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1. Introduction

Let R be an algebra, σ1, . . . , σn commuting algebra automorphisms of R , t1, . . . , tn elements from
the center of R , and μi j an n × n matrix of invertible scalars. To these data one associates a twisted
generalized Weyl algebra Aμ(R, σ , t), an associative Zn-graded algebra (see Section 2.1 for definition).
These algebras were introduced by Mazorchuk and Turowska [18] and they are generalizations of
the much studied generalized Weyl algebras, defined independently by Bavula [3], Jordan [14], and
Rosenberg [21] (called there hyperbolic rings).

Simple weight modules over twisted generalized Weyl algebras have been studied in [18,17,10].
In [19] bounded and unbounded ∗-representations over twisted generalized Weyl algebras were
classified. Interesting examples of twisted generalized Weyl algebras were given in [17]. In [11]
new examples of twisted generalized Weyl algebras were constructed from symmetric Cartan ma-
trices.

In this paper we define a family of twisted generalized Weyl algebras, called multiparameter twisted
Weyl algebras. They are unital associative algebras generated by u±1

i , v±1
i , Xi , Yi (i = 1, . . . ,n) subject

to certain relations depending on some parameters (see Section 5.1 for details). This definition was
inspired by an unpublished note by Benkart [5] where multiparameter Weyl algebras were introduced.
These algebras are a particular case of the algebras of our class.

Multiparameter quantized Weyl algebras Aq̄,Λ
n were introduced in [16] as a generalization of the

quantized Weyl algebras obtained by Pusz and Woronowicz [20] in the context of quantum group
covariant differential calculus. They are examples of twisted generalized Weyl algebras. Contrary to
the usual Weyl algebras the algebra, Aq̄,Λ

n is in general not simple, even for generic parameters. Jor-
dan [15] found a certain natural simple localization of Aq̄,Λ

n .
The first main theorem of the paper parametrizes simple quotients of multiparameter twisted Weyl

algebras in terms of maximal ideals of certain Laurent polynomial rings. Jordan’s localization of Aq̄,Λ
n

is an example in this family, as well as Hayashi’s q-deformed Weyl algebras [13].

Theorem A. Let A = Ak
n(r, s,Λ) be a multiparameter twisted Weyl algebra.

(a) The assignment

n �→ A/〈n〉 (1.1)
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where 〈n〉 denotes the ideal in A generated by n, is a bijection between the set of maximal ideals in the
invariant subring RZ

n
and the set of simple quotients of A in which the generators Xi , Yi (i = 1, . . . ,n)

are regular.
(b) For any n ∈ Specm(RZ

n
), the quotient A/〈n〉 is isomorphic to the twisted generalized Weyl algebra

Aμ(R/Rn, σ̄ , t̄), where σ̄g(r + Rn) = σg(r) + Rn, ∀g ∈ Zn, r ∈ R and t̄i = ti + Rn, ∀i.

(c) A/〈n〉 is a domain for all n ∈ Specm(RZ
n
) if and only if Z2n/G is torsion-free, where G is the gradation

group of RZ
n
.

The second main theorem of the paper gives the explicit relation between four twisted generalized
Weyl algebras, namely the multiparameter quantized Weyl algebra Aq̄,Λ

n , Jordan’s localization Bq̄,Λ
n ,

a specific multiparameter twisted Weyl algebra Ak
n(r, s,Λ) that we define, and a certain quotient

̂Ak
n(r, s,Λ) of it which is simple and isomorphic to Bq̄,Λ

n .

Theorem B. We have a commutative diagram in the category of Zn-graded algebras:

Ak
n(r, s,Λ)

̂Ak
n(r, s,Λ)

	
Bq̄,Λ

n

Aq̄,Λ
n

We end the introduction with an overview of the content of this paper. In Sections 3 and 4, we
first consider certain families of twisted generalized Weyl algebras. Section 5 is devoted to the defi-
nition and structural results for multiparameter twisted Weyl algebras, with a proof of Theorem A in
Section 5.3. Examples and relations to existing algebras are given in Sections 6 and 7, where Theo-
rem B is proved. Representations of multiparameter twisted Weyl algebras are studied in Sections 8
and 9.

1.1. Notation and conventions

By “ring” (“algebra”) we mean unital associative ring (algebra). All ring and algebra morphisms are
required to be unital. By “ideal” we mean two-sided ideal unless otherwise stated. An element x of
a ring R is said to be regular in R if for all nonzero y ∈ R we have xy 
= 0 and yx 
= 0. The set of
invertible elements in a ring R will be denoted by R× .

Let R be a ring. Recall that an R-ring is a ring A together with a ring morphism R → A. Let X be
a set. Let R X R be the free R-bimodule on X . The free R-ring F R(X) on X is defined as the tensor
algebra of the free R-bimodule on X : F R(X) = ⊕

n�0(R X R)⊗R n where (R X R)⊗R 0 = R by convention
and the ring morphism R → F R(X) is the inclusion into the degree zero component.

2. Twisted generalized Weyl algebras

Throughout this section we fix a commutative ring k.

2.1. Definition

We recall the definition of twisted generalized Weyl algebras [18,17].
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Definition 2.1 (TGW datum). Let n a positive integer. A twisted generalized Weyl datum (over k of degree n)
is a triple (R, σ , t) where

• R is a unital associative k-algebra,
• σ is a group homomorphism σ : Zn → Autk(R), g �→ σg ,
• t is a function t : {1, . . . ,n} → Z(R), i �→ ti .

A morphism between TGW data over k of degree n,

ϕ : (R,σ , t) → (
R ′,σ ′, t′)

is a k-algebra morphism ϕ : R → R ′ such that ϕσi = σ ′
i ϕ and ϕ(ti) = t′

i for all i ∈ {1, . . . ,n}. We let
TGWn(k) denote the category whose objects are the TGW data over k of degree n and morphisms are
as above.

For i ∈ {1, . . . ,n} we put σi = σei , where {ei}n
i=1 is the standard Z-basis for Zn . A parameter matrix

(over k× of size n) is an n × n matrix μ = (μi j)i 
= j without diagonal where μi j ∈ k× for all i 
= j. The
set of all parameter matrices over k× of size n will be denoted by PMn(k).

Definition 2.2 (TGW construction). Let n ∈ Z>0, (R, σ , t) be an object in TGWn(k), and μ ∈ PMn(k).
The twisted generalized Weyl construction with parameter matrix μ associated to the TGW datum (R, σ , t)
is denoted by Cμ(R, σ , t) and is defined as the free R-ring on the set {xi, yi | i = 1, . . . ,n} modulo
two-sided ideal generated by the following set of elements:

xir − σi(r)xi, yir − σ−1
i (r)yi, ∀r ∈ R, i ∈ {1, . . . ,n}, (2.1a)

yixi − ti, xi yi − σi(ti), ∀i ∈ {1, . . . ,n}, (2.1b)

xi y j − μi j y jxi, ∀i, j ∈ {1, . . . ,n}, i 
= j. (2.1c)

The images in Cμ(R, σ , t) of the elements xi , yi will be denoted by X̂i , Ŷ i respectively. The ring
Cμ(R, σ , t) has a Zn-gradation given by requiring deg X̂i = ei , deg Ŷ i = −ei , deg r = 0, ∀r ∈ R . Let
Iμ(R, σ , t) ⊆ Cμ(R, σ , t) be the sum of all graded ideals J ⊆ Cμ(R, σ , t) having zero intersection
with the degree zero component, i.e. such that Cμ(R, σ , t)0 ∩ J = {0}. It is easy to see that Iμ(R, σ , t)
is the unique maximal graded ideal having zero intersection with the degree zero component.

Definition 2.3 (TGW algebra). The twisted generalized Weyl algebra with parameter matrix μ associated
to the TGW datum (R, σ , t) is denoted Aμ(R, σ , t) and is defined as the quotient Aμ(R, σ , t) :=
Cμ(R, σ , t)/Iμ(R, σ , t).

Since Iμ(R, σ , t) is graded, Aμ(R, σ , t) inherits a Zn-gradation from Cμ(R, σ , t). The images in
Aμ(R, σ , t) of the elements X̂i , Ŷ i will be denoted by Xi , Yi . By a monic monomial in a TGW con-
struction Cμ(R, σ , t) (respectively TGW algebra Aμ(R, σ , t)) we will mean a product of elements from
{ X̂i, Ŷ i | i = 1, . . . ,n} (respectively {Xi, Yi | i = 1, . . . ,n}).

The following statements are easy to check.

Lemma 2.4.

(a) Aμ(R, σ , t) (respectively Cμ(R, σ , t)) is generated as a left and as a right R-module by the monic mono-
mials in Xi , Yi (i = 1, . . . ,n) (respectively X̂i , Ŷ i (i = 1, . . . ,n)).

(b) The degree zero component of Aμ(R, σ , t) is equal to the image of R under the natural map ρ : R →
Aμ(R, σ , t).

(c) Any nonzero graded ideal of Aμ(R, σ , t) has nonzero intersection with the degree zero component.
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Definition 2.5 (μ-Consistency). Let (R, σ , t) be a TGW datum over k of degree n and μ be a
parameter matrix over k× of size n. We say that (R, σ , t) is μ-consistent if the canonical map
ρ : R → Aμ(R, σ , t) is injective.

Since Iμ(R, σ , t) has zero intersection with the zero-component, (R, σ , t) is μ-consistent iff the
canonical map R → Cμ(R, σ , t) is injective. Even in the cases when ρ is not injective, we will often
view Aμ(R, σ , t) as a left R-module and write for example r Xi instead of ρ(r)Xi .

Definition 2.6 (Regularity). A TGW datum (R, σ , t) is called regular if ti is regular in R for all i.

The following result was proved in [9, Theorem 6.2].

Theorem 2.7. Let k be a commutative unital ring, R be an associative k-algebra, n a positive integer,
t = (t1, . . . , tn) be an n-tuple of regular central elements of R, σ : Zn → Autk(R) a group homomorphism,
μi j (i, j = 1, . . . ,n, i 
= j) invertible elements from k, and Aμ(R, σ , t) the corresponding twisted general-
ized Weyl algebra, equipped with the canonical homomorphism of R-rings ρ : R → Aμ(R, σ , t). Then the
following two statements are equivalent:

(a) ρ is injective,
(b) the following two sets of relations are satisfied in R:

σiσ j(tit j) = μi jμ jiσi(ti)σ j(t j), ∀i, j = 1, . . . ,n, i 
= j, (2.2)

t jσiσk(t j) = σi(t j)σk(t j), ∀i, j,k = 1, . . . ,n, i 
= j 
= k 
= i. (2.3)

In particular, if (2.2) and (2.3) are satisfied, then Aμ(R, σ , t) is nontrivial iff R is nontrivial. Moreover, neither
of the two conditions (2.2) and (2.3) imply the other.

Lemma 2.8. If ti ∈ R× for all i, then the canonical projection Cμ(R, σ , t) → Aμ(R, σ , t) is an isomorphism.

Proof. The algebra Cμ(R, σ , t) is a Zn-crossed product algebra over its degree zero subalgebra, since
each homogenous component contains an invertible element. Indeed since ti ∈ R× , each Xi is in-
vertible and thus X g1

1 · · · X gn
n has degree g and is invertible. Therefore any nonzero graded ideal in

Cμ(R, σ , t) has nonzero intersection with the degree zero component, a property which holds for any
strongly graded ring, in particular for crossed product algebras. Thus Iμ(R, σ , t) = 0, which proves
the claim. �
2.2. TGW algebras which are domains

The following condition for a TGW algebra to be a domain will be used.

Proposition 2.9. Let A = Aμ(R, σ , t) be a twisted generalized Weyl algebra where (R, σ , t) is μ-consistent.
Then A is a domain if and only if R is a domain.

Proof. Clearly R must be a domain if A is a domain. For the converse, assume R is a domain and
suppose a,b ∈ A are nonzero but ab = 0. Let ag and bh be the leading terms in a and b respectively,
with respect to some order (we use here that the group Zn is orderable). Then agbh = 0. As in the
proof of [11, Proposition 3.1] this forces ag = 0 or bh = 0 which is a contradiction. �
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3. Finitistic TGW algebras

Throughout the rest of the paper we assume that k is a field.
In [11] the following notion (there called “locally finite” TGW algebra) was defined.

Definition 3.1. A TGW algebra A = Aμ(R, σ , t) is called k-finitistic if dimk V ij < ∞ for all i, j ∈
{1, . . . ,n}, where

V ij = Spank

{
σ k

i (t j)
∣∣ k ∈ Z

}
. (3.1)

For each i, j, we denote by pij ∈ k[x] be the minimal polynomial for σi acting on the finite-
dimensional space V ij . The following result was proved in [11] (for the case μi j = μ ji and R a
commutative domain, but these restrictions are unnecessary).

Theorem 3.2. Let A = Aμ(R, σ , t) be a k-finitistic TGW algebra where (R, σ , t) is μ-consistent.

(a) Define the matrix C A = (aij) with integer entries as follows

aij =
{

2, i = j,

1 − deg pij, i 
= j.
(3.2)

Then C A is a generalized Cartan matrix.
(b) Assume ti is regular in R for all i. Writing

pij(x) = xmij + λ
(1)
i j xmij−1 + · · · + λ

(mij)

i j ,

where all λ
(k)
i j ∈ k, the following identities hold in A, for any i 
= j:

X
mij

i X j + λ
(1)
i j μ−1

i j X
mij−1
i X j Xi + · · · + λ

(mij)

i j μ
−mij

i j X j X
mij

i = 0 (3.3)

and

Y j Y
mij

i + λ
(1)
i j μ−1

ji Y i Y j Y
mij−1
i + · · · + λ

(mij)

i j μ
−mij

ji Y
mij

i Y j = 0. (3.4)

Moreover, for any i 
= j and m < mij , the sets {Xm−k
i X j Xk

i }m
k=0 and {Y m−k

i Y j Y k
i }m

k=0 are linearly indepen-
dent in A over k.

This gives an interpretation of the minimal polynomials pij for i 
= j in terms of identities in the
algebra A. If C A is of type Z (for example An , Bn , Cn , Dn , E6, E7, E8 etc.) we say that A is of Lie
type Z .

Here we note that the polynomials pii also give rise to identities in A.

Theorem 3.3. Let A = Aμ(R, σ , t) be a k-finitistic TGW algebra, where (R, σ , t) is regular and μ-consistent.
Writing

pii(x) = xmii + λ
(1)
ii xmii−1 + · · · + λ

(mii)

ii ,

where all λ
(k)
ii ∈ k, the following identities hold in A, for any i:
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Xmii
i Yi + λ

(1)
ii Xmii−1

i Y i Xi + · · · + λ
(mii)

ii Y i Xmii
i = 0 (3.5)

and

Xi Y
mii
i + λ

(1)
ii Y i Xi Y

mii−1
i + · · · + λ

(mii)

ii Y mii
i Xi = 0. (3.6)

Moreover, for any i and m < mii , the sets {Xm−k
i Yi Xk

i }m
k=0 and {Y m−k

i Xi Y k
i }m

k=0 are linearly independent in A
over k.

Proof. The proof is similar to the proof of Theorem 3.2. �
Example 3.4. Let R = k[t1, . . . , tn] be the polynomial algebra, σi(t j) = t j − δi j , μi j ∈ k\{0} such that
μi jμ ji = 1. Let A = Aμ(R, σ , t) be the associated TGW algebra. It is easy to see that it is k-finitistic.
For i = j, the minimal polynomials are pii(x) = (x − 1)2. For i 
= j we have pij(x) = x − 1. The ma-
trix C A , defined in (3.2), is the Cartan matrix of type (A1)

n = A1 × · · · × A1 (just a diagonal matrix
with 2 on the diagonal). Thus A is of Lie type (A1)

n . By (3.3) we have Xi X j = μ−1
i j X j Xi for i 
= j. If

all μi j = 1 then A is isomorphic to the nth Weyl algebra.

Example 3.5. The following TGW algebra was first mentioned as an example in [18], but a complete
presentation by generators and relations was only given in [11]. Let n = 2, R = k[H], σ1(H) = H + 1,
σ2(H) = H − 1, t1 = H , t2 = H + 1, μ12 = μ21 = 1 and let A = Aμ(R, σ , t) be the associated TGW
algebra. Clearly A is locally finite with V ij = CH ⊕ C1 for i, j = 1,2. Observing that σ2(t1) and t1 are
linearly independent and that

σ 2
2 (t1) − 2σ2(t1) + t1 = H − 2 − 2(H − 1) + H = 0

we see that the minimal polynomial p21 for σ2 acting on V 21 is given by p21(x) = x2 − 2x + 1 =
(x − 1)2. Similarly one checks that in fact pij(x) = (x − 1)2 for all i, j = 1,2. Thus C A = [ 2 −1

−1 2

]
, the

Cartan matrix of type A2, so A is of Lie type A2. By Theorem 3.2(b), we have for example X2
1 X2 −

2X1 X2 X2 + X2 X2
1 = 0 in A, which is precisely one of the Serre relations in the enveloping algebra

of sl3(k), the simple Lie algebra of type A2. It was shown in [11, Example 6.3] that in fact A is
isomorphic to the k-algebra with generators X1, X2, Y1, Y2, H and defining relations

X1 H = (H + 1)X1, X2 H = (H − 1)X2,

Y1 H = (H − 1)Y1, Y2 H = (H + 1)Y2,

Y1 X1 = X2Y2 = H, Y2 X2 = X1Y1 = H + 1,

X1Y2 = Y2 X1, X2Y1 = Y1 X2,

X2
1 X2 − 2X1 X2 X1 + X2 X2

1 = 0,

X2
2 X1 − 2X2 X1 X2 + X1 X2

2 = 0,

Y 2
1 Y2 − 2Y1Y2Y1 + Y2Y 2

1 = 0,

Y 2
2 Y1 − 2Y2Y1Y2 + Y1Y 2

2 = 0.

In [11], this TGW algebra was also generalized to arbitrary symmetric generalized Cartan matrices,
although explicit presentation was only given in type A2.

4. TGW algebras of Lie type (A1)
n

4.1. Presentation by generators and relations

Let A = Aμ(R, σ , t) be a k-finitistic TGW algebra of Lie type (A1)
n = A1 × · · · × A1, with (R, σ , t)

being μ-consistent. Thus C A has all zeros outside the main diagonal. That is, deg pij = 1 for all i 
= j.
Equivalently (since pij are monic by definition), for i 
= j we have pij(x) = x−γi j for some γi j ∈ k\{0}.
By Theorem 3.2, this means that in A we have
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Xi X j = γi jμ
−1
i j X j Xi, ∀i 
= j, (4.1a)

Y j Yi = γi jμ
−1
ji Y i Y j, ∀i 
= j. (4.1b)

It also means that

σi(t j) = γi jt j for all i 
= j. (4.2)

By Theorem 2.7, (R, σ , t) is μ-consistent if and only if

μi jμ ji = γi jγ ji, ∀i 
= j. (4.3)

We can now prove that (4.1) generate all relations in the ideal Iμ(R, σ , t).

Theorem 4.1. Let A = Aμ(R, σ , t) is a k-finitistic TGW algebra of type (A1)
n, where (R, σ , t) is regular and

μ-consistent (i.e. (4.3) holds). Then A is isomorphic to the R-ring generated by X1, . . . , Xn, Y1, . . . , Yn modulo
the relations

Xir = σi(r)Xi, Yir = σ−1
i (r)Yi, ∀r ∈ R, ∀i,

Yi Xi = ti, Xi Yi = σi(ti), ∀i, (4.4)

Xi Y j = μi j Y j Xi, Xi X j = γi jμ
−1
i j X j Xi, Y j Yi = γi jμ

−1
ji Y i Y j, ∀i 
= j. (4.5)

Proof. The statement is equivalent to that the ideal I := Iμ(R, σ , t) of the TGW construction A′ =
Cμ(R, σ , t) used to construct A is generated by the set{

Xi X j − γi jμ
−1
i j X j Xi, Y j Yi − γi jμ

−1
ji Y i Y j

∣∣ i 
= j
}
. (4.6)

Let J denote the ideal in A′ generated by (4.6). Assume a ∈ I . We will prove that a ∈ J . Since I is
graded, we can without loss of generality assume that a is homogenous. Let g = deg a ∈ Zn . Without
loss of generality we can also add to a any element of J , and thus can rearrange the Y ’s and the X ’s
in the terms in a so to obtain

a = r Z (g1)
1 · · · Z (gn)

n

for some r ∈ R , where Z (k)
i equals Xk

i if k � 0 and Y −k
i otherwise. Put b = Z (−gn)

n · · · Z (−g1)
1 . Then

ab has degree zero so that ab ∈ I ∩ R = {0}, forcing ab = 0. On the other hand, using (2.1a), (2.1b)
repeatedly we have ab = rs where s ∈ R is a product of elements of the form σg(ti) (g ∈ Zn , i ∈
{1, . . . ,n}). Since the ti are assumed to be regular in R we must have r = 0, i.e. a = 0 ∈ J . �
4.2. Centralizer intersections and a simplicity criterion

Let G be a group acting by automorphisms on a ring R . An ideal J of R is called G-invariant if
g( J ) ⊆ J for all g ∈ G . The ring R is called G-simple if the only G-invariant ideals are R and {0}. If
A ⊆ B are rings, then we let C B(A) denote the centralizer of A in B: C B(A) = {b ∈ B | ba = ab, ∀a ∈ A}.
In [12, Theorem 3.6, Theorem 7.18] the following statements are proved.

Theorem 4.2.

(a) Let A = Aμ(R, σ , t) be a TGW algebra where R is commutative and (R, σ , t) is μ-consistent. Let J be
any nonzero ideal of A. Then J ∩ C A(R) 
= 0.
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(b) Let A = Aμ(R, σ , t) be a TGW algebra, and assume (R, σ , t) is μ-consistent. Suppose A is k-finitistic of
Lie type (A1)

n. Then A is simple if and only if the following conditions hold:
(1) R is Zn-simple;
(2) Z(A) ⊆ R;
(3) Rti + Rσ d

i (ti) = R for all d ∈ Z>0 and i = 1, . . . ,n.

Part (b) is proved in [12, Theorem 7.18] in the more general context of so called R-finitistic TGW
algebras. The result is a generalization of D. Jordan’s simplicity criterion for generalized Weyl algebras
[14, Theorem 6.1].

5. Multiparameter twisted Weyl algebras

Now we define a special class of twisted generalized Weyl algebras. The definition of these algebras
was inspired by a class of multiparameter Weyl algebras introduced by Benkart [5].

5.1. Definition

Let n ∈ Z>0 and k ∈ Z\{0} and let Λ = (λi j), r = (ri j) and s = (si j) be three n × n matrices with
entries from k\{0}, such that

λii = 1, ∀i and λi jλ ji = 1, ∀i 
= j, (5.1a)

rii/sii is a nonroot of unity ∀i, (5.1b)

rk
i j = sk

i j, ∀i 
= j. (5.1c)

Let

R = k
[
u±1

1 , . . . , u±1
n , v±1

1 , . . . , v±1
n

]
(5.2)

be the Laurent polynomial ring over k in 2n indeterminates, define σ1, . . . , σn ∈ Autk(R) by

σi(u j) = r−1
i j u j, σi(v j) = s−1

i j v j, (5.3)

for all i, j ∈ {1, . . . ,n}, and define t1, . . . , tn ∈ R by

ti = (riiui)
k − (sii vi)

k

rk
ii − sk

ii

. (5.4)

Finally, put

μi j = r−k
ji λ ji (5.5)

for all i 
= j. Then one easily checks that the consistency relations (2.2), (2.3) hold. Thus, by The-
orem 2.7, the TGW datum (R, σ , t) is μ-consistent, that is, the natural map ρ : R → Aμ(R, σ , t)
is injective. We denote the TGW algebra Aμ(R, σ , t) by Ak

n(r, s,Λ) and call it a multiparameter
twisted Weyl algebra. It is easy to see that it is k-finitistic of Lie type (A1)

n and thus, by Theo-
rem 4.1, Ak

n(r, s,Λ) is isomorphic to the unital associative k-algebra generated by u±1
i , v±1

i , Xi , Yi
(i = 1, . . . ,n) modulo the relations
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the u±1
i , v±1

j all commute and uiu
−1
i = vi v−1

i = 1, ∀i, (5.6a)

Xi X j =
(

r ji

ri j

)k

λi j X j Xi, ∀i, j, (5.6b)

Yi Y j = λi j Y j Yi, ∀i, j, (5.6c)

Xi Y j = r−k
ji λ ji Y j Xi, ∀i 
= j, (5.6d)

Yi Xi = (riiui)
k − (sii vi)

k

rk
ii − sk

ii

, Xi Yi = uk
i − vk

i

rk
ii − sk

ii

, ∀i, (5.6e)

Xiu j = r−1
i j u j Xi, Xi v j = s−1

i j v j Xi,

Yiu j = ri ju j Yi, Yi v j = si j v j Yi, ∀i, j. (5.6f)

Remark 5.1. One can also consider the larger class of algebras in which (5.1b) in the definition of
Ak

n(r, s,Λ) is replaced by the weaker condition that rk
ii 
= sk

ii for all i. However in this paper we will
always assume (5.1b), which in examples corresponds to that “q is not a root of unity”.

5.2. Properties of multiparameter twisted Weyl algebras

Let

RZ
n = {

r ∈ R
∣∣ σi(r) = r, ∀i = 1, . . . ,n

}
be the invariant subring of R under Zn . For d ∈ Z2n , put ud = ud1

1 · · · udn
n v

dn+1
1 · · · vd2n

n . Let

G = {
d ∈ Z2n

∣∣ ud ∈ RZ
n}

. (5.7)

We have RZ
n = ⊕

d∈G kud .

Proposition 5.2.

(a) If J is a proper Zn-invariant ideal of R, then the group homomorphism Zn → Autk(R/ J ), induced by the
Zn-action on R, is injective.

(b) If J is a proper Zn-invariant ideal of R, such that R/ J is Zn-simple or a domain, then R/ J is maximal
commutative in Ā := Aμ(R/ J , σ̄ , t̄).

Proof. (a) Assume g = (g1, . . . , gn) ∈ Zn is such that σg(p + J ) = p + J for all p + J ∈ R/ J . Suppose

that gi 
= 0 for some i. Then, taking p = ui we have ui + J = σkg(ui) + J = rkg1
1i · · · rkgn

ni ui + J , giving

(rkg1
1i · · · rkgn

ni −1)ui ∈ J . Since J is proper and ui invertible we must have rkg1
1i · · · rkgn

ni = 1. Similarly tak-

ing p = vi gives that skg1
1i · · · skgn

ni = 1. But rk
i j = sk

i j for i 
= j and thus we get rkgi
ii /skgi

ii = 1, contradicting
the fact that rii/sii is not a root of unity. Thus gi = 0 for all i.

(b) Follows from part (a) and [12, Corollary 5.2]. �
Proposition 5.3. Any ideal of A is graded.

Proof. Let J be any ideal in A and let a ∈ J . Write a = ∑
g∈Zn ag , where ag ∈ Ag for each g . Pick

any h ∈ Zn . We will show that ah ∈ J . By Proposition 5.2(a), the group morphism Zn → Autk(R) is
injective. So if g ∈ Zn , g 
= h, then there is a d ∈ Z2n such that σh(ud) 
= σg(ud). By the definition of
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the automorphisms σi we have σh(ud) = ξhud and σg(ud) = ξg ud , for some nonzero ξg, ξh ∈ k. Put b =
ξga − u−daud . Then b ∈ J and writing b = ∑

f ∈Zn b f where b f ∈ A f we have bg = ξgag − u−dag ud =
(ξg − u−dσg(ud))ag = 0, and bh = ξgah − u−dahud = (ξg − ξh)ah . So, replacing a by (ξg − ξh)−1b, we
have an element in J with the same degree h component but with the g component eliminated.
Repeating this we can eliminate all components except ah and thus we obtain that ah ∈ J . �
Proposition 5.4. Let I(RZ

n
) denote the set of ideals of RZ

n
and I(R)Z

n
denote the set of Zn-invariant ideals

of R. Consider the maps

ε : I(
RZ

n) → I(R)Z
n
, n �→ Rn,

ρ : I(R)Z
n → I

(
RZ

n)
, J �→ RZ

n ∩ J .

Then ε and ρ are inverse to eachother and set up an order-preserving bijection between the two sets. In partic-
ular, for each n ∈ Specm(RZ

n
), Rn is maximal among Zn-invariant ideals of R and conversely, every maximal

Zn-invariant ideal of R equals Rn for some n ∈ Specm(RZ
n
).

Proof. We can view R as a module over k[Zn] by linearly extending the Zn-action on R . Let k[Zn]∗
be the group of characters (i.e. algebra morphisms k[Zn] → k). The product is given by χ1χ2(g) =
χ1(g)χ2(g) for χ1,χ2 ∈ k[Zn]∗, g ∈ Zn . By definition of σi , there is for each d ∈ Z2n a χ ∈ k[Zn]∗ such
that σg(ud) = χ(g)ud for all g ∈ Zn . Thus

R =
⊕

χ∈k[Zn]∗
R[χ ], R[χ ] = {

r ∈ R
∣∣ a.r = χ(a)r, ∀a ∈ k

[
Zn]}. (5.8)

In particular, R is semisimple as a module over k[Zn]. Using that each R[χ ] is spanned by certain ud ,
one verifies that the decomposition (5.8) turns R into a strongly k[Zn]∗-graded ring, that is,

R[χ1]R[χ2] = R[χ1χ2], for all χ1,χ2 ∈ k
[
Zn]∗. (5.9)

Moreover RZ
n = R[1] where 1 is the unit in the character group k[Zn]∗ , given by 1(g) = 1 for all

g ∈ Zn .
We now show the maps ε and ρ are inverses to eachother. Let J be any Zn-invariant ideal of R .

Thus it is a k[Zn]-submodule of R , and therefore J = ⊕
χ∈k[Zn]∗ J [χ ], where J [χ ] = R[χ ] ∩ J . Us-

ing the strong gradation property (5.9) we have J [χ ] = R[χ ]R[χ−1] J [χ ] ⊆ R[χ ] J [1] ⊆ J [χ ] which
proves that J [χ ] = R[χ ] J [1] for all χ . Thus J = R( J ∩ RZ

n
). This shows that ερ is the identity. Let n

be an ideal of RZ
n
. Then Rn = ∑

χ∈k[Zn]∗ R[χ ]n and R[χ ]n ⊆ R[χ ]. Thus (Rn) ∩ RZ
n = n. This proves

ρε is the identity. �
We end this section with some lemmas that will be used in the next section to prove the first

main theorem of the paper.

Lemma 5.5. Rti + Rσ d
i (ti) = R for all i = 1, . . . ,n and all d ∈ Z>0 .

Proof. We have

r−dk
ii ti − σ d

i (ti) = (−r−dk
ii sk

ii + sk−dk
ii )vk

ii

rk
ii − sk

ii

(5.10)

which is invertible since rii/sii is assumed to not be a root of 1 and since vi is invertible. This proves
the claim. �
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Lemma 5.6. No product of elements of the form σg(ti) (g ∈ Zn, i = 1, . . . ,n) can belong to a Zn-invariant
proper ideal of R.

Proof. Indeed, such a product can be written a = ξσ
p1

1 (t1) · · ·σ pn
n (tn) for some nonzero ξ ∈ k and

some pi ∈ Z. But then the proper Zn-invariant ideal L containing such element would also contain
σ1(a). By Lemma 5.5, Rt1 + Rσ1(t1) = R . So for suitable r1, r2 ∈ R , r1a + r2σ1(a) = ξ ′σ p2

2 (t2) · · ·σ pn
n (tn)

for some nonzero ξ ′ ∈ k. Continuing this way we would obtain that L contains a nonzero scalar hence
the L = R contradicting that L was proper. �
Lemma 5.7. Assume J is a maximal Zn-invariant ideal of R. Then all ti + J (i = 1, . . . ,n) are regular in R/ J .

Proof. Let T denote the multiplicative submonoid of R/ J generated by σg(ti + J ) for all g ∈ Zn and
i = 1, . . . ,n. By Lemma 5.6, we have 0 /∈ T . Observe that the set

L = {r̄ ∈ R/ J | ur̄ = 0 for some u ∈ T }

is a Zn-invariant ideal in R/ J . But L = R/ J is impossible since the ring R/ J is unital and 0 /∈ T .
Therefore, since R/ J is Zn-simple, we have L = 0 which proves that in particular all ti + J (i =
1, . . . ,n) are regular in R/ J . �
5.3. Simple quotients

We come now to the main result on the structure theory of multiparameter twisted Weyl algebras.
The following theorem (which is Theorem A from the Introduction) describes all quotients A/Q of
A = Ak

n(r, s,Λ) such that A/Q is a simple ring and such that the images of Xi , Yi in A/Q are
regular for all i. It also gives a necessary and sufficient condition under which all such quotients
are domains.

We would like to emphasize that the subring RZ
n

of invariants of R under Z is just a Laurent
polynomial ring over the field k. Thus there are plenty of explicitly known maximal ideals. Moreover,
when k is algebraically closed there is a bijection Specm(RZ

n
) → (k\{0})m where m is the number

of variables in RZ
n
, i.e. the rank of the subgroup G ⊆ Z2n (see (5.7)). It is in this sense we view the

following theorem as a parametrization of the stated family of simple quotients.

Theorem 5.8. Let A = Ak
n(r, s,Λ) be a multiparameter twisted Weyl algebra.

(a) The assignment

n �→ A/〈n〉 (5.11)

where 〈n〉 denotes the ideal in A generated by n, is a bijection between the set of maximal ideals in RZ
n

and the set of simple quotients of A in which all Xi , Yi (i = 1, . . . ,n) are regular.
(b) For any n ∈ Specm(RZ

n
), the quotient A/〈n〉 is isomorphic to the twisted generalized Weyl algebra

Aμ(R/Rn, σ̄ , t̄), where σ̄g(r + Rn) = σg(r) + Rn, ∀g ∈ Zn, r ∈ R and t̄i = ti + Rn, ∀i.

(c) A/〈n〉 is a domain for all n ∈ Specm(RZ
n
) if and only if Z2n/G is torsion-free, where G was defined

in (5.7).

Proof. We first prove part (b). Let n ∈ Specm(RZ
n
). Put J = Rn. Trivially A J A = 〈n〉. By Lemma 5.7,

ti + J are regular in R/ J . For each g ∈ Zn , Ag = R Z (g1)
1 · · · Z (gn)

n , where Z (m)
i = Xm

i if m � 0 and

Z (m)
i = Y −m

i if m < 0. We know (R, σ , t) is μ-consistent (see Section 5.1). Thus by [9, Corol-
lary 6.4], (R/ J , σ̄ , t̄) is also μ-consistent. Thus the claim follows from [9, Theorem 4.1] using [9,
Remark 4.2].
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Now we prove part (a). Let n ∈ Specm(RZ
n
). By part (b), A/〈n〉 isomorphic to Ā := Aμ(R/ J , σ̄ , t̄).

By Proposition 5.4, J is maximal among Zn-invariant ideals of R , hence R/ J is Zn-simple. By Propo-
sition 5.2(b), R/ J is maximal commutative in Ā. Hence, in particular, Z( Ā) ⊆ R/ J . Let π : R → R/ J
be the canonical projection. We have (R/ J )t̄i + (R/ J )σ̄ d

i (t̄i) = π(Rti + Rσ d
i (ti)) + J = R/ J for any

i ∈ {1, . . . ,n} and d ∈ Z>0. Thus the requirements in Theorem 4.2(b) are fulfilled and we conclude
that Ā is simple. For each i ∈ {1, . . . ,n}, the elements t̄i , hence also σ̄i(t̄i), are regular in R/ J . By the
proof of [9, Theorem 5.2(a)], these elements are also regular in Ā. Since t̄i = Yi Xi and σ̄i(t̄i) = Xi Yi , it
follows that Xi and Yi are regular in Ā.

Conversely, assume that Q is any nonzero ideal of A such that A/Q is simple and such that
Xi + Q , Yi + Q are regular in A/Q for all i. By Proposition 5.2, R is maximal commutative in A, that
is C A(R) = R . So by Theorem 4.2(a), R ∩ Q 
= 0. We claim that R ∩ Q is Zn-invariant. Let i ∈ {1, . . . ,n}
and p ∈ R ∩ Q . Then Xi p ∈ Q since Q is an ideal. On the other hand, Xi p = σi(p)Xi . Since the image
of Xi in A/Q not a zero-divisor we conclude that σi(p) ∈ Q . Trivially σi(p) ∈ R . Thus σi(R ∩ Q ) ⊆
R ∩ Q for all i. Analogously one proves that σ−1

i (R ∩ Q ) ⊆ R ∩ Q (or one can use that R is Noetherian).
So R ∩ Q is indeed Zn-invariant. Next we show that R ∩ Q is maximal among Zn-invariant ideals in R .
Suppose R ∩ Q � J ⊆ R where J is a Zn-invariant ideal of R . Since J is Zn-invariant, A J is a two-
sided ideal of A. Any element of A J + Q of degree zero has the form p + a where p ∈ J and a is
the degree zero component of an element of Q . But Q is graded by Proposition 5.3 so a ∈ Q . Thus
(A J + Q ) ∩ R = J + (Q ∩ R) = J . Thus A J + Q is an ideal of A which properly contains Q . Since Q
was maximal, A J + Q = A and thus J = (A J + Q )∩ R = R . This shows that R ∩ Q is maximal among
all Zn-invariant ideals of R . By Proposition 5.4, we conclude that R ∩ Q equals Rn for some maximal
ideal n of RZ

n
. So for this n we have 〈n〉 ⊆ Q . But we proved above that A/〈n〉 is always simple. Thus

〈n〉 is a maximal ideal of A which implies that 〈n〉 = Q .
Finally, two different ideals n,n′ in RZ

n
cannot generate the same maximal ideal L in A, since then

1 ∈ n + n′ ⊆ L which is absurd.
(c) By Proposition 2.9 and part (b) we have that A/〈n〉 is a domain iff Rn is a prime ideal of R .

Assume Rn is prime for all n ∈ Specm(RZ
n
). Suppose d ∈ Z2n , d /∈ G but that there is a p ∈ Z>0 such

that pd ∈ G . Without loss of generality we can assume p is prime. Then there is a j ∈ {1, . . . ,n} such
that σ j(ud) = ζud where ζ ∈ k, ζ 
= 1, ζ p = 1. Pick any Z-basis {d1, . . . ,dN } for G and take n to be
the maximal ideal in RZ

n
generated by udi − 1 for i = 1, . . . , N . Then upd − 1 ∈ n also, because pd is

a Z-linear combination of the di . But upd − 1 = (ud − 1)(ud − ζ ) · · · (ud − ζ p−1). Since Rn is prime
we conclude that ud − ζ e ∈ Rn for some e ∈ {0, . . . , p − 1}. However Rn is Zn-invariant and thus
Rn � ud − ζ e − ζ−1σ j(ud − ζ e) = (ζ−1 − 1)ζ e which is invertible. This contradicts that Rn is a proper
ideal of R which we know by Proposition 5.4. Hence Z2n/G is torsion-free.

Conversely, assume that Z2n/G is torsion-free. Thus Z2n 	 G ⊕ G ′ for some subgroup G ′ of Z2n .
Therefore, viewing R as the group algebra k[Z2n], we have an isomorphism R = k[Z2n] 	 k[G] ⊗k

k[G ′]. Under this isomorphism, Rn (where n ∈ Specm(RZ
n
) is arbitrary) is mapped to n ⊗ k[G ′] which

is a prime ideal in k[G] ⊗k k[G ′] since

k[G] ⊗k k[G ′]
n ⊗ k[G ′] 	 (

RZ
n
/n

)[
G ′],

which is a Laurent polynomial algebra over a field. This proves that Rn is a prime ideal of R for any
n ∈ Specm(RZ

n
). �

6. Multiparameter Weyl algebras and Hayashi’s q-analog of the Weyl algebras

In this section we consider a class of multiparameter Weyl algebras defined in [5], which is a partic-
ular case of multiparameter twisted Weyl algebras. For the convenience of the reader we include the
definition.
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6.1. Definition

Assume r = (r1, . . . , rn) and s = (s1, . . . , sn) are n-tuples of nonzero scalars in a field k such that
(ri s

−1
i )2 
= 1 for each i. Let Ar,s(n) be the unital associative algebra over the field k generated by

elements ρi,ρ
−1
i , σi, σ

−1
i , xi , yi, i = 1, . . . ,n, subject to the following relations:

(R1) The ρ±1
i , σ±1

j all commute with one another and ρiρ
−1
i = σiσ

−1
i = 1;

(R2) ρi x j = r
δi, j

i x jρi , ρi y j = r
−δi, j

i y jρi , 1 � i, j � n;
(R3) σi x j = s

δi, j

i x jσi , σi y j = s
−δi, j

i y jσi , 1 � i, j � n;
(R4) xi x j = x j xi , yi y j = y j yi , 1 � i, j � n;

yi x j = x j yi , 1 � i 
= j � n;
(R5) yi xi − r2

i xi yi = σ 2
i and yi xi − s2

i xi yi = ρ2
i , 1 � i � n,

or equivalently

(R5′) yi xi = r2
i ρ2

i −s2
i σ

2
i

r2
i −s2

i
and xi yi = ρ2

i −σ 2
i

r2
i −s2

i
, 1 � i � n.

When ri = q−1 and si = q for all i, we may quotient by the ideal generated by the elements
σiρi − 1, i = 1, . . . ,n, to obtain Hayashi’s q-analogs of the Weyl algebras A−

q (n) (see [13]).

6.2. Realization as multiparameter twisted Weyl algebras

Take k = 2, and for all i, j put λi j = 1, ri j = r
δi j

i , si j = s
δi j

i , where ri, si ∈ k\{0}, i = 1, . . . ,n. Then
Ak

n(r, s,Λ) is isomorphic to Ar,s(n).
Let us investigate the ring of invariants RZ

n
. Consider a monomial

ud := ud1
1 · · · udn

n v
dn+1
1 · · · vd2n

n ,

where d ∈ Z2n . We have

σi
(
ud) = rdi

i s
dn+i
i ud. (6.1)

6.3. Generic case

Assuming that for each i = 1, . . . ,n, the only pair (d,d′) ∈ Z2 such that rd
i sd′

i = 1 is the pair (0,0)

we obtain that RZ
n = k and thus, by Theorem 5.8, Ar,s(n) is a simple ring.

6.4. Hayashi’s q-analogs of the Weyl algebras A−
q (n)

Assume instead that for all i, ri = q−1 and si = q, where q ∈ k is nonzero and not a root of 1.
Then by (6.1), ud is fixed by all σi iff di = dn+i for all i. Thus RZ

n = k[w1, . . . , wn] where wi := ui vi .
Pick the maximal ideal n := (w1 − 1, . . . , wn − 1) of the invariant subring. Then, by Theorem 5.8, we
obtain that the quotient of Ar,s(n) by the two-sided ideal generated by w1 −1, . . . , wn −1 is a twisted
generalized Weyl algebra which is simple. It is easy to check that this simple algebra is isomorphic to
Hayashi’s q-analogs of the Weyl algebras A−

q (n), see [13].

6.5. Connections with generalized Weyl algebras

Assume now that we are in the generic case as in Section 6.3. As it was observed in [5], the
multiparameter Weyl algebra Ar,s(n) can be realized as a degree n generalized Weyl algebra. For this
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construction, let Di be the subalgebra of Ar,s(n) generated by the elements ρi , ρ−1
i , σi , σ−1

i . Thus, Di

is isomorphic to k[ρ±1
i , σ±1

i ]. Set D = D1 ⊗ D2 ⊗ · · · ⊗ Dn . Let φi be the automorphism of Di given
by

φi(ρ j) = r
−δi, j

i ρ j, φi(σi) = s
−δi, j

i σi . (6.2)

Now set

ti = r2
i ρ

2
i − s2

i σ
2
i

r2
i − s2

i

, Xi = xi, Yi = yi, (6.3)

and observe that

Yi Xi = ti, and Xi Yi = ρ2
i − σ 2

i

r2
i − s2

i

= φi(ti)

are just the relations in (R5′). The relations in (R1) and (R4) are apparent. The identities in (R2) and
(R3) are equivalent to the statements Y jd = φ−1

j (d)Y j , X jd = φ j(d)X j with d = ρi and σi . Therefore,
there is a surjection Wn := D(φ, t) → Ar,s(n). But since Ar,s(n) has a presentation by (R1)–(R5), there
is a surjection Ar,s(n) → Wn . Since that map is the inverse of the other one, these algebras are
isomorphic. Bavula [4, Proposition 7] has shown that a generalized Weyl algebra D(φ, t) is left and
right Noetherian if D is Noetherian, and it is a domain if D is a domain. Since D is commutative and
finitely generated, it is Noetherian, hence so are Wn and Ar,s(n). Since D is a domain as it can be
identified with the Laurent polynomial algebra k[ρ±1

i , σ±1
i | i = 1, . . . ,n]; hence Ar,s(n) is a domain

also. In summary, we have

Proposition 6.1. (See [5].) When the parameters ri , si are generic as in Section 6.3, the multiparameter Weyl
algebra Ar,s(n) is isomorphic to the degree n generalized Weyl algebra Wn = D(φ, t) where D is the k-algebra

generated by the elements ρi , ρ
−1
i , σi , σ

−1
i , i = 1, . . . ,n, subject to the relations in (R1), φi is as in (6.2); and

the elements ti are as in (6.3). Thus, Ar,s(n) is Noetherian domain.

7. Jordan’s simple localization of the multiparameter quantized Weyl algebra

7.1. Quantized Weyl algebras

Let q̄ = (q1, . . . ,qn) be an n-tuple of elements of k\{0}. Let Λ = (λi j)
n
i, j=1 be an n × n matrix with

λi j ∈ k\{0}, multiplicatively skewsymmetric: λi jλ ji = 1 for all i, j. The multiparameter quantized Weyl

algebra of degree n over k, denoted Aq̄,Λ
n (k), is defined as the unital k-algebra generated by xi , yi ,

1 � i � n subject to the following defining relations:

yi y j = λi j y j yi, ∀i, j, (7.1)

xi x j = qiλi jx jxi, i < j, (7.2)

xi y j = λ ji y jxi, i < j, (7.3)

xi y j = q jλ ji y jxi, i > j, (7.4)

xi yi − qi yixi = 1 +
i−1∑

(qk − 1)ykxk, ∀i. (7.5)

k=1
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This algebra first appeared in [16], and was further studied in [1] and [15] among others. For k = C

and q1 = · · · = qn = μ2, λ ji = μ, ∀ j < i, where μ ∈ k\{0}, the algebra Aq̄,Λ
n (k) is isomorphic to the

quantized Weyl algebra introduced by Pusz and Woronowicz [20].
The quantized Weyl algebra can be realized as a twisted generalized Weyl algebra (first observed

in [19]) in the following way. Let P = k[s1, . . . , sn] be the polynomial algebra in n variables and τi the
k-algebra automorphisms of P defined by

τi(s j) =

⎧⎪⎨⎪⎩
s j, j < i,

1 + qi si + ∑i−1
k=1(qk − 1)sk, j = i,

qi s j, j > i.

(7.6)

One can check that the τi commute. Let μ = (μi j)
n
i, j=1 be defined by

μi j =
{

λ ji, i < j,

q jλ ji, i > j.
(7.7)

Put τ = (τ1, . . . , τn) and s = (s1, . . . , sn). Let Aμ(P , τ , s) be the associated twisted generalized Weyl
algebra. From (7.6) it is easy to see that Aμ(P , τ , s) is k-finitistic, and that the minimal polynomials
are pij(x) = x − 1 for i < j and pij(x) = x − qi for j > i, so the algebra is of type (A1)

n . By Theo-

rem 4.1, one checks that Aμ(P , τ , s) is isomorphic to Aq̄,Λ
n (k) via Xi �→ xi , Yi �→ yi and si �→ yi xi .

The representation theory of Aq̄,Λ
n has been studied from the point of view of TGW algebras in [19]

and [10].
In the following it will be convenient to identify P with its isomorphic image in Aq̄,Λ

n via si �→ yi xi .
Consider the following elements in Aq̄,Λ

n :

zi = 1 +
∑
k�i

(qk − 1)sk, i = 1, . . . ,n. (7.8)

It was shown in [15] that the set Z := {zk1
1 · · · zkn

n | k1, . . . ,kn ∈ Z} is an Ore set in Aq̄,Λ
n and that,

provided that none of the qi is a root of unity, the localized algebra

Bq̄,Λ
n := Z−1 Aq̄,Λ

n

is simple.
The algebra Bq̄,Λ

n can also be realized as a twisted generalized Weyl algebra. To see this, consider
the following subset of P :

S = {
αzk1

1 · · · zkn
n

∣∣ α ∈ k\{0}, ki ∈ Z
}
, (7.9)

where zi were defined in (7.8). Then 0 /∈ S , 1 ∈ S , a,b ∈ S ⇒ ab ∈ S , the elements of S are regular, and
moreover S has the virtue of being Zn-invariant, using the relation

τi(z j) =
{

z j, j < i,

qi z j, j � i,
(7.10)

which can be proved using (7.8) and (7.6). Thus [9, Theorem 5.2] can be applied to give, together with
the isomorphism Aq̄,Λ

n 	 Aμ(P , τ , s), that

S−1 Aq̄,Λ
n 	 S−1 Aμ(P , τ , s) 	 Aμ

(
S−1 P , τ̃ , s

)
.



V. Futorny, J.T. Hartwig / Journal of Algebra 357 (2012) 69–93 85
But localizing at S is equivalent to localizing at Z , and thus

Bq̄,Λ
n 	 Aμ

(
S−1 P , τ̃ , s

)
.

7.2. Relation to multiparameter twisted Weyl algebras

We show here how the algebra Bq̄,Λ
n fits into the framework of multiparameter twisted Weyl

algebras. We keep all notation from previous section. Let q̄ = (q1, . . . ,qn) ∈ (k\{0})n and let Λ =
(λi j)

n
i, j=1 be an n × n matrix with λi j ∈ k\{0}, λii = 1, λi jλ ji = 1 for all i, j. We assume that none of

the qi is a root of unity. Let k = 1 and put

ri j =
{

1, j � i,

q−1
i , j > i,

si j =
{

1, j < i,

q−1
i , j � i.

(7.11)

Then conditions (5.1) are satisfied. Let Ak
n(r, s,Λ) be the corresponding multiparameter twisted Weyl

algebra. Recall that, by definition, this means that Ak
n(r, s,Λ) is the twisted generalized Weyl algebra

Aμ(R, σ , t) where

R = k
[
u±1

1 , . . . , u±1
n , v±1

1 , . . . , v±1
n

]
, (7.12)

σi(u j) = r−1
i j u j, σi(v j) = s−1

i j v j, (7.13)

ti = ui − q−1
i vi

1 − q−1
i

, (7.14)

μi j = r−k
ji λ ji, (7.15)

for all i, j ∈ {1, . . . ,n}. Note that the μi j in (7.15) coincide with the ones defined in (7.7). The goal
now is to explain the following diagram, which proves Theorem B stated in the introduction.

(R,σ , t)

π
ψ

(R/ J , σ̄ , t̄)
Ψ

(S−1 P , τ̃ , s)
Φ

Aμ

(P , τ , s)

ϕ
ι

Ak
n(r, s,Λ) = Aμ(R,σ , t)

Ak
n(r,s,Λ)

〈 J 〉 	 Aμ(R/ J , σ̄ , t̄)
	

Aμ(S−1 P , τ̃ , s) 	 Bq̄,Λ
n

Aμ(P , τ , s) 	 Aq̄,Λ
n
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7.2.1. The map ψ

Define a k-algebra morphism

ψ : R → S−1 P , ψ(ui) = −q−1
i zi−1, ψ(vi) = −zi, i = 1, . . . ,n

where z0 := 1. We claim that ψ is Zn-equivariant. Indeed,

ψ
(
σi(u j)

) = ψ
(
r−1

i j u j
) = −r−1

i j q−1
i zi−1,

while, using (7.10) and (7.11) in the last step,

τ̃i
(
ψ(u j)

) = τ̃i
(−q−1

j z j−1
) = −r−1

i j q−1
i zi−1.

Similarly ψ(σi(v j)) = τ̃i(ψ(v j)). This proves that ψσi = τ̃iψ for each i, so in other words, that ψ is
Zn-equivariant. Also, for any i ∈ {1, . . . ,n},

ψ(ti) = ψ

(
ui − q−1

i vi

1 − q−1
i

)
= −q−1

i zi−1 + q−1
i zi

1 − q−1
i

= zi − zi−1

qi − 1
= si

by (7.8). Recall the category TGWn(k) from Definition 2.1. We have just proved that ψ is a morphism
in the category TGWn(k) from (R, σ , t) to (S−1 P , τ̃ , s).

It is easy to see that ψ is surjective because the image contains both s1, . . . , sn since ψ(ti) = si ,
and the inverses of the zi : z−1

i = ψ(−v−1
i ). Applying the functor Aμ from [9, Theorem 3.1] to ψ gives

a surjective k-algebra morphism Aμ(ψ) : Aμ(R, σ , t) → Aμ(S−1 P , τ , s).

7.2.2. The map π
We determine the invariant subring RZ

n
. For any i ∈ {1, . . . ,n} and d ∈ Z2n we have

σi
(
ud) = q

−∑
j>i d j−

∑
j�i dn+ j

i ud.

Thus ud ∈ RZ
n

iff for each i = 1, . . . ,n we have dn+i + ∑n
j=i+1(d j + dn+ j) = 0. This system of

equations is equivalent to that d2n = 0, d2n−1 + dn = 0, d2n−2 + dn−1 = 0, . . . ,dn+1 + d2 = 0. Thus
RZ

n = k[w1, . . . , wn] where w1 = −u1, w2 = u2 v−1
1 , . . . , wn = un v−1

n−1. Pick

n := (
w1 − q−1

1 , . . . , wn − q−1
n

) ∈ Specm
(

RZ
n)

.

Let J = Rn be the ideal in R generated by n. The canonical map π : R → R/ J is Zn-equivariant and
maps ti to t̄i = ti + J .

7.2.3. The map Ψ

We have ψ(wi) = q−1
i for i = 1, . . . ,n which shows that J = Rn ⊆ kerψ . Thus ψ induces a

map Ψ : R/ J → S−1 P , also Zn-equivariant and Ψ (t̄i) = si . Since ψ is surjective, so is Ψ . Applying
the functor from [9, Theorem 3.1] we get a surjective homomorphism Aμ(Ψ ) : Aμ(R/ J , σ , t) →
Aμ(S−1 P , τ̃ , s). However, by Theorem 5.8, the algebra Aμ(R/ J , σ , t) is simple, and thus Ψ is an
isomorphism.

7.2.4. The maps ϕ, ι,Φ
Similarly one can show that the map ϕ : P → R/ J defined by ϕ(si) = t̄ j is Zn-equivariant and

that the elements of S are mapped to invertible elements of R/ J , showing that ϕ factorizes through
the canonical map ι : P → S−1 P , inducing a map Φ . Applying the functor Aμ gives corresponding
homomorphisms of twisted generalized Weyl algebras.
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8. Simple weight modules

In this section we describe the simple weight modules over the simple algebras A = Ak
n(r, s,Λ)/〈 J 〉

from Theorem 5.8. We also assume that the ground field k is algebraically closed. We will use notation
from Section 5.1.

8.1. Dynamics of orbits and their breaks

The group Zn acts on R via the automorphisms σi . Explicitly, g(r) = (σ
g1

1 · · ·σ gn
n )(r) for g =

(g1, . . . , gn) ∈ Zn and r ∈ R . Using this action and (2.1a) we have a · r = (deg a)(r) · a for any ho-
mogenous a ∈ A and any r ∈ R . The group Zn also acts on Max(R), the set of maximal ideals of R .
Let Ω denote the set of orbits of this action. An element m ∈ Max(R) is called an i-break if ti ∈ m. An
orbit O ∈ Ω is called degenerate if it contains an i-break for some i. A break m in an orbit O is called
maximal if m is an i-break for all i for which O contains an i-break.

Proposition 8.1. Let m ∈ Specm(R). Then the stabilizer StabZn (m) is trivial.

Proof. Write

m = (ūi − αi, v̄ i − βi | i = 1, . . . ,n),

where ūi = ui + J , v̄ i = vi + J and αi, βi ∈ k\{0}. Suppose g ∈ StabZn (m). Then

σg(m) = (
σg(ūi) − αi,σg(v̄ i) − βi

∣∣ i = 1, . . . ,n
)

= ((
r g1

1i · · · r gn
ni

)−1
ūi − αi,

(
sg1

1i · · · sgn
ni

)−1
v̄ i − βi

∣∣ i = 1, . . . ,n
)
. (8.1)

Thus

r g1
1i · · · r gn

ni = sg1
1i · · · sgn

ni = 1.

Raising all sides to the kth power and using that rk
i j = sk

i j for all i 
= j, we obtain that rkgi
ii = skgi

ii = 1
for all i which, since rii/sii is not a root of unity, implies that gi = 0 for all i. �
Proposition 8.2. Consider the maximal ideal

m = (u1 − α1, . . . , un − αn, v1 − β1, . . . , vn − βn) ∈ Specm(R).

Then, for all i ∈ {1, . . . ,n} and all g = (g1, . . . , gn) ∈ Zn,

ti ∈ σg(m) ⇔ (αi/βi)
k = (sii/rii)

(gi+1)k. (8.2)

Proof. By the calculation (8.1) and the definition (5.4) of ti we have ti ∈ σg(m) iff

(
r g1

1i . . . r gn
ni αi

sg1
1i . . . sgn

ni βi

)k

= (sii/rii)
k.

Using that rk
i j = sk

i j for i 
= j and simplifying, the claim follows. �
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Corollary 8.3. If ti ∈ m, then for g = (g1, . . . , gn) ∈ Zn,

ti ∈ σg(m) ⇔ gi = 0.

Corollary 8.4. Every degenerate orbit contains a maximal break.

Remark 8.5. Corollary 8.4 holds for any TGW algebra of Lie type (A1)
n using the fact that σ j(ti) = γ jiti

for any j 
= i.

8.2. General results on simple weight modules with no proper inner breaks

We collect here some notation and results from [10].
Let A = Aμ(R, σ , t) be a twisted generalized Weyl algebra. Let V be a simple weight module

over A.

Definition 8.6. (See [10].) V has no proper inner breaks if for any m ∈ Supp(V ) and any homogenous a
with aMm 
= 0 we have a′a /∈ m for some homogenous a′ with deg(a′) = −deg(a).

This definition is slightly different than the one given in [10] but can be proved to be equivalent.
Consider the following sets (also equivalent to the definitions in [10]), defined for any m ∈ Specm(R).

G̃m := {
g ∈ Zn

∣∣ A−g Ag is not contained in m
}
, (8.3)

Gm := G̃m ∩ StabZn (m). (8.4)

One can show that Gm is a subgroup of Zn and G̃m is a union of cosets from Zn/Gm .
Fix now m ∈ Supp(V ). One checks that the subalgebra B(m) := ⊕

g∈StabZn (m) Ag of A preserves

the weight space Vm . For any g ∈ G̃m we pick elements ag ∈ Ag and a′
g ∈ A−g such that a′

gag /∈ m.
The following theorem describes the simple weight modules with no proper inner breaks up to the
structure of Vm as a B(m)-module.

Theorem 8.7. (See [10].) Suppose V has no proper inner breaks. If {vi}i∈ J is a k-basis for Vm ( J some index
set), then the following is a k-basis for V :

C := {ag vi | g ∈ S, i ∈ J } (8.5)

where S ⊆ G̃m is a set of representatives for G̃m modulo Gm . Moreover, for any v ∈ Vm , any i ∈ {1, . . . ,n} and
g ∈ S we have

Xiag v =
{

ahbg,i v, g + ei ∈ G̃m,

0, otherwise,
Yiag v =

{
akcg,i v, g − ei ∈ G̃m,

0, otherwise,
(8.6)

where h,k ∈ S with h ∈ (g + ei) + Gm and k ∈ (g − ei) + Gm and bg,i, cg,i ∈ B(m) are given by

bg,i = σ−h
(

Xiaga′
g+ei−ha′

h

)
ag+ei−h, cg,i = σ−k

(
Yiaga′

g−ei−ka′
k

)
ag−ei−k. (8.7)



V. Futorny, J.T. Hartwig / Journal of Algebra 357 (2012) 69–93 89
8.3. The case of trivial stabilizer

We prove here a theorem which implies that all simple weight modules over Ak
n(r, s,Λ)/〈n〉 have

no proper inner breaks.

Theorem 8.8. If V is a simple weight module over a twisted generalized Weyl algebra Aμ(R, σ , t) such that
the stabilizer StabZn (m) is trivial for some (hence all) weight m ∈ Supp(V ), then V has no proper inner breaks.

Proof. Suppose m ∈ Supp(V ) has trivial stabilizer. Let g ∈ Zn and assume a ∈ Ag is such that aVm 
= 0.
Since V is simple, Vm ∩ AaVm 
= 0. But Vm ∩ AaVm ⊆ A−gaVm since m has trivial stabilizer. This
shows that there exists an element b ∈ A−g such that baVm 
= 0. Since deg(ba) = 0 we have ba ∈ R .
Then baVm 
= 0 implies ba /∈ m. �
8.4. Abstract description of the simple weight modules in case of trivial stabilizer

Let A = Aμ(R, σ , t) be a TGWA where μ is symmetric. In [17] a description of all simple weight
modules with support in an orbit with trivial stabilizer is given in terms of a Shapovalov type form.
The form used in [17] requires the matrix μ to be symmetric (due to its formulation in terms of a
certain involution on the TGWA). In [12] it was observed that there is another way to define a bilinear
form which works for general μ. It is given as follows. Let p0 : A → A0 = R be the graded projection
onto the degree zero component of A with respect to the standard Zn-gradation on A. Then put

F : A × A → R, F (a,b) = p0(ab). (8.8)

Such forms have been studied for arbitrary group graded rings [7].
We have the following result.

Theorem 8.9. Let A = Aμ(R, σ , t) be any twisted generalized Weyl algebra. Let V be any simple weight
module over A such that StabZn (m) = {0} for m ∈ Supp(V ). Then V 	 A/N(m) where A is considered as a
left module over itself and N(m) is the left ideal given by

N(m) = {
a ∈ A

∣∣ F (b,a) ∈ m, ∀b ∈ A
}
. (8.9)

Proof. Similar to the case of symmetric μ proved in [17, Lemma 6.1 and Corollary 6.2]. �
8.5. Bases and explicit action on the simple weight modules over Ak

n(r, s,Λ)

Let n, k, r, s, Λ be as in Section 5.1. Assume that for each i = 1, . . . ,n, the scalar rii/sii is not a
root of unity. Let R , σ , t , μ be as in Section 5.1.

Let J be any Zn-invariant ideal of R . Let A = Aμ(R/ J , σ̄ , t̄). Thus for J = 0, A equals the multi-
parameter twisted Weyl algebra Ak

n(r, s,Λ), and for J = Rn where n ∈ Specm(RZ
n
), A equals a simple

quotient of the algebra in the former case.
We will describe the simple weight modules over A, using Theorem 8.7.
Let V be a simple weight module over A. Let m ∈ Supp(V ). Since k is algebraically closed we have

m = (ūi − αi, v̄ i − βi | i = 1, . . . ,n)

where ūi = ui + J , v̄ i = vi + J and αi, βi ∈ k\{0} for i = 1, . . . ,n.
We determine the set G̃m . Let g ∈ Zn . Since Ag = R̄ Z (g) (where Z (g) = Z (g)

1 · · · Z (gn)
n where Z ( j)

i

equals X j
i if j � 0 and Y − j

i otherwise) and ∀i 
= j: σi(t j) = γi jti for some γi j ∈ k\{0} it is clear that
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G̃m = {
g ∈ Zn

∣∣ Z (−g) Z (g) /∈ m
}

= {
g ∈ Zn

∣∣ Z (−g1)
1 Z (g1)

1 · · · Z (−gn)
n Z (gn)

n /∈ m
}

= {
g ∈ Zn

∣∣ Z (−gi)

i Z (gi)

i /∈ m, ∀i
}

= G̃(1)
m × · · · × G̃(n)

m ,

where

G̃(i)
m := {

g ∈ Zn
∣∣ Z (−gi)

i Z (gi)

i /∈ m
}
. (8.10)

For j > 0 we have

Z (− j)
i Z ( j)

i = Y j
i X j

i = tiσ
−1
i (ti) · · ·σ− j+1

i (ti) (8.11)

while for j < 0,

Z (− j)
i Z ( j)

i = X− j
i Y − j

i = σi(ti)σ
2
i (ti) · · ·σ− j

i (ti). (8.12)

So, since m is maximal, hence prime, we see that if j > 0 and j ∈ G̃(i)
m then {0,1, . . . , j} ⊆ G̃(i)

m . Simi-
larly if j < 0 and j ∈ G̃(i)

m then { j, j + 1, . . . ,0} ⊆ G̃(i)
m .

We distinguish between three possibilities. The first case is that G̃(i)
m = Z. Then we say that (the

support of) V is generic in the ith direction. The second case is j /∈ G̃(i)
m for some positive integer j.

Assuming j is the smallest such integer, by (8.10) and (8.11) we get σ
− j+1
i (ti) ∈ m. By Corollary 8.3

it follows that σm
i (ti) /∈ m for all integers m 
= j. Thus G̃(i)

m = {m ∈ Z | m � j − 1}. By Theorem 8.7,

Supp(V ) = {σg(m) | g ∈ Gm} and thus we can replace m by σ k−1
i (m). Doing this, the new j just

equals 1 and G(i)
m = Z�0. We say that m is a highest weight for V in the ith direction. The final case

is that j /∈ G̃(i)
m for some negative integer j. This is analogous to the previous case and leads to that,

without loss of generality, G̃(i)
m = Z�0 in which case we say that m is a lowest weight for V in the ith

direction.
In other words, there is an m ∈ Supp(V ) such that the shape of the support of V is characterized

by a vector

τ ∈ {−1,0,1}n (8.13)

via the relation

G̃(i)
m = { j ∈ Z | j · τi � 0}, ∀i ∈ {1, . . . ,n}. (8.14)

Since the stabilizer of m is trivial by Proposition 8.1, the subalgebra B(m) in Theorem 8.7 is just R .
From well-known results [8] (see [17, Proposition 7.2] for a proof in the TGW algebra case), it follows
that Vm is simple as a B(m)-module since V is simple as an A-module. Thus, since R/m = k, we have
dimk Vm = 1. Pick v0 ∈ Vm , v0 
= 0. Then Theorem 8.7 implies that the set

C = {
v g := Z (g1)

1 · · · Z (gn)
n v0

∣∣ g = (g1, . . . , gn) ∈ G̃m

}
(8.15)

is a k-basis for V , where Z ( j)
i = X j

i if j � 0 and Y − j
i otherwise. Furthermore, the action of Xi , Yi on

the elements of C is given by
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Xi v g =
{

bg,i v g+ei , if (gi + 1)τi � 0,

0, otherwise,
Yi v g =

{
cg,i v g−ei , if (gi − 1)τi � 0,

0, otherwise,
(8.16)

for certain bg,i, cg,i ∈ k. Although the formulas (8.7) can be used to calculate these scalars, one can
also use a more direct approach which is available due to our knowledge of the commutation relations
(5.6) among the generators Xi , Yi in A. Straightforward calculation gives the following

bg,i = γ
(g1)

i1 · · ·γ (gi−1)

i,i−1 · rkgi
i+1,i · · · rkgn

ni ·
⎧⎨⎩

1 if gi � 0,

r
(1−gi )k
ii αk

i −s
(1−gi )k
ii βk

i

rk
ii−sk

ii
if gi < 0,

(8.17)

cg,i = ε
(g1)

i1 · · ·ε(gi−1)

i,i−1 · rkgi
i+1,i · · · rkgn

ni ·
⎧⎨⎩ r

kgi
ii αk

i −s
kgi
ii βk

i

rk
ii−sk

ii
if gi � 0,

1 if gi < 0,

(8.18)

where

γ
(l)
i j =

{
((r ji/ri j)

kλi j)
l, l � 0,

(rk
jiλi j)

l, l < 0,
ε

(l)
i j =

{
(rk

i jλ ji)
l, l � 0,

λl
ji, l < 0.

(8.19)

9. Whittaker modules

Definition 9.1. Let A be a twisted generalized Weyl algebra of degree n. A module V over A is
called a Whittaker module if there exists a vector v0 ∈ V (called Whittaker vector) and nonzero scalars
ζ1, . . . , ζn ∈ k\{0} such that the following conditions hold:

• V = Av0,
• Xi v0 = ζi v0 for each i = 1, . . . ,n.

The pair (V , v0) is called a Whittaker pair of type (ζ1, . . . , ζn). A morphism of Whittaker pairs (V , v0) →
(W , w0) is an A-module morphism V → W mapping v0 to w0.

The term “Whittaker pair” also occurs in the literature with a completely different meaning
(e.g. [2]).

The reader may wonder why one requires ζi to be nonzero for all i. To see this, note that in this
case we have Yi v0 = ζ−1

i Y i Xi v0 = ζ−1
i ti v0. Thus the A-module V is completely determined by its

R-module structure together with the parameters ζi . The same argument fails if we would allow ζi
to be zero for some i. This indicates that the case when some ζi is zero requires a different analysis
than the one below.

The following theorem describes Whittaker pairs over a family of TGWAs which properly includes
all generalized Weyl algebras in which the ti are regular. It is a generalization of [6, Theorem 3.12].
We use the notation from Section 4.1.

Theorem 9.2. Let A = Aμ(R, σ , t) be a k-finitistic TGW algebra of Lie type (A1)
n. Assume that (R, σ , t) is

μ-consistent and that R is Noetherian.

(a) If A has a Whittaker module, then

γi j = μi j for all i 
= j. (9.1)

(b) Conversely, if (9.1) holds, then for each ζ ∈ (k\{0})n, there is a bijection
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{
Isomorphism classes [(V , v0)] of

Whittaker pairs of type ζ

}
Ψ−→ {

Proper Zn-invariant left ideals Q of R
}
,

[
(V , v0)

] �→ AnnR v0,[
(R/Q ,1 + Q )

] ← Q

where R/Q is given an A-module structure by

s.r̄ = sr, ∀s ∈ R,

Xi .r̄ = ζiσi(r),

Yi .r̄ = ζ−1
i σ−1

i (r)ti, (9.2)

for all r̄ ∈ R/Q , where r̄ := r + Q ∈ R/Q for r ∈ R.
(c) Furthermore, there is a morphism of Whittaker pairs (V , v0) → (W , w0) iff Ψ ([(V , v0)]) ⊆

Ψ ([(W , w0)]).

Proof. (a) Suppose (V , v0) is a Whittaker pair with respect to ζ ∈ (k\{0})n . Then for i 
= j, Xi X j v0 =
ζiζ j v0. On the other hand, by relation (4.5), Xi X j = γi jμ

−1
i j X j Xi and thus Xi X j v0 = γi jμ

−1
i j X j Xi v0 =

γi jμ
−1
i j ζiζ j v0. Thus, since v0 and all ζi are nonzero by definition, we conclude that (9.1) must

hold.
(b) Suppose (V , v0) is a Whittaker pair with respect to ζ ∈ (k\{0})n . Let Q = AnnR v0. Clearly Q

is a proper left ideal of R . For any r ∈ Q we have 0 = Xirv0 = σi(r)Xi v0 = ζiσi(r)v0 which shows that
σi(Q ) ⊆ Q for any i ∈ {1, . . . ,n}. Since R is Noetherian, σ−1

i (Q ) ⊆ Q as well, which proves that Q
is Zn-invariant. In addition, if (V , v0) and (W , w0) are two isomorphic Whittaker pairs, then clearly
AnnR v0 = AnnR w0. This shows that the map Ψ is well defined.

To prove that Ψ is surjective, suppose that Q is a proper Zn-invariant left ideal of R . We show
that (9.2) extends the natural R-module structure on R/Q to an A-module structure. We only prove
that the following relations are preserved: Xi Y j = μi j Y j Xi (i 
= j) and Y j Yi = γi jμ

−1
ji Y i Y j (i 
= j). The

other cases are identical to the generalized Weyl algebra case considered in [6, Section 3]. We have

Xi Y j.r̄ = Xi .ζ
−1
j σ−1

j (r)t j = ζiζ
−1
j σiσ

−1
j (r)σi(t j).

Using that σi(t j) = γi jt j (see (4.2)) and condition (9.1) we see that Xi Y j .r̄ = μi j Y j Xi .r̄ for any r̄ ∈ R/Q .

Similarly Y j Yi .r̄ = ζ−1
i ζ−1

j σ−1
i σ−1

j (r)σ−1
j (ti)t j so using σ−1

j (ti)t j = γ −1
ji γi jtiσ

−1
i (t j) and (9.1) again,

we see that Y j Yi .r̄ = γi jμ
−1
ji Y i Y j .r̄, ∀i 
= j. Thus R/Q becomes an A-module which is a Whittaker

module of type ζ with Whittaker vector 1 + Q .
To prove that Ψ is injective we may, as in [6], construct a universal Whittaker module Vu of type ζ

by putting Vu = A ⊗A+ kζ where A+ is the subalgebra of A generated over k by X1, . . . , Xn , and kζ is
the 1-dimensional module over A+ given by Xi .1 := ζi . The map ι : R → Vu , r �→ r ⊗1 is an R-module
isomorphism. Then there is a unique morphism of Whittaker pairs from (Vu,1 ⊗ 1) to any other
Whittaker pair (V , v0) of type ζ . And, identifying Vu with R via ι, the kernel of the map Vu → V ,
is precisely AnnR v0. So if (V , v0) and (W , w0) are two Whittaker pairs with AnnR v0 = AnnR w0, it
means that they are isomorphic to the same quotient of the universal Whittaker pair of type ζ , hence
are isomorphic to eachother.

(c) If ϕ : (V , v0) → (W , w0) is a morphism of Whittaker pairs, then ϕ(rv0) = rϕ(v0) = rw0 so
clearly AnnR v0 ⊆ AnnR w0. Conversely, if Q 1 ⊆ Q 2 are proper Zn-invariant left ideals, then there is
an R-module morphism π : R/Q 1 → R/Q 2 mapping 1 + Q 1 to 1 + Q 2. Since π commutes with the
Zn-action, one verifies that π is automatically an A-module morphism. �
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Corollary 9.3. Let A = Ak
n(r, s,Λ)/〈n〉 be a simple quotient of a multiparameter twisted Weyl algebra as

obtained in Theorem 5.8. Then A has a Whittaker module iff

λi j = (ri j/r ji)
k, ∀i, j. (9.3)

Moreover, if (9.3) holds, then for each ζ ∈ (k\{0})n there is a unique Whittaker module over A of type ζ ,
namely the universal one, and it is a simple module.
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