1}
\end{align*}
$$

Moreover, there exists $\chi \in L^{1}(\Omega)$ with the property that

$$
\begin{align*}
& \int_{\Omega}|D u|^{p-2}\langle D u, D v-D u\rangle_{\mathbb{R}^{N}} d \Omega-\lambda_{1} \int_{\Omega}|u|^{p-2} u(v-u) d \Omega \\
& \quad+\int_{\Omega} \chi(v-u) d \Omega=0, \quad \forall v \in W_{0}^{1, p}(\Omega) \cap L^{\infty}(\Omega), \tag{4.2}\\
& \chi u \in L^{1}(\Omega) \quad \text { and } \quad \chi \in \partial j(u) \quad \text { a.e. in } \Omega . \tag{4.3}
\end{align*}
$$

Proof. The proof is carried out in a sequence of steps.

Step 1. For every $F \in \Lambda$ we introduce

$$
U_{F}=\left\{u_{F} \in W_{0}^{1, p}(\Omega): \text { for some } \chi_{F} \in L^{1}\left(\Omega ; \mathbb{R}^{N}\right),\left(u_{F}, \chi_{F}\right) \text { is a solution of }\left(P_{F}\right)\right\}
$$

and

$$
W_{F}=\bigcup_{\substack{F^{\prime} \in \Lambda \\ F^{\prime} \supset F}} U_{F^{\prime}}
$$

By Proposition 3.1, W_{F} is nonempty (even U_{F} is nonempty) and contained in the ball $B_{M}=\left\{v \in W_{0}^{1, p}(\Omega):\|v\|_{W_{0}^{1, p}(\Omega)} \leqslant M\right\}$. We denote by weakcl $\left(W_{F}\right)$ the closure of W_{F} in the weak topology of $W_{0}^{1, p}(\Omega)$. Proposition 3.1 ensures that weakcl $\left(W_{F}\right)$ is weakly compact in $W_{0}^{1, p}(\Omega)$. We claim that the family $\left\{\operatorname{weakcl}\left(W_{F}\right)\right\}_{F \in \Lambda}$ has the finite intersection property. Indeed, if $F_{1}, \ldots, F_{k} \in \Lambda$ then $W_{F_{1}} \cap \cdots \cap W_{F_{k}} \supset W_{F}$, with $F=F_{1}+\cdots+F_{k}$ and the assertion follows. Thus we are allowed to conclude that there exists an element $u \in W_{0}^{1, p}(\Omega)$ with

$$
u \in \bigcap_{F \in \Lambda} \operatorname{weakcl}\left(W_{F}\right)
$$

Let us choose $G \in \Lambda$ arbitrarily. Since $W_{0}^{1, p}(\Omega)$ is reflexive, one can extract an increasing sequence of subspaces $\left\{G_{n}\right\}$, each containing G, and for each n an element $u_{n} \in U_{G_{n}}$ such that $u_{n} \rightarrow u$ weakly in $W_{0}^{1, p}(\Omega)$ as $n \rightarrow \infty$ (Proposition 11 [2, p. 274]). Let us denote by $\left\{\chi_{n}\right\} \subset L^{1}(\Omega)$ the corresponding sequence with the property that for each n a pair $\left(u_{n}, \chi_{n}\right)$ is a solution of $\left(P_{G_{n}}\right)$. By Proposition 3.2 we can suppose without loss of generality that $\chi_{n} \rightarrow \chi^{G}$ weakly in $L^{1}(\Omega)$ for some $\chi^{G} \in L^{1}(\Omega)$. Thus we have asserted that

$$
\begin{align*}
& u_{n} \rightarrow u \quad \text { weakly in } W_{0}^{1, p}(\Omega) \tag{4.4}\\
& \chi_{n} \rightarrow \chi^{G} \quad \text { weakly in } L^{1}(\Omega) \tag{4.5}
\end{align*}
$$

and that (3.17) with F replaced by G_{n} reads

$$
\begin{equation*}
\left\langle A u_{n}, v-u_{n}\right\rangle_{W_{0}^{1, p}(\Omega)}+\int_{\Omega} \chi_{n}\left(v-u_{n}\right) d \Omega=0, \quad \forall v \in G_{n}, \tag{4.6}
\end{equation*}
$$

where $A: W_{0}^{1, p}(\Omega) \rightarrow W^{-1, p^{\prime}}(\Omega)$ is defined by (3.4).
Step 2. Now we prove that $\chi^{G} \in \partial j(u)$ a.e. in Ω. Since $W_{0}^{1, p}(\Omega)$ is compactly embedded into $L^{p}(\Omega)$, due to (3.6) one may suppose that

$$
\begin{equation*}
u_{n} \rightarrow u \quad \text { strongly in } L^{p}(\Omega) \tag{4.7}
\end{equation*}
$$

This implies that for a subsequence of $\left\{u_{n}\right\}$ (again denoted by the same symbol) one gets $u_{n} \rightarrow u$ a.e. in Ω. Thus Egoroff's theorem can be applied from which it follows that for any $\varepsilon>0$ a subset $\omega \subset \Omega$ with $|\omega|<\varepsilon$ can be determined such that $u_{n} \rightarrow u$ uniformly in $\Omega \backslash \omega$ with $u \in L^{\infty}(\Omega \backslash \omega)$. Let $v \in L^{\infty}(\Omega \backslash \omega)$ be an arbitrary function. From the estimate

$$
\int_{\Omega \backslash \omega} \chi_{n} v d \Omega \leqslant \int_{\Omega \backslash \omega} j^{0}\left(u_{n} ; v\right) d \Omega
$$

combined with the weak convergence in $L^{1}(\Omega)$ of χ_{n} to χ^{G}, (4.7) and with the upper semicontinuity of

$$
L^{\infty}(\Omega \backslash \omega) \ni u_{n} \mapsto \int_{\Omega \backslash \omega} j^{0}\left(u_{n} ; v\right) d \Omega
$$

it follows

$$
\int_{\Omega \backslash \omega} \chi^{G} v d \Omega \leqslant \int_{\Omega \backslash \omega} j^{0}(u ; v) d \Omega, \quad \forall v \in L^{\infty}(\Omega \backslash \omega) .
$$

But the last inequality amounts to saying that $\chi^{G} \in \partial j(u)$ a.e. in $\Omega \backslash \omega$. Since $|\omega|<\varepsilon$ and ε was chosen arbitrarily,

$$
\begin{equation*}
\chi^{G} \in \partial j(u) \quad \text { a.e. in } \Omega, \tag{4.8}
\end{equation*}
$$

as claimed.

Step 3. Now it will be shown that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \int_{\Omega} j^{0}\left(u_{n} ; v-u_{n}\right) d \Omega \leqslant \int_{\Omega} j^{0}(u ; v-u) d \Omega \tag{4.9}
\end{equation*}
$$

holds for any $v \in W_{0}^{1, p}(\Omega) \cap L^{\infty}(\Omega)$. It can be supposed that $u_{n} \rightarrow u$ a.e. in Ω, since $u_{n} \rightarrow u$ in $L^{q}(\Omega)$. Fix $v \in L^{\infty}(\Omega)$ arbitrarily. In view of $\chi_{n} \in \partial j\left(u_{n}\right)$ and (3.19) we get

$$
\begin{equation*}
j^{0}\left(u_{n} ; v-u_{n}\right) \leqslant \alpha\left(\|v\|_{L^{\infty}(\Omega)}\right)\left(1+\left|u_{n}\right|^{q}\right) . \tag{4.10}
\end{equation*}
$$

From Egoroff's theorem it follows that for any $\varepsilon>0$ a subset $\omega \subset \Omega$ with $|\omega|<\varepsilon$ can be determined such that $u_{n} \rightarrow u$ uniformly in $\Omega \backslash \omega$. One can also suppose that ω is small enough to fulfill $\int_{\omega} \alpha\left(\|v\|_{L^{\infty}(\Omega)}\right)\left(1+\left|u_{n}\right|^{q}\right) d \Omega \leqslant \varepsilon, n=1,2, \ldots$, and $\int_{\omega} \alpha\left(\|v\|_{L^{\infty}(\Omega)}\right)\left(1+|u|^{q}\right) d \Omega \leqslant \varepsilon$. Hence

$$
\int_{\Omega} j^{0}\left(u_{n} ; v-u_{n}\right) d \Omega \leqslant \int_{\Omega \backslash \omega} j^{0}\left(u_{n} ; v-u_{n}\right) d \Omega+\varepsilon
$$

which by Fatou's lemma and upper semicontinuity of $j^{0}(\cdot ; \cdot)$ yields

$$
\limsup _{n \rightarrow \infty} \int_{\Omega} j^{0}\left(u_{n} ; v-u_{n}\right) d \Omega \leqslant \int_{\Omega} j^{0}(u ; v-u) d \Omega+2 \varepsilon
$$

By arbitrariness of $\varepsilon>0$ one obtains (4.9), as required.
Step 4. Now we show that

$$
\begin{align*}
& \chi^{G} u \in L^{1}(\Omega), \tag{4.11}\\
& \liminf _{n \rightarrow \infty} \int_{\Omega} \chi_{n} u_{n} d \Omega \geqslant \int_{\Omega} \chi^{G} u d \Omega . \tag{4.12}
\end{align*}
$$

For this purpose let $\left\{\epsilon_{k}\right\} \subset L^{\infty}(\Omega)$ be such that [9]

$$
\begin{align*}
& \left\{\left(1-\epsilon_{k}\right) u\right\} \subset W_{0}^{1, p}(\Omega) \cap L^{\infty}(\Omega), \quad 0 \leqslant \epsilon_{k} \leqslant 1, \\
& \tilde{u}_{k}:=\left(1-\epsilon_{k}\right) u \rightarrow u \quad \text { strongly in } W_{0}^{1, p}(\Omega) \text { as } k \rightarrow \infty . \tag{4.13}
\end{align*}
$$

Without loss of generality it can be assumed that $\tilde{u}_{k} \rightarrow u$ a.e. in Ω. Since it is already known that $\chi^{G} \in \partial j(u)$, one can apply (H3) to obtain $\chi^{G}(-u) \leqslant j^{0}(u ;-u) \leqslant \kappa\left(1+|u|^{q}\right)$. Hence

$$
\begin{equation*}
\chi^{G} \tilde{u}_{k}=\left(1-\epsilon_{k}\right) \chi^{G} u \geqslant-\kappa\left(1+|u|^{q}\right) . \tag{4.14}
\end{equation*}
$$

This implies that the sequence $\left\{\chi^{G} \tilde{u}_{k}\right\}$ is bounded from below by integrable function and $\chi^{G} \tilde{u}_{k} \rightarrow \chi^{G} u$ a.e. in Ω. On the other hand, one gets

$$
\int_{\Omega} \chi_{n}\left(\tilde{u}_{k}-u_{n}\right) d \Omega \leqslant \int_{\Omega} j^{0}\left(u_{n} ; \tilde{u}_{k}-u_{n}\right) d \Omega
$$

Thus passing to the limit with $n \rightarrow \infty$ yields

$$
\int_{\Omega} \chi^{G} \tilde{u}_{k} d \Omega-\liminf _{n \rightarrow \infty} \int_{\Omega} \chi_{n} u_{n} d \Omega \leqslant \limsup _{n \rightarrow \infty} \int_{\Omega} j^{0}\left(u_{n} ; \tilde{u}_{k}-u_{n}\right) d \Omega,
$$

and due to (4.9) we are led to the estimate

$$
\begin{aligned}
\int_{\Omega} \chi^{G} \tilde{u}_{k} d \Omega & \leqslant \liminf _{n \rightarrow \infty} \int_{\Omega} \chi_{n} u_{n} d \Omega+\int_{\Omega} j^{0}\left(u ; \tilde{u}_{k}-u\right) d \Omega \\
& \leqslant \liminf _{n \rightarrow \infty} \int_{\Omega} \chi_{n} u_{n} d \Omega+\int_{\Omega} j^{0}\left(u ;-\epsilon_{k} u\right) d \Omega \\
& \leqslant \liminf _{n \rightarrow \infty} \int_{\Omega} \chi_{n} u_{n} d \Omega+\int_{\Omega} \epsilon_{k} \kappa\left(1+|u|^{q}\right) d \Omega \leqslant C, \quad C=\text { const. }
\end{aligned}
$$

Thus by Fatou's lemma we are allowed to conclude that $\chi^{G} u \in L^{1}(\Omega)$, i.e., (4.11) holds. Taking into account that $\epsilon_{k} \rightarrow 0$ a.e. in Ω as $k \rightarrow \infty$ (passing to a subsequence if necessary) we establish (4.12), as required.

Step 5. It will be shown that

$$
\begin{equation*}
\langle A u, v-u\rangle_{W_{0}^{1, p}(\Omega)}+\int_{\Omega} \chi^{G}(v-u) d \Omega=0, \quad \forall v \in \bigcup_{n=1}^{\infty} G_{n} \supset G, \chi^{G} \in \partial j(u) \tag{G}
\end{equation*}
$$

Since A is bounded and $\left\{u_{F}\right\}_{F \in \Lambda} \subset\left\{v \in W_{0}^{1, p}(\Omega):\|v\|_{W_{0}^{1, p}(\Omega)} \leqslant M\right\}$, there exists $K>0$ such that $\left\{A u_{F}\right\}_{F \in \Lambda} \subset\left\{l \in W^{-1, p^{\prime}}(\Omega):\|l\|_{W^{-1, p^{\prime}}(\Omega)} \leqslant K\right\}$. From (4.6) it follows that for any fixed $G \in \Lambda$ we get

$$
\begin{equation*}
\left|\int_{\Omega} \chi^{G} v d \Omega\right| \leqslant K\|v\|_{V}, \quad \forall v \in \bigcup_{n=1}^{\infty} G_{n}, \chi^{G} \in \partial j(u) \tag{4.15}
\end{equation*}
$$

because $\left\{G_{n}\right\}$ is an increasing sequence. Further, by making use of (4.11) and (4.12) we have $\chi^{G} u \in L^{1}(\Omega)$ and

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\langle A u_{n}, u_{n}-u\right\rangle_{W_{0}^{1, p}(\Omega)} \leqslant \int_{\Omega} \chi^{G}(v-u) d \Omega, \quad \forall v \in \bigcup_{n=1}^{\infty} G_{n} \tag{4.16}
\end{equation*}
$$

Since $u_{n} \in G_{n}$ and $u_{n} \rightarrow u$ weakly in $W_{0}^{1, p}(\Omega)$, the closure of $\bigcup_{n=1}^{\infty} G_{n}$ in the strong topology of $W_{0}^{1, p}(\Omega), \overline{\bigcup_{n=1}^{\infty} G_{n}}$, must contain u. Thus there exists a sequence $\left\{w_{i}\right\} \subset$ $\bigcup_{n=1}^{\infty} G_{n}$ converging strongly to u in $W_{0}^{1, p}(\Omega)$ as $i \rightarrow \infty$. We claim that for such a sequence,

$$
\begin{equation*}
\int_{\Omega} \chi^{G} w_{i} d \Omega \rightarrow \int_{\Omega} \chi^{G} u d \Omega \quad \text { as } i \rightarrow \infty . \tag{4.17}
\end{equation*}
$$

Indeed, let $\left\{\tilde{u}_{k}\right\}_{k=1}^{\infty}$ be given by (4.13). From (4.14) it follows

$$
\begin{equation*}
-\kappa\left(1+|u|^{q}\right) \leqslant \chi^{G} \tilde{u}_{k} \leqslant\left|\chi^{G} u\right|, \quad k=1,2, \ldots, \tag{4.18}
\end{equation*}
$$

with the bounds $-\kappa\left(1+|u|^{q}\right)$ and $\left|\chi^{G} u\right|$ being integrable in Ω. Thus there exists a constant $C>0$ such that

$$
\begin{equation*}
\left|\int_{\Omega} \chi^{G} \tilde{u}_{k} d \Omega\right| \leqslant C\left\|\tilde{u}_{k}\right\|_{W_{0}^{1, p}(\Omega)}, \quad k=1,2, \ldots \tag{4.19}
\end{equation*}
$$

Denote by \mathcal{A} a linear subspace spanned by $\left\{\tilde{u}_{k}\right\}_{k=1}^{\infty}$ and define a linear functional $\hat{l}_{\chi^{G}}$: $\bigcup_{n=1}^{\infty} G_{n}+\mathcal{A} \rightarrow \mathbb{R}$ by the formula

$$
\hat{l}_{\chi^{G}}(v):=\int_{\Omega} \chi^{G} v d \Omega, \quad v \in \bigcup_{n=1}^{\infty} G_{n}+\mathcal{A} .
$$

Taking into account (4.15) and (4.19), from the Hahn-Banach theorem it follows that $\hat{l}_{\chi^{G}}$ admits its linear continuous extension onto $W_{0}^{1, p}(\Omega), l_{\chi^{G}} \in W^{-1, p^{\prime}}(\Omega)$. By the dominated convergence,

$$
\int_{\Omega} \chi^{G} \tilde{u}_{k} d \Omega \rightarrow \int_{\Omega} \chi^{G} u d \Omega, \quad \text { as } k \rightarrow \infty,
$$

so we get $l_{\chi^{G}}(u)=\int_{\Omega} \chi^{G} u d \Omega$ which, in particular, implies (4.17), as claimed.
Taking into account (4.16) and (4.17) we conclude

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\langle A u_{n}, u_{n}-u\right\rangle_{W_{0}^{1, p}(\Omega)} \leqslant 0, \tag{4.20}
\end{equation*}
$$

which by the pseudomonotonicity of A implies

$$
\begin{align*}
& A u_{n} \rightarrow A u \quad \text { weakly in } W_{0}^{1, p}(\Omega), \tag{4.21}\\
& \left\langle A u_{n}, u_{n}\right\rangle_{W_{0}^{1, p}(\Omega)} \rightarrow\langle A u, u\rangle_{W_{0}^{1, p}(\Omega)} . \tag{4.22}
\end{align*}
$$

Hence from (4.6) we are led to (Q^{G}), as desired. Notice that (4.21) and (4.22) imply the strong convergence $u_{n} \rightarrow u$ in $W_{0}^{1, p}(\Omega)$.

Step 6. It remains to show that there exists $\chi \in \partial j(u)$ with the associated linear functional defined by

$$
\hat{l}_{\chi}(v):=\int_{\Omega} \chi v d \Omega, \quad \forall v \in W_{0}^{1, p}(\Omega) \cap L^{\infty}(\Omega)
$$

admitting a continuous extension $l_{\chi} \in W^{-1, p^{\prime}}(\Omega)$ such that

$$
\begin{equation*}
A u+l_{\chi}=0, \quad\left\langle l_{\chi}, u\right\rangle_{W_{0}^{1, p}(\Omega)}=\int_{\Omega} \chi u d \Omega \tag{4.23}
\end{equation*}
$$

For every $G \in \Lambda$ let us introduce

$$
V^{(G)}=\left\{\chi^{G} \in L^{\infty}(\Omega):\left(Q^{G}\right) \text { holds }\right\}
$$

and

$$
Z^{(G)}=\bigcup_{\substack{G^{\prime} \in \Lambda \\ G^{\prime} \supset G}} V^{\left(G^{\prime}\right)}
$$

As in the proof of Proposition 3.2 we show that the family $\left\{\chi^{G}\right\}_{G \in \Lambda}$ is weakly precompact in $L^{1}(\Omega)$. Denoting by weakcl $\left(Z^{(G)}\right)$ the closure of $Z^{(G)}$ in the weak topology of $L^{1}(\Omega)$ we prove analogously that the family $\left\{\text { weakcl }\left(Z^{(G)}\right)\right\}_{G \in \Lambda}$ has the finite intersection property. Thus there exists an element $\chi \in \partial j(u)$ such that for any $G \in \Lambda$ it holds

$$
\langle A u, v\rangle_{W_{0}^{1, p}(\Omega)}+\int_{\Omega} \chi v d \Omega=0, \quad \forall v \in G
$$

Since $G \in \Lambda$ has been chosen arbitrarily and Λ is dense in $W_{0}^{1, p}(\Omega)$, (4.23) results, as desired.

Step 7. It remains to show (4.1). From (4.2) we obtain easily its validity for any $v \in$ $W_{0}^{1, p}(\Omega) \cap L^{\infty}(\Omega)$.

Let us consider the case $j^{0}(u ; v-u) \in L^{1}(\Omega)$ with $v \in W_{0}^{1, p}(\Omega)$. There exists a sequence $\tilde{v}_{k}=\left(1-\epsilon_{k}\right) v$ such that $\left\{\tilde{v}_{k}\right\} \subset W_{0}^{1, p}(\Omega) \cap L^{\infty}(\Omega), \tilde{v}_{k} \rightarrow v$ strongly in $W_{0}^{1, p}(\Omega)$. Since, as already has been established,

$$
\left\langle A u, \tilde{v}_{k}-u\right\rangle_{W_{0}^{1, p}(\Omega)}+\int_{\Omega} j^{0}\left(u ; \tilde{v}_{k}-u\right) d \Omega \geqslant 0
$$

so in order to show (4.1) it remains to deduce that

$$
\limsup _{k \rightarrow \infty} \int_{\Omega} j^{0}\left(u ; \tilde{v}_{k}-u\right) d \Omega \leqslant \int_{\Omega} j^{0}(u ; v-u) d \Omega
$$

For this purpose let us observe that $\tilde{v}_{k}-u=\left(1-\epsilon_{k}\right)(v-u)+\epsilon_{k}(-u)$ which combined with the convexity of $j^{0}(u ; \cdot)$ yields the estimate

$$
\begin{aligned}
j^{0}\left(u ; \tilde{v}_{k}-u\right) & \leqslant\left(1-\epsilon_{k}\right) j^{0}(u ; v-u)+\epsilon_{k} j^{0}(u ;-u) \\
& \leqslant\left|j^{0}(u ; v-u)\right|+\kappa\left(1+|u|^{q}\right) .
\end{aligned}
$$

Thus Fatou's lemma implies the assertion.
Consider the case $j^{0}(u ; v-u) \notin L^{1}(\Omega)$. Recall that if $j^{0}(u ; v-u) \notin L^{1}(\Omega)$ then according to the convention that $+\infty-\infty=+\infty$ we have

$$
\begin{aligned}
& \int_{\Omega} j^{0}(u ; v-u) d \Omega \\
& \quad= \begin{cases}+\infty & \text { if } \int_{\Omega}\left[j^{0}(u ; v-u)\right]^{+} d \Omega=+\infty \\
-\infty & \text { if } \int_{\Omega}\left[j^{0}(u ; v-u)\right]^{+} d \Omega<+\infty \text { and } \int_{\Omega}\left[j^{0}(u ; v-u)\right]^{-} d \Omega=+\infty,\end{cases}
\end{aligned}
$$

where the following notation has been used: $r^{+}:=\max \{r, 0\}$ and $r^{-}:=\max \{-r, 0\}$ for any $r \in \mathbb{R}$.

Thus, if $\int_{\Omega} j^{0}(u ; v-u) d \Omega=+\infty$ then (4.1) holds immediately.
Now we show that the case $\int_{\Omega} j^{0}(u ; v-u) d \Omega=-\infty$ is not allowed for any $v \in$ $W_{0}^{1, p}(\Omega)$. Indeed, if we suppose that for some $v \in W_{0}^{1, p}(\Omega), \int_{\Omega} j^{0}(u ; v-u) d \Omega=-\infty$; then one can find a sequence $\tilde{v}_{k}=\left(1-\epsilon_{k}\right) v$ such that $\left\{\tilde{v}_{k}\right\} \subset W_{0}^{1, p}(\Omega) \cap L^{\infty}(\Omega), \tilde{v}_{k} \rightarrow v$ strongly in $W_{0}^{1, p}(\Omega)$. Since, as already has been established,

$$
\left\langle A u, \tilde{v}_{k}-u\right\rangle_{W_{0}^{1, p}(\Omega)}+\int_{\Omega} j^{0}\left(u ; \tilde{v}_{k}-u\right) d \Omega \geqslant 0
$$

we get

$$
\int_{\Omega} j^{0}\left(u ; \tilde{v}_{k}-u\right) d \Omega \geqslant\left\langle A u,-\tilde{v}_{k}+u\right\rangle_{W_{0}^{1, p}(\Omega)} \geqslant-C, \quad C=\text { const },
$$

and consequently

$$
\begin{equation*}
\int_{\Omega}\left[j^{0}\left(u ; \tilde{v}_{k}-u\right)\right]^{+} d \Omega \geqslant \int_{\Omega}\left[j^{0}\left(u ; \tilde{v}_{k}-u\right)\right]^{-} d \Omega-C \tag{4.24}
\end{equation*}
$$

By the hypothesis we have $\int_{\Omega}\left[j^{0}(u ; v-u)\right]^{-} d \Omega=+\infty$ and $\int_{\Omega}\left[j^{0}(u ; v-u)\right]^{+} d \Omega<$ $+\infty$. Since

$$
\begin{aligned}
j^{0}\left(u ; \tilde{v}_{k}-u\right) & \leqslant\left(1-\epsilon_{k}\right) j^{0}(u ; v-u)+\epsilon_{k} j^{0}(u ;-u) \\
& \leqslant\left(1-\epsilon_{k}\right) j^{0}(u ; v-u)+\kappa\left(1+|u|^{q}\right)
\end{aligned}
$$

so we obtain

$$
\begin{gathered}
\int_{\Omega}\left[j^{0}\left(u ; v_{k}-u\right)\right]^{+} d \Omega \leqslant \int_{\Omega}\left[j^{0}(u ; v-u)\right]^{+} d \Omega+\int_{\Omega} \kappa\left(1+|u|^{q}\right) d \Omega \\
\leqslant D, \quad D=\text { const },
\end{gathered}
$$

which combined with (4.24) yields

$$
\int_{\Omega}\left[j^{0}\left(u ; \tilde{v}_{k}-u\right)\right]^{-} d \Omega \leqslant C+D
$$

The application of Fatou's lemma concludes

$$
\int_{\Omega}\left[j^{0}(u ; v-u)\right]^{-} d \Omega \leqslant C+D
$$

which is a contradiction with the assumption that $\int_{\Omega} j^{0}(u ; v-u) d \Omega=-\infty$. This contradiction completes the proof of (4.1).

Step 8. In order to show that $j(u) \in L^{1}(\Omega)$ it is enough to use (2.14) and (3.7) to get

$$
\int_{\Omega} j\left(u_{n}\right) d \Omega \leqslant \gamma_{2}-\frac{1}{p}\left\|D u_{n}\right\|_{L^{p}\left(\Omega ; \mathbb{R}^{N}\right)}^{p}+\frac{\lambda_{1}}{p}\left\|u_{n}\right\|_{L^{p}(\Omega)}^{p} \leqslant \gamma_{2}
$$

and

$$
j\left(u_{n}\right) \geqslant-\kappa_{0}\left(1+\left|u_{n}\right|^{q}\right) .
$$

Since $j\left(u_{n}\right) \rightarrow j(u)$ a.e. in Ω as $n \rightarrow \infty$, we are allowed to apply Fatou's lemma which yields the assertion.

Step 9. The existence of a nontrivial solution $u \neq 0$ follows from (H6). Indeed, if we suppose that $u=0$ then we have $\left\{u_{n}\right\} \subset W_{0}^{1, p}(\Omega) \cap L^{\infty}(\Omega)$ and $u_{n} \rightarrow 0$ strongly in $W_{0}^{1, p}(\Omega)$. By making use of (4.6) with $v=2 u_{n}$ and the Rayleigh quotient characterization of λ_{1}, it follows

$$
\int_{\Omega} \min \left\{\psi u_{n}: \psi \in \partial j\left(u_{n}\right)\right\} d \Omega \leqslant \int_{\Omega} \chi_{n} u_{n} d \Omega \leqslant 0
$$

Hence, by (H6),

$$
\limsup _{n \rightarrow \infty} \int_{\Omega} j\left(u_{n}\right) d \Omega \leqslant 0
$$

and consequently

$$
\limsup _{n \rightarrow \infty} \mathcal{R}\left(u_{n}\right) \leqslant 0
$$

which contradicts to (3.7). This contradiction yields the assertion. The proof of Theorem 4.1 is complete.

From (4.2) and (4.3) we obtain the result.

Corollary 4.1. Assume the hypotheses (H0)-(H6). Then the problem: find $u \in W_{0}^{1, p}(\Omega)$ and $\chi \in L^{1}(\Omega)$ such that

$$
\begin{cases}\Delta_{p} u+\lambda_{1}|u|^{p-2} u=\chi & \text { in the distributional sense, } \tag{P}\\ \chi \in \partial j(u) & \text { a.e. in } \Omega, \\ \chi u \in L^{1}(\Omega), & \\ j(u) \in L^{1}(\Omega), & \\ u=0 & \text { on } \partial \Omega \text { (in the sense of traces) }\end{cases}
$$

has at least one nontrivial solution $(u \neq 0)$.
Remark 4.1. The energy functional \mathcal{R} is finite at a solution u of (P), i.e., $\mathcal{R}(u)=$ $\|D u\|_{L^{p}\left(\Omega ; \mathbb{R}^{N}\right)}^{p}-\lambda_{1}\|u\|_{L}^{p}(\Omega)^{p}+\int_{\Omega} j(u) d \Omega \in \mathbb{R}$.

Remark 4.2. In the case of the unilateral growth condition as formulated in (H3), the function $J(v)=\int_{\Omega} j(v) d \Omega, v \in W_{0}^{1, p}(\Omega)$, is not upper semicontinuous. Thus the problem concerning the existence of a nontrivial solution of (P) arises because we are not allowed to conclude by making use of the estimate (3.7) that $\mathcal{R}(u) \geqslant \eta_{1}>0$. To overcome this difficulty the hypothesis (H6) has been introduced.

Note that when the classical growth condition $|\partial j(\xi)| \leqslant c\left(1+|\xi|^{q-1}\right), \forall \xi \in \mathbb{R}$, holds then the upper semicontinuity of J is ensured.

References

[1] A. Anane, Étude des valeurs propres et de la résonance pour l'opérateur p-Laplacien, Ph.D. thesis, Université Libre de Bruxelles, Brussels, 1988.
[2] F.E. Browder, P. Hess, Nonlinear mappings of monotone type in Banach spaces, J. Funct. Anal. 11 (1972) 251-294.
[3] K.C. Chang, Variational methods for non-differentiable functionals and their applications to partial differential equations, J. Math. Anal. Appl. 80 (1981) 102-129.
[4] F.H. Clarke, Optimization and Nonsmooth Analysis, Wiley, 1983.
[5] D.G. Costa, J.V. Goncalves, Critical point theory for nondifferentiable functionals and applications, J. Math. Anal. Appl. 153 (1990) 470-485.
[6] I. Ekeland, R. Temam, Convex Analysis and Variational Problems, North-Holland, 1976.
[7] J. Fleckinger-Pellé, P. Takáč, An improved Poincaré inequality and the p-Laplacian at resonance, Adv. Differential Equations 7 (2002) 951-971.
[8] L. Gasiński, N.S. Papageorgiou, Nonlinear hemivariational inequalities at resonance, J. Math. Anal. Appl. 244 (2000) 200-213.
[9] L.I. Hedberg, Two approximation problems in function spaces, Ark. Mat. 16 (1978) 51-81.
[10] P. Lindqvist, On the equation $\operatorname{div}\left(|D x|^{p-2} D x\right)+\lambda|x|^{p-2} x=0$, Proc. Amer. Math. Soc. 109 (1990).
[11] D. Motreanu, Z. Naniewicz, A minimax approach to semicoercive hemivariational inequalities, Optimization, in press.
[12] D. Motreanu, Z. Naniewicz, Semilinear hemivariational inequalities with Dirichlet boundary condition, in: Y. Gao, R.W. Ogden (Eds.), Advances in Mechanics and Mathematics: AMMA 2002, Kluwer Academic, 2002, pp. 89-110.
[13] D. Motreanu, P.D. Panagiotopoulos, Minimax Theorems and Qualitative Properties of the Solutions of Hemivariational Inequalities, Kluwer Academic, 1999.
[14] Z. Naniewicz, Hemivariational inequalities with functions fulfilling directional growth condition, Appl. Anal. 55 (1994) 259-285.
[15] Z. Naniewicz, Hemivariational inequalities as necessary conditions for optimality for a class of nonsmooth nonconvex functionals, Nonlinear World 4 (1997) 117-133.
[16] Z. Naniewicz, P.D. Panagiotopoulos, Mathematical Theory of Hemivariational Inequalities and Applications, Marcel Dekker, 1995.
[17] P.D. Panagiotopoulos, Non-convex superpotentials in the sense of F.H. Clarke and applications, Mech. Res. Comm. 8 (1981) 335-340.
[18] P.D. Panagiotopoulos, Inequality Problems in Mechanics and Applications, Convex and Nonconvex Energy Functions, Birkhäuser, 1985.

[^0]: * Corresponding author.

 E-mail addresses: nick@aegean.gr (N. Halidias), naniewicz.z@acn.waw.pl (Z. Naniewicz).
 0022-247X/\$ - see front matter © 2003 Elsevier Inc. All rights reserved.
 doi:10.1016/j.jmaa.2003.08.044

