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Hyperbolic Bridged Graphs

JACK H. KOOLEN AND V INCENT MOULTON†

Given a connected graphG, we take, as usual, the distancexy between any two verticesx, y of G
to be the length of some geodesic betweenx andy. The graphG is said to beδ-hyperbolic, for some
δ ≥ 0, if for all verticesx, y, u, v in G the inequality

xy + uv ≤ max{xu + yv, xv + yu} + δ

holds, andG is bridged if it contains no finite isometric cycles of length four or more. In this paper,
we will show that a finite connected bridged graph is 1-hyperbolic if and only if it does not contain
any of a list of six graphs as an isometric subgraph.

c© 2002 Elsevier Science Ltd. All rights reserved.

1. INTRODUCTION

In this paper, all graphs are simple and connected, but they are not necessarily finite. As is
well known, a (connected) graphG comes equipped with a natural metric on its vertex set
V(G), given by defining the distancexy between any pair of verticesx, y ∈ V(G) to be the
length of some shortest path orgeodesicbetweenx andy. Given a quartetx, y, u, v ∈ V(G),
defineδ(x, y, u, v) to be the absolute value of the difference between the largest and the
second largest of the three sums

xu + yv, xv + yu, and xy + uv.

The graphG is calledδ-hyperbolic, for someδ ≥ 0, if we haveδ(x, y, u, v) ≤ δ for all
quartetsx, y, u, v in V(G), or, equivalently, if

xy + uv ≤ max{xu + yv, xv + yu} + δ (1)

holds for all quartetsx, y, u, v in V(G). The hyperbolicity,δ∗, of G is then defined to be
the supremum of the valuesδ(x, y, u, v) taken over all quartetsx, y, u, v in V(G), andG is
calledhyperbolicif its hyperbolicity is finite.

Hyperbolic graphs arise naturally in the area of geometric group theory as Cayley graphs of
hyperbolic groups[11] (see [10, 11] for more details on such groups). Moreover, the notion
of hyperbolicity is of implicit interest in metric graph theory [1, 2], and—due to the fact that
hyperbolicity is closely related to concepts arising in the study of trees—also in T-theory [8],
classificationtheory [6], and phylogenetic analysis [13].

In [5], we proposed the study of graphs with low hyperbolicity. Such graphs can have an
interestingstructure: for example, in [2, Proposition 1] (see also [7]), it is shown that the
0-hyperbolic graphs are precisely theblock graphs, i.e., graphs in which every 2-connected
subgraph is complete, and in [5] thatchordalgraphs, i.e., graphs containing noinducedcycles
of length exceeding three [4, 12], have hyperbolicity strictly bounded by two. As usual, the
diameterof a connected graphG is defined to be the maximum distance between any pair of
vertices inG. Using Eqn (1) once again, it is straightforward to check that a graph with finite
diameterd is (2b

d
2c)-hyperbolic, and, using this fact, it can be seen that a(4m + i )-cycle,

m ≥ 1, has hyperbolicity 2mfor i = 0,2,3 and, arguing directly, that a(4m+ 1)-cycle has
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FIGURE1. The 2m×2m-grid, with chords as indicated in the diagram—a part of the so-calledhexagonal
grid—forms a bridged graph with hyperbolicity at least 2m(as can be easily checked by considering the
four corner vertices).

(I) (II) (III)

(VI)(V)(IV)

FIGURE 2. Some bridged graphs with hyperbolicity 2.

hyperbolicity 2m− 1. In consequence, a finite isometric cycle contained in a 1-hyperbolic
graph must have length three or five. Hence, it is perhaps a bit surprising to note that the
class of so-calledbridged graphs, consisting of graphs that do not contain finiteisometric†

cycles of length larger than three [4, 9, 16], contains graphs with arbitrarily large hyperbolicity
(e.g. see Figure 1). In this paper, we classify the finite 1-hyperbolic bridged graphs or—
equivalently—the finite 1-hyperbolic graphs that do not contain induced (or, equivalently,
isometric) 5-cycles. In particular, we prove that ifG is a finite connected bridged graph, then
G is 1-hyperbolic if and only ifG contains none of the graphs in Figure 2 as an isometric
subgraph.

Theproof of this result relies on two key properties that a 1-hyperbolic graph enjoys, which
we now describe. The first property is related to the concepts ofthin bigons[15] and the

†In general, a subgraphH of a graphG is called isometric if the distance between any pair of vertices inH is the
same as that inG. Thus, an isometric cycle is clearly induced, in particular, a chordal graph is always bridged, and,
conversely, every induced 5-cycle is isometric.



Hyperbolic bridged graphs 685

FIGURE 3. Properties (IB1) and (IB2) of an interval-bridged graph.

fellow traveller property[14], both of which are standard tools used in the study of hyperbolic
groups.

Given a graphG, we define theinterval [x, y] between any two verticesx, y ∈ V(G) to be
the set of verticesz ∈ V(G) that satisfy the equalityxz+ zy = xy. In addition, we define the
breadth of the interval between two verticesx and y in V(G) to be the maximum value for
uv, taken over all verticesu, v in the interval[x, y] satisfyingxu = xv, and thebreadth of
G, denoted br(G), to be the supremum of the interval breadths taken over all intervals inG. If
a graph isδ-hyperbolic, then it is straightforward to check using Eqn (1) that its breadth is at
mostδ. Thus we obtain the first key property that a 1-hyperbolic graphG satisfies.
Breadth property: The breadth ofG is at most one.

The second property looks slightly more technical, but also follows in a straightforward
fashion from Eqn (1).
Short-cut property: If t1, t2, t3, t4 is a path inG with t1t3 = t2t4 = 2, and there is some
x ∈ V(G) such thatxt1 < xt2 = xt3 ≥ xt4 holds, thent1t4 ≤ 2.

We define a graph that satisfies both the breadth and short-cut properties to bethin. In
Section 2, we prove that a thin graph not containing induced 5-cycles isinterval-bridged, i.e.
the graph satisfies the following two properties (see Figure 3).

(IB1) If x, y, u, v ∈ V(G) are distinct vertices withxu = yu, xv = yv = 1 andx, y ∈ [u, v],
thenxy = 1.

(IB2) If x, y, u ∈ V(G) aredistinct vertices withxu = yu andxy = 1, then there exists
some vertexw ∈ V(G) with xw = yw = 1 andw ∈ [x, u] ∩ [y, u].

Note that a finite bridged graph satisfies both of these properties (see appendix for a proof
of this fact), so that such a graph is, in particular, interval-bridged. In addition, it follows as
a straightforward consequence of properties (IB1) and (IB2) that an interval-bridged graph
G cannot contain an isometricn-cycle for anyn ≥ 4, n 6= 5 and also that ifG contains an
isometric 5-cycle, then it must also contain a vertex that is adjacent to every vertex in this
5-cycle.

Given an interval-bridged graphG, we show in Section 3, thatG satisfiesthe breadth prop-
erty if and only if graph (III) in Figure 2 is not an isometric subgraph ofG, and also thatG
satisfies the short-cut property if and only if graph (IV) in Figure 2 is not an isometric subgraph
of G (seeCorollary 5 and Theorem 2, respectively). Therefore, an interval-bridged graph is
thin if and only if it contains neither graph (III) nor graph (IV) as an isometric subgraph.

We now state the key result in this paper, whose proof can be found in Section 4.
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THEOREM 1. Let G be a connected, thin graph that contains no induced5-cycles.Then
G is 2-hyperbolic and bridged. Moreover, G has hyperbolicity equal to two if and only if G
contains at least one of the graphs(I), (II), (V) or (VI) of Figure2 as an isometric subgraph.

Notethat as a corollary of the above classification of thin interval-bridged graphs and this
theorem we obtain the main result of [5], namely:

COROLLARY 1 ([5, THEOREM 1]). If G is a connected, chordal graph, then G is2-hyper-
bolic. Moreover G has hyperbolicity equal to two if and only if it contains at least one of the
graphs(I) or (II) in Figure2 as an isometric subgraph.

As we have already seen, a finite isometric cycle in a 1-hyperbolic graph must have length
three or five. Thus, as a consequence of the above classification of thin interval-bridged graphs
and Theorem 1, we obtain the following result.

COROLLARY 2. Let G be a connected graph that contains no induced5-cycles.Then G is
1-hyperbolic if and only if G is interval-bridged and does not contain any of the graphs in
Figure2 as an isometric subgraph.

In view of the fact that finite bridged graphs are interval-bridged (see Appendix), we imme-
diately obtain the following result in view of the last corollary.

COROLLARY 3. Let G be a finite connected bridged graph. Then G is1-hyperbolicif and
only if G does not contain any of the graphs in Figure2 as an isometric subgraph.

To conclude, we discuss in Section 5 the problem of characterizing 1-hyperbolic graphs†.
In particular, we prove in Proposition 4 that a thin graph is hyperbolic. This indicates that the
conceptof short-cuts might be a useful tool for the study of hyperbolic graphs in general.

2. THIN GRAPHS

In this section, we present some results concerning thin graphs that will be used throughout
the rest of this paper.

PROPOSITION1. If G is a connected, thin graph that contains no induced5-cycles,then it
is interval-bridged.

PROOF. We must show thatG satisfiesproperties (IB1) and (IB2).
(IB1): This property follows directly from br(G) ≤ 1.
(IB2): Let x, y, u ∈ V(G) be distinct vertices withxu = yu and xy = 1. If xu = 1,
then (IB2) clearly holds withw := u. So supposexu ≥ 2, and letx1, y1 be on geodesics from
x to u and y to u, respectively, withxx1 = y1y = 1 andx1u = y1u = xu − 1. Applying
the short-cut property to the pathx1, x, y, y1 and the vertexu, we see thatx1y1 ≤ 2 holds. If
x1 = y1, then (IB2) holds withw := x1. If x1y1 = 1, thenx, y, y1, x1 is a 4-cycle and since
br(G) ≤ 1, without loss of generality we havexy1 = 1, and so (IB2) holds withw := y1.
Now if x1y1 = 2, then letv be such thatx1v = y1v = 1. Thenx1, v, y1, y, x is a 5-cycle, and
since (IB2) must hold if eitherxy1 or yx1 equals one, we can assumexy1 = yx1 = x1y1 = 2.
Hence, we must havexv = yv = 1 asG contains no 5-cycles and br(G) ≤ 1. If uv = xu,
then since br(G) ≤ 1, we havex1y1 ≤ 1, which is a contradiction. This impliesuv = xu− 1,
and therefore (IB2) holds withw := v. This completes the proof of the proposition. 2

†We recently discovered through a personal communication that Bandelt and Chepoi appear to have a classification
for 1-hyperbolic graphs—see Remark 1 for more details.
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We now present a consequence of the short-cut property that holds for thin graphs, which will
beused later in the proof of Theorem 1.

PROPOSITION2. Suppose that G is a connected, thin graph. Let t1, . . . , tn be a path in G,
n ≥ 4, and x∈ V(G). If xt1 < xt2 and either xtn ≤ xtn−1 ≤ xtn−2 or xtn < xtn−1 holds,
then there exists some i,1 ≤ i ≤ n − 3, with ti ti +3 ≤ 2.

PROOF. First we assume that bothxt1 < xt2 andxtn < xtn−1 hold. In this case, there must
clearly exist somei, j with 1 ≤ i, j ≤ n andi +1 < j , such thatxti = xt j andxtp = xti +1,
for all i < p < j . Now, if j = i + 2, then since br(G) ≤ 1, we haveti t j ≤ 1, and hence
ti ti +3 ≤ 2, whereas ifj ≥ i + 3 thenti ti +3 ≤ 2 clearly holds by the short-cut property. Thus,
in view of these facts, we are reduced to considering the case where bothxtn = xtn−1 = xtn−2
andxtn−3 < xtn hold. But thentn−3tn ≤ 2 by the short-cut property, which completes the
proof. 2

The following result follows more-or-less immediately from this proposition.

COROLLARY 4. If G is a connected, thin graph, then any isometric cycle in G must have
lengththree or five.

REMARK 1. In fact, Proposition 2 implies that cycles in finite, connected, thin graphs must
in general satisfy even stronger conditions than the one we have presented in Corollary 4.
For example, one can show that every cycle of length at least six has to have at least two
essentially different short-cuts. Bandelt and Chepoi appear to have characterized 1-hyperbolic
graphs using similar properties for cycles of length at least six, and the exclusion of a finite
set of graphs occurring as isometric subgraphs (personal communication).

3. INTERVAL-BRIDGED GRAPHS

We begin this section by characterizing the interval-bridged graphs with breadth at leastk,
k ≥ 1. To do this we will need the following result.

PROPOSITION3. Suppose that G is a connected, interval-bridged graph, and x, u, v ∈

V(G). If t0 := u, t1, . . . , tn := v is a path in G, and we define

m := max
i =0,...,n

{xti } − max{xu, xv},

then uv + m ≤ n holds.

PROOF. First note that we may assume without loss of generality thatti 6= t j holds for
0 ≤ i 6= j ≤ n. We prove the proposition using induction onm. Clearly the proposition holds
for m = 0. Assumem ≥ 1. Then there exists somej, 1 ≤ j ≤ n − 1, with

xt j = max
i =0,...,n

{xti }.

Hence, there existp, q, 0 ≤ p < j < q ≤ n, for which xtp = xtq = xt j − 1 andxti =

xt j , p < i < q, all hold.
If q − p = 2, then by applying (IB1) totp, tp+1, tp+2 andx, we see thattptq = 1 holds.

Thus,t0, t1, . . . , tp, tq, . . . , tn is a path inG of lengthn − 1, and since

max
i =0,...,p,q,...,n

{xti } = max
i =0,...,n

{xti } − 1,

the proposition follows by induction.
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FIGURE 4. The double cardhouse graph of heightk.

Thus we may assumeq − p > 2. Now, by (IB2), for eachti , ti +1, p < i < q − 1, there
exists a vertexwi ∈ V(G) with wi ti = wi ti +1 = 1, andxwi = xti − 1. Moreover, by (IB1)
we havewi wi +1 ≤ 1 for p < i < q − 2, tpwp+1 ≤ 1, andtqwq−2 ≤ 1. Hence, once any
possible repeats are removed from the sequence of vertices

t0, t1, . . . , tp, wp+1, . . . , wq−2, tq, . . . , tn,

a path inG of length less than or equal ton − 1 is obtained, and since

max
{

max
i =0,...,p,q,...,n

{xti }, max
i =p+1,p+2,...,q−2

{xwi }

}
= max

i =0,...,n
{xti } − 1,

the proposition follows by induction. 2

COROLLARY 5. Let G be a connected, interval-bridged graph. Thenbr(G) ≥ k, k ≥ 1, if
and only if G contains the graph depicted in Figure4 as an isometric subgraph. In particular,
br(G) ≤ 1 if and only if graph(III) in Figure 2 is not contained as an isometric subgraph
in G.

PROOF. Clearly br(G) < k implies that the graph pictured in Figure 4 is not an isometric
subgraphof G.

Conversely, suppose br(G) ≥ k holds. We show that this implies that the graph pictured in
Figure 4 must be an isometric subgraph ofG.

Sincebr(G) ≥ k, we must have verticesx, y, u, v ∈ V(G) with xu = xv, uv = k, and
xu + uy = xv + vy = xy. Note that by Proposition 3, we must havexu, yu ≥ k. Now
let t0 := u, t1, . . . , tk := v be a geodesic inG. By Proposition 3 we havexti ≤ xu and
yti ≤ yu, for all 0 ≤ i ≤ k. Sincexu + uy = xy, it follows that bothxti = xu and
yti = yu hold for all 0≤ i ≤ k. Now applying (IB2) toti ti +1 andx for each 0≤ i ≤ k − 1,
we obtain a vertexwi with wi ti = wi ti +1 = 1 and xwi = xt1 − 1, 0 ≤ i ≤ k − 1.
By (IB1), applied toti , wi , wi +1 andx, we havewi wi +1 = 1 for each 0≤ i ≤ k − 2, and
hence, by Proposition 3,w0, w1, . . . , wk−1 is a geodesic inG. Thus we have constructed the
first ‘layer’ of triangles bordering the central geodesic of lengthk in the graph pictured in
Figure 4. By repeatedly applying (IB1), (IB2) and Proposition 3 in a similar fashion, it is now
straightforward to construct the graph in Figure 4 layer by layer, and to check that this graph
is indeed an isometric subgraph ofG. We leave the details to the reader. 2

In general, graphs with bounded breadth are not necessarily hyperbolic, even if they have
bounded degree—see Figure 5. Hence, it is interesting to note that in [15] Papasoglu shows
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FIGURE 5. An infinite string of odd-length cycles. This graph has breadth zero and bounded degree, but
it is not hyperbolic.

that if the Cayley graph associated to a finitely generated group has bounded breadth, then
thisCayley graph is necessarily hyperbolic.

Note that a complete graph on four vertices minus an edge clearly has breadth one, and that
this is an induced subgraph in every one of the graphs (I)–(VI) pictured in Figure 2. Hence,
it immediately follows from Corollary 3 that an interval-bridged graphG with breadth zero
is 1-hyperbolic. It is thus natural to ask the following question: suppose thatG is an interval-
bridged graph with bounded breadth, then isG hyperbolic?

We now classify the interval-bridged graphs that satisfy the short-cut property.

THEOREM 2. Let G be a connected, interval-bridged graph. Then G contains graph(IV)
in Figure2 as an isometric subgraph if and only if it does not satisfy the short-cut property.

PROOF. It is straightforward to see that ifG containsgraph (IV) as an isometric subgraph,
thenG does not satisfy the short-cut property.

Conversely, ifG does not satisfy the short-cut property, then there must exist some path
t1, t2, t3, t4 in G with t1t4 = 3, and a vertexx ∈ V(G) with xt2 = xt3, xt1 < xt2 and
xt4 ≤ xt3.

Note that by (IB2), there must exist some vertexw1 ∈ V(G) with w1t2 = w1t3 = 1, and
w1x = xt2 − 1. Now if xt4 < xt3, then it follows by (IB1) thatw1t1 = w1t4 = 1 holds, and
hencet1t4 < 3, a contradiction. Thusxt3 = xt4. But then, by (IB2), there must exist a vertex
w2 ∈ V(G) with w2t3 = w2t4 = 1, andxw2 = xt3 − 1. Moreover, by (IB1) we must have
w1w2 = w1t1 = 1.

Now consider the verticest1, w1, w2, all of which are at distancext2 − 1 from x. Then
by repeated application of (IB1) and (IB2) to these vertices using the vertexx, it is now
straightforward to show that graph (IV) can be constructed as an isometric subgraph ofG by
adding ‘layers’ to the graph induced on the verticest1, t2, t3, t4, w1, w2 in the same way that
was described in the proof of Corollary 5. The details are left to the reader. 2

4. PROOF OFTHEOREM 1

The proof of Theorem 1 is similar in spirit to the proof of [5, Theorem 1], although it is
significantlymore complicated. As the proof is quite lengthy, we will break it up into a series
of interconnected claims for the sake of clarity.

Let G be a connected, thin graph that does not contain any induced 5-cycles. Note that
G is interval-bridged by Proposition 1, andG is bridged by Corollary 4. Now, given any
C ∈ IN, defineδ∗

= δ∗

C to be the maximum value ofδ(x, y, u, v) taken over all quartets
x, y, u, v ∈ V(G) satisfying

xu + yv, xv + yu ≤ xy + uv ≤ C (2)

(see Section 1 for the definition ofδ(x, y, u, v)). Note thatδ∗
≤ C clearly holds. We will show

thatδ∗
≤ 2 holds, and that, in the caseδ∗

= 2 holds,G must contain one of the graphs (I),
(II), (V) or (VI) in Figure 2. The theorem follows from this.
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Supposeδ∗ > 1. Let x, y, u, v ∈ V(G) be a quartet satisfying Eqn (2) such that

xy + uv = max{xu + yv, xv + yu} + δ∗ (3)

holds, and assume
(∗) xy + uv is minimal amongst all quartets satisfying Eqn (3).

Notethatx, y, u, v must be distinct.
Before proceeding, for the reader’s convenience we briefly outline the rest of the proof. We

consider the quantity
M := min{xu, xv, yu, yv}.

As a consequence of Claims 3, 4, and 5 we see that 2≤ M ≤ 3 must hold. In Claim 5, we
prove thatxu+yv = xv+yu must hold. In Claim 6 we show that ifxu = xv = yu = yv = 2
holds, then either graph (I) or (II) in Figure 2 must be an isometric subgraph ofG andδ∗

= 2
holds.Using these facts we can then assume, without loss of generality, thatxu, xv ≥ 3 holds.
In Claim 8 we show that if in additionyu = yv = 2 holds, thenxu = xv = 3 holds, graph (V)
of Figure 2 is an isometric subgraph ofG andδ∗

= 2 holds. To complete the proof we show
that the only other possibility is forxu = xv = yu = yv = 3 to hold, and in Claim 9 prove
that if this is the case, then graph (VI) of Figure 2 is an isometric subgraph ofG andδ∗

= 2
holds.

We now proceed with the proof. Leta0 := x, a1, . . . , axu := u, b0 := x, b1, . . . , bxv := v,
c0 := y, c1, . . . , cyu := u, andd0 := y, d1, . . . , dyv := v be four geodesics inG. We assume
that the sum

a1b1 + axu−1cyu−1 + bxv−1dyv−1 + c1d1

is minimal amongst all possible quartets of such geodesics. We now consider some properties
that these geodesics must satisfy.

CLAIM 1. (i) Theinequality a1v > b1v holds (and hence, by symmetry, the inequalities
b1u > a1u, c1v > d1v, d1u > c1u, axu−1y > cyu−1y, cyu−1x > axu−1x, dyv−1 > bxv−1x,
and bxv−1y > dyv−1y all hold as well).
(ii) If ux ≥ 2 and a2b1 ≤ 2, then a1b1 = 1.

PROOF. (i): Note thata1v ≥ b1v clearlyholds, and hence it suffices to prove thata1v = b1v

cannot hold. Suppose to the contrary that this were the case. Consider the quarteta1, u, y, v.
Then, asa1y ≥ xy − 1, a1u = xu − 1, anda1v = xv − 1 (sincea1v = b1v), we have

a1y + uv ≥ max{a1u + yv, a1v + yu} + δ∗
+ (a1y − xy + 1).

Therefore,a1y = xy − 1, and hence the quarteta1, u, v, y satisfies

a1y + uv = max{a1u + yv, a1v + yu} + δ∗

anda1y + uv < xy + uv simultaneously, in contradiction to minimality condition(∗) for
x, y, u, v. This completes the proof of (i).

(ii): Clearly a2b1 = 2 holds. So, there exists a vertext ∈ V(G) for which a2, t, b1 is a
geodesic inG. If t 6= a1, then, asG does not contain a 4-cycle or a 5-cycle as an isometric
subgraph, it follows that, asa1b1 6= 1, we must haveta1 = t x = 1. But then we have a
contradiction, asa1b1 + axu−1cyu−1 + bxv−1dyv−1 + c1d1 is by assumption minimal, but
tb1 < a1b1. This completes the proof of (ii). 2

It immediately follows from this claim thatai 6= b j holds for all 1≤ i ≤ xu and 1≤ j ≤ xv;
for if this were not the case, andai = b j were to hold for some 1≤ i ≤ xu and 1≤ j ≤ xv,
then by Claim 1 (i) we would haveai b1 > ai a1 andb j a1 > b j b1, which is clearly impossible.

We now consider what happens in the casea1b1 = 1 holds.
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CLAIM 2. If a1b1 = 1, then the following equalities hold:

(i) ux = ub1, vx = va1;
(ii) xu + yv = xv + yu;

(iii) a1y = b1y = xy − 1.

PROOF. (i): This follows immediately from Claim 1 (i).
(ii): Suppose thatxu+ yv = xv + yu does not hold, and therefore, without loss of generality,
that xu + yv > xv + yu holds. It follows from Eqn (3),a1y ≥ xy − 1, a1u = xu − 1 and
a1v = xv, that

a1y + uv = max{a1v + uy, a1u + vy} + δ∗
+ (a1y − xy + 1),

holds, and therefore, by minimality condition(∗), thata1y ≥ xy holds. Hence,

a1y + uv > max{a1v + uy, a1u + vy} + δ∗,

contradicting the fact thatG is of hyperbolicityδ∗, which completes the proof of (ii).
(iii): We show thata1y = xy − 1 holds; the equalityb1y = xy − 1 then holds by symmetry.
To this end, first note thata1y ≥ xy − 1 clearly holds. Moreover,a1v = xv, a1u = xu − 1
andxu + yv = xv + yu all hold by (i) and (ii). It follows from Eqn (3) that

a1y + uv = max{a1v + uy, a1u + vy} + δ∗
− 1 + (a1y − xy − 1)

holds. Therefore, by minimality condition(∗) for the quartetx, y, u, v we havea1y ≤ xy.
Moreover, ifa1x = xy were to hold, then we would have

a1y + uv = max{a1v + uy, a1u + vy} + δ∗.

But thena1, y, u, v would also be minimal in the sense of condition(∗), which impliesa1v +

uy = a1u + vy (as can be seen by substitutinga1 for x and applying (ii)). However, this
contradicts the fact that botha1v+uy = xv+uy anda1u+vy = xu+vy−1 = xv+ yu−1
hold. This completes the proof of (iii). 2

We now consider what happens in the casea1b1 = 1 holds, together with some extra condi-
tions.

CLAIM 3. If a1b1 = 1, then the following statements hold:

(i) If ux, vx ≥ 2, then either a2y ≥ a1y or b2y ≥ b1y holds;
(ii) If ux ≥ 3, vx ≥ 2 anda2y ≥ a1y, then axu−1cyu−1 = 1 holds;

(iii) If axu−1cyu−1 = 1 and a2y ≥ a1y, then ux≤ 3 holds and, moreover, if ux= 3 then
b1cyu−1 = 2 holds;

(iv) If ux ≥ 3 anduy ≥ 2, then either axu−1cyu−1 = 1 or c1d1 = 1 holds;
(v) If ux, uy ≥ 3 and c1d1 = 1, then axu−1cyu−1 = 1 holds.

In particular, it follows from (i) to (iii) that either ux≤ 3 or vx ≤ 3 must hold, and that if
ux ≥ 4 andvx ≥ 3 both hold, thenvx = 3 and bxv−1dyv−1 = 1.

PROOF. (i): Suppose thata2y < a1y andb2y < b1y bothheld simultaneously, so that, by
Claim 2(iii), a2y = b2y = xy − 2 holds. Since br(G) ≤ 1, we havea2b2 ≤ 1, and therefore
asa2, b2 are distinct we havea2b2 = 1. However, this implies thata1, a2, b2, b1 is a 4-cycle,
and therefore eithera2b1 = 1 or a1b2 = 1. But this immediately leads to a contradiction of
Claim 1(i).
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(ii): Supposeaxu−1cyu−1 6= 1. Consider the path

b1, a1, a2, . . . , axu−1, u, cyu−1

and the vertexy. Sinceb1y = a1y ≤ a2y holds by Claim 2(iii), anduy > byu−1 holds
by Proposition 2, we must haveaxu−2cyu−1 ≤ 2, and therefore by Claim 1(ii), we obtain
axu−1cyu−1 = 1 as required.
(iii): Since ycyu−1 < axu−1y, by Claim 1, anda2y ≥ a1y = b1y by Claim 2(iii), (iii) follows
immediately from (ii) and applying Proposition 2 to the vertexy andthe path

cyu−1, axu−1, axu−2, . . . , a1, b1.

(iv) and (v): Sincea1v > b1v andvc1 > vd1 both hold by Claim 1(i) and clearlyvd1+1 = vy,
(iv) and (v) immediately follow from Proposition 2 and Claim 1(ii) by considering the vertex
v andthe paths

b1, a1, . . . , axu−1, u, cyu−1, . . . , c1, y, d1,

and
b1, a1, . . . , axu−1, u, cyu−1, . . . , c1, d1,

respectively. 2

Recall thatM is by definition equal to min{xu, xv, yu, yv}. We now show thatM is bounded
below by two.

CLAIM 4. The inequality M≥ 2 holds.

PROOF. Without loss of generality, assumexu = 1. Together with Eqn (3), this implies

(yu + 1)+ (xv + 1) ≥ xy + vu ≥ yu + xv + 2,

and hencexv = vu − 1 andyu = xy − 1. Now consider the vertexy path

u, x, b1, . . . , bxv−1, v, dyv−1.

By Proposition 2 and Claim 1(i), we see thatbxv−1dyv−1 = 1 holds, and, by symmetry, i.e.,
swapping the roles ofx andu and using vertexv instead ofy, one obtainsc1d1 = 1 as well.
This implies thatxv ≥ 2 anduy ≥ 2 must both hold, and sincexu + vy = xv + uy holds by
Claim 2(ii), we thus haveyv ≥ 3.

We now show thatyv = 3 holds: ifc2x ≥ c1x, then by Claim 3(iii) (consideringc1d1 =

bxv−1dyv−1 = 1 instead ofa1b1 = axu−1cyu−1 = 1), we would haveyv ≤ 3, as required.
Now, if c2x = c1x − 1 holds, then we must haved2x ≥ d1x as otherwise we would have
c2d2 = 1 since br(G) ≤ 1, and thus eitherc2d1 = 1 or c1d2 = 1, both of which are
impossible. This impliesyu ≤ 2, since otherwise considering the vertexv and the path

d1, c1, . . . , cuy−1, u,

we would obtain a contradiction using Proposition 2. By symmetryxv ≤ 2, but this contra-
dictsxu + vy = xv + uy. Henceyv = 3 as required.

Therefore in view ofxu+yv = xv+yu, we must haveyu = xv = 2 anduv = xy = 3. But
now if we consider the pathu, x, b1, v and the vertexy, then since we clearly haveuy = 2,
andyx = yb1 = yv = 3, by the short-cut property, we must haveuv ≤ 2, which contradicts
the fact thatuv = 3 holds. This completes the proof of the claim. 2
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We now see thatxu + vy = xv + uy must hold.

CLAIM 5. At least two of a1b1, axu−1cyu−1, bxv−1dyv−1, c1d1 are equal to one. In parti-
cular, it follows from Claim2(ii) that xu+ vy = xv + uy must hold.

PROOF. We will show that at least one ofa1b1, axu−1cyu−1, bxv−1dyv−1 is equal to one,
from which the claim immediately follows.

Since
cuy−1, u, axu−1, . . . , a1, x, b1, . . . , bxv−1, v, dyv−1

is a path inG, using vertexy, Claim 1(i), and Proposition 2, we see that there must exist
four consecutive verticest1, . . . , t4 in this path witht1t4 ≤ 2. Note that this can clearly only
happen ift1 equalscuy−1, axu−2, a2 or a1. By symmetry it suffices to consider the case where
t1 = a2 holds. In this case, by Claim 1(ii)a1b1 = 1 holds, and this completes the proof of the
claim. 2

Thus, in particular, by Claims 3, 4, and 5, we have 2≤ M ≤ 3.
We now consider what happens in the casexv = xu = yu = yv = 2 holds.

CLAIM 6. If xv = xu = yu = yv = 2, then either graph(I) or graph(II) of Figure2 is an
isometricsubgraph of G andδ∗

= 2 holds.

PROOF. If xy = 4, then as br(G) ≤ 1, we must haveuv = 1, so thatxy + uv = 5 which
contradicts Eqn (3). Hencexy ≤ 3. By symmetry, it follows thatuv ≤ 3. Hence, by Eqn (3),
it follows thatxy = uv = 3 holds. Now applying Proposition 2 tou, a1, x, b1, v, and vertex
y we see thata1b1 = 1 holds, and, hence, by symmetry, thatc1d1 = 1 holds as well. But then
va1 = vc1 = 2, and asuv = 3, we see by (IB1), thata1c1 = 1. By symmetryb1d1 = 1, and
thus we obtain either graph (I) or graph (II) of Figure 2 as an isometric subgraph ofG and
henceit also follows thatδ∗

= 2 holds, as required. 2

In view of this claim, and the fact that by Claim 5 we havexu + yv = xv + yu, to complete
the proof of Theorem 1 it suffices to assume from now on thatxu, xv ≥ 3 holds. We now
show that if this is the case, thena1b1 must equal one.

CLAIM 7. If xu, xv ≥ 3, then a1b1 = 1, and hence at least one of ux andvx is equal to
three.

PROOF. Supposea1b1 6= 1. By Claim 5 we may assume without loss of generality that
axu−1cyu−1 = 1 holds. Applying Claim 3(iv) (witha1, b1 replaced byaxu−1, cyu−1) we have
bxv−1dyv−1 = 1, and so by Claim 3 (v) (replacingc1, d1 by bxv−1, dyv−1) we havea1b1 = 1,
a contradiction. But now by Claim 3(i)–(iii) at least one ofux andvx must be less than or
equal to three, as required. 2

We now consider what happens in the caseyu = yv = 2.

CLAIM 8. If xu, xv ≥ 3 andyu = yv = 2, then xu= xv = 3, graph(V) of Figure2 is an
isometricsubgraph of G andδ∗

= 2 holds.

PROOF. By Claim 7 we havea1b1 = 1, therefore by Claim 3(i)–(iii), without loss of gen-
erality we haveaxu−1cyu−1 = 1 andux = 3. Moreover, by Claim 3(iv) at least one ofc1d1
andbxv−1dyv−1 is equal to one.

If c1d1 = 1, thenuv ≤ 3 andxy ≤ 4, and sincexy + uv ≥ xu + yv + 2 = 7, we have
uv = 3 and thereforea2v = 2. As va1 = 3 it follows by br(G) ≤ 1 thatb1a2 ≤ 1 holds,
which is a contradiction.
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Thus,c1d1 6= 1 and thereforebxv−1dyv−1 = 1. Hencexy = 3 and thereforeuv = 4. By
the short-cut property, we haveb1c1 ≤ 2, and, asb1c1 = 1 is impossible, there exists a vertex
w with c1w = b1w = 1. Now a1w = b1w = 1 sincea1, a2, c1, w, b1 is a 5-cycle inG.
Moreover, ifwb2 = 1, then the graph induced onx, y, u, v, a1, a2, b1, b2c1, d1, w in G is
graph (V) of Figure 2, so that this graph is an isometric subgraph ofG andhenceδ∗

= 2
holds. Therefore we may assumewb2 6= 1.

As c1x = yx = d1x = 3 andb2x = 2 it follows thatc1b2 ≤ 2 by the short-cut property, and
sincec1b2 = 1 is impossible (otherwisec1, y, d1, b2 would be an induced 4-cycle), we have
c1b2 = 2. Thus, there exists somew′

∈ V(G) with c1w
′
= b2w

′
= 1. Now we havew′b1 = 2,

as otherwise we may replacew by w′. But then looking at the 5-cyclew, c1, w
′, b1, b2 we

have to havew′b1 = 1 or wb2 = 1, either of which leads to a contradiction. This completes
the proof of the claim. 2

In light of this claim, we may assume from now on thatyu ≥ 3 holds. Now, assume that
M = 2 holds, so thatyv = 2 holds. Then asxu + yv = xv + yu, we havexu ≥ 4. Hence,
by Claim 7, we haveyu = xv = 3, xu = 4, anda1b1 = axu−1cyu−1 = 1 (where we
replacex by u, to get yu = 3 andaxu−1cyu−1 = 1). By Claim 3(iii) we also getc1d1 =

bxv−1dyv−1 = 1. Now uv ≤ 4 andxy ≤ 4 and therefore, by Eqn (3),uv = xy = 4 holds.
Applying Proposition 2 to the vertexy andthe pathc2, a3, a2, a1, b1, (noting thatyc2 < a2y
andb1y < a2y both hold), we haveb1a3 ≤ 2 orc2a1 ≤ 2, both of which are impossible.

Hence we may assumeyv ≥ 3 holds, so thatM ≥ 3 holds. The proof of Theorem 1 will
thusbe complete once we have proven the following claim:

CLAIM 9. If M ≥ 3, then xu= xv = yv = yu = 3, graph(VI) in Figure2 is an isometric
subgraph of G andδ∗

= 2 holds.

PROOF. By Claim 7 we havea1b1 = c1d1 = axu−1cyu−1 = bxv−1dyv−1 = 1. By
Claim 3(iii) at least three ofxu, xv, yv, yu are equal to three and thereforexu = xv =

yv = yu = 3, asxu + yv = xv + yu holds. This impliesxy, uv ≤ 5. If xy = 5 holds, then
a2x + a2y = xy = xb2 + b2y anda2x = b2x = 2 both hold. Therefore, since br(G) ≤ 1,
it follows that a2b2 ≤ 1 holds, and therefore without loss of generalitya1b2 = 1 holds
also, which contradicts Claim 1(i). Thereforexy ≤ 4, and by symmetryuv ≤ 4. Since
xy + uv ≥ 2 + xu + yv holds, we thus see thatxy = uv = 4 holds.

Now b1c2 = 2 asyc2 = 2, ya2 = ya1 = yb1 = 3, andc2a1 = a2b1 = 2. By symmetry
b2c1, a1d2, a2d1 ≤ 2. Moreover, asb1c2 = 2, there must exist some vertexw ∈ V(G) so
thatc2, a2, a1, b1, w is a 5-cycle inG. Hence, asG is bridged, by Claim 1 neithera2b1 = 1
nor a1, cyu−1 = 1 can hold, so we must havewa1 = wa2 = 1. By (IB1) it also follows that
wc2 = wb1 = 1 holds. Applying the short-cut property tow, b1, b2, d2 and the vertexy, we
also see thatwd2 ≤ 2 holds.

In the casewd2 = 1, it is easy to see that we obtain graph (VI) as an isometric subgraph
of G (and hence obtainδ∗

= 2), since clearlywb2 = 1 asw, b1, b2, d2 is a 4-cycle, and also
wc1 = wd1 = 1, asw, d2, d1, c1, c2 is a 5-cycle.

In the casewd2 = 2, then without loss of generality we may assumewd1 = 2 also. Now, as
wd1 = wd2 = 2, there must exist some vertexw′ with w, w′, d1 andw, w′, d2 both geodesics
in G by (IB2). Consider the 5-cyclew, b1, b2, d2, w

′. Sinceb1d2 6= 1 andwd2 6= 1, we must
havew′b2 = 1. By symmetry we havew′c1 = 1 also.

Consider now the 4-cyclew, w′, b1, b2. Then without loss of generality we can assume
w′b1 = 1. If w′c2 = 1, thena1, a2, c2, w

′, b1 is a 5-cycle, and hence without loss of genera-
lity, we havew′a1 = 1. But then we can construct graph (VI) (and hence obtainδ∗

= 2) in
the same way as described earlier. So supposewc1 = 1. Then, asxw′

= 2 andxc1 = xc2 =
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FIGURE 6. An old friend with hyperbolicity one.

xu = 3, it follows from the short-cut property thatuw′
≤ 2 must hold. Thus, sinceuv = 4

we must haveuw′
= 2. Now, suppose thatu, t, w′ is a geodesic inG. Thenu, t, w,w′, a2 is

a 5-cycle. Ifuw = 1, then we can construct graph (VI) (and hence obtainδ∗
= 2) as earlier

replacinga2 by w. Thus we can assumeuw = 2, from whichta2 = tw = 1 follows. But now
sincet, w′, b1, a1, a2 is a 5-cycle, and we can assumea1w

′, a2w
′ > 1, it follows thattb1 = 1

must hold, which impliesub1 = 2. This is a contradiction, and hence the proof of the claim
is complete. 2

REMARK 2. If, rather than assuming thatG containsno induced 5-cycles in Theorem 1,
weassumed that for every induced 5-cycle inG there exists a vertex inV(G) that is adjacent
to every vertex in the 5-cycle, then the conclusions stated in Theorem 1 would still be valid,
with ‘bridged’ replaced by ‘the only finite isometric cycles inG are either 3- or 5-cycles’.
This also shows that the conclusions of Corollary 3 would still hold if we replaced ‘bridged’
by ‘interval-bridged’.

5. CONCLUDING REMARKS

In Corollary 2, we gave a classification of the 1-hyperbolic graphs that do not contain
induced5-cycles. In general, 1-hyperbolic graphs appear to have a rich structure. This is indi-
cated by the fact that a graph with diameter two containing no induced 4-cycles is
1-hyperbolic, so that, in particular, geodetic graphs [3] (such as the Petersen graph—see
Figure 6—and the Hoffman–Singleton graph) are 1-hyperbolic. Moreover, 1-hyperbolic
graphscan be constructed, for example, from graphs not containing 4-cycles through adjoin-
ing a vertex which is adjacent to all vertices, or by gluing together pairs of 1-hyperbolic graphs
at a vertex (since, in general, the hyperbolicity of a graph is the maximal hyperbolicity of its
2-connected components).

In connection with the problem of classifying 1-hyperbolic graphs the following result is of
interest.

PROPOSITION4. If G is a connected thin graph, then G is hyperbolic.

PROOF. We are going to prove thatG mustbe 10-hyperbolic. Suppose to the contrary that
G is a connected graph with br(G) ≤ 1 which satisfies the short-cut property, and thatG is not
10-hyperbolic. Letx, y, u, v ∈ V(G) be a quartet for whichδ∗

:= δ(x, y, u, v) is minimal,
so that

xy + uv = max{xu + yv, xv + yu} + δ∗ (4)

andδ∗ > 10both hold. Assume also that
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(♦) xy+uv is minimal amongst all quartets satisfying Eqn (4), and min{xu+ yv, xv + yu}

is in addition minimal amongst such quartets.

Note thatx, y, u, v must be distinct, and that by assumptionδ∗ > 10. Leta0 := x, a1, . . .,
axu := u, b0 := x, b1, . . . , bxv := v, c0 := y, c1, . . . , cyu := u, andd0 := y, d1, . . . , dyv :=

v, be four geodesics inG.
We first show that the quantityM := min{xu, xy, yu, yv} is less than or equal to five.

Suppose to the contrary thatM ≥ 6 holds. Considering the vertexy and the path

cyu−1, u, axu−1, . . . , a1, x, b1, . . . , bxv−1, v, dyv−1,

we see by Proposition 2 that, without loss of generality, we can assumea1b2 ≤ 2 and there-
fore thata1b2 = 2 holds. By Claim 1(i) in the proof of Theorem 1, which holds given the
assumptionswe have made earlier, we havea1v > b1v, and hencea1v ≥ xv. Hence, as
a1b2 ≤ 2, we havea1v = xv. Since in addition we havea1u = xu − 1 anda1x ≥ xy − 1,
it is straightforward to check thata1y = xy − 1 must hold using Eqn (4) and minimality
condition(♦).

Now let w ∈ V(G) be such thata1, w, b2 is a geodesic inG, and consider the vertexy
together with the path

a1, w, b2, . . . , bxv−1, v, dyv−1.

If a1b1 6= 1, then since br(G) ≤ 1 holds, we must haveb1y ≥ xy, and thereforeb2y ≥ xy−1.
Moreover, ifa1b1 = 1 holds, then since Claim 3(i) of Theorem 1 holds under the assumptions
thatwe have made, we can still assume without loss of generality thatb2y ≥ xy − 1 holds.
Thus, by Claim 1(i) and Proposition 2 we see thatbxv−2dyv−1 = 2 must hold.

Let w′ be such thatbxv−2w
′
= dyv−1w

′
= 1. Consider the vertexy and the pathγ to be

a1, w, b2, . . . , bxv−2, w
′, dyv−1.

Sincea1, w, b2, . . . , bxv−2 andb2, . . . , bxv−2, w
′, dyv−1 are both geodesics,γ does not con-

tain a short-cut (i.e. a sequence of four consecutive vertices whose first and last vertices are
at distance less than three from one another). Hence by Proposition 2 we see thatw′ and
bxv−1 mustbe distinct, and thereforebxv−1dyv−1 6= 1 holds. By symmetry, we also see that
a1b1 6= 1 must hold. Now sincebxv−2y ≥ dyv−1y andb2y ≥ a1y both hold, it follows from
br(G) ≤ 1 and Proposition 2, thatyt1 = yt2 must hold for allt1, t2 of γ . Hence, we have
a1y = dyv−1y so thatxy = yv holds. By symmetryxu = uv holds as well. But this implies
xy + uv = xu + yv, which contradicts Eqn (4). ThereforeM ≤ 5 as claimed.

Now, without loss of generality, we assumeux = M . Thusxy ≤ yu + ux ≤ uy + M , and
uv ≤ ux + vx ≤ vx + M both hold. Hence, by Eqn (4)δ∗

≤ 2M , and sinceM ≤ 5, we see
thatδ∗

≤ 10 holds, a contradiction which completes the proof of the proposition. 2

In the proof of this proposition we showed thatG was 10-hyperbolic, although we suspect
that the bound of 10 can be improved upon. In fact, we believe that the sumxy + uv in
the proof of Proposition 4 can be bounded above by 10. This would imply that only finitely
many graphs would have to be excluded as isometric subgraphs—in addition to assuming the
breadth and short-cut properties—to assure thatG would be 1-hyperbolic. However, perhaps
more importantly, this proposition indicates that the concept of short-cuts together with the
implicitly well-known concept of breadth could be useful for both determining the structure
and finding good bounds on the hyperbolicity of hyperbolic graphs.
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APPENDIX

In this appendix, we prove that a finite, bridged graph must satisfy the defining proper-
ties (IB1) and (IB2) of an interval-bridged graph.

PROPOSITION5. If G is a finite, connected, bridged graph, then G is interval-bridged.

PROOF. We will show that the following two statements hold:

(A) There does not exist a quadruple of distinct verticesx, y, v, u ∈ V(G) with xy = 2,
xv = yv = 1, anduv = ux + xv = uy + yv all holding simultaneously.

(B) There does not exist a quintuple of distinct verticesx, y, u, v, w ∈ V(G) with xy = 2,
xv = yv = uw = 1, anduv = vw = ux + xv = vy + yw all holding simultaneously.
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This will complete the proof, since (IB1) is simply a reformulation of (A) whereas, (IB2)
is a consequence of (B), which we see as follows: letx, y, u ∈ V(G) be as in (IB2), so that
xu = yu and xy = 1. We show that (IB2) holds using induction onxu. Whenxu = 1,
(IB2) clearly holds. Assumexu ≥ 2. Considering geodesics, there existx1, y1, x2 ∈ V(G)

with ux1 = x1x2 = uy1 = 1 anxx1 = xx2 + 1 = yy1 = xu − 1. So, by (B),x1y1 ≤ 1.
If xx1 = yx1, then (IB2) holds by induction. So we may assumeyx1 = yu. Now since
yx2 = yy1 = yu − 1, we see thatx2y1 = 1 must hold by applying (IB1) tox2, x1, y1 andy,
and thereforexy1 = yy1 holds, from which (IB2) follows by induction.

We show that statements (A) and (B) hold using induction onuv. If uv ≤ 2 both these
statements are easily seen to hold, since a bridged graph does not contain either a 4-cycle or a
5-cycle as an isometric subgraph.

Now suppose that both (A) and (B) hold foruv ≥ 3, and suppose also thatG contains a
quartetx, y, u, v satisfying the conditions stated in (A).

Without loss of generality, asG is finite, we may assume that for all verticesz ∈ V(G) either
the induced subgraph onV(G)−{z} does not contain any quadruple of vertices satisfying the
conditions in (A), or that if this is the case, then the induced subgraph onV(G)−{z} is not an
isometric subgraph ofG. Moreover, we may assume thatG is minimal in the sense that there
is noz ∈ V(G) with z distinct from each ofx, y, u andv and for which the induced subgraph
on V(G) − {z} is an isometric subgraph ofG.

Now let x′, y′ in V(G) be vertices on some geodesics fromu to x or y, respectively, so that
x′u = y′u = 1, ux = xx′

+ x′u, uy = yy′
+ y′u all hold. Note that we can assumex′

6=

y′, otherwise (A) holds for the quadruplex, y, v, x′, which by induction is a contradiction.
Moreover, ifx′y′

= 1, then (B) holds for the quintuplex, y, v, x′, y′ which, by induction, is
a contradiction. Thusx′y′

= 2 holds.
We now see that without loss of generality there must exist some vertexw ∈ V(G) with

xw = yw = vw = 1 anduw = xu all holding. To see this we consider two possibilities
(which are all we need to consider, as we can clearly interchange the roles ofx and y and,
also the roles ofu andv can be interchanged sincex′y′

= 2):

(1) The induced graph onV(G) − {x} is an isometric subgraph ofG. In this case clearly
there is somew ∈ V(G) with vw = 1 andwx′

= xx′. Moreover, we can assumew 6= y
sincexy = 2 andxw = 1 by minimality. We also haveyw = 1, since ifyw = 2, then
we would contradict the minimality assumption (as we could replacex by w).

(2) The induced subgraph onV(G) − {v} is an isometric subgraph ofG. This implies that
there is somew ∈ V(G) with xw = yw = 1. Note that we must haveuw < uv. Suppose
uw = uv, then we could interchange the roles ofv andw, and the induced subgraph
on V(G) − {w} would then be an isometric subgraph ofG in which the quadruple
x, y, u, v satisfied (A), contradicting our minimality assumption forG. Thereforeuw <

uv. Moreover,vw = 1 as otherwisex, y, v, w is an isometric 4-cycle inG and therefore
xu = uw.

We now show that there must exist somew′
∈ V(G) with xx′

= ww′ andw′x′
= w′y′

=

uw′
= 1. Clearly, there must exist somew′

∈ V(G) with uw′
= 1 andww′

+1 = uw. More-
over, if w′

= x′, then the quintuplex′, u, y′, y, w would satisfy (B) which is a contradiction
to the inductive hypothesis. Thusx′

6= w′ andy′
6= w′. In addition, considering the quintuple

x′, u, w′, x, w, we see thatx′w′
= 1 must hold using (B) and induction. Thusw′ exists as

claimed.
To complete the proof of (A), takew′′

∈ V(G) with w′w′′
= 1 andww′′

= ww′
− 1. Then

we havew′x > x′x, as otherwise by induction and (B) applied tox, v, y, w′, y′ we would
havexy = 1, a contradiction. By symmetryw′y > y′y. Thus applying (A) tox, x′, w′, w′′
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together with induction, we see that we must havex′w′′
= 1. Therefore by symmetry we also

havey′w′′
= 1. But thenx′, y′, w′′, u is an isometric 4-cycle inG, which contradicts the fact

thatG is bridged. This completes the proof of (A).
The proof of (B) is similar, and we only outline it. Letx, y, u, v, w ∈ V(G) be vertices

satisfying the conditions given in (B). Take them to be minimal as in the proof of (A). As
described in the proof of (A), we can assume that one of the verticesx, y, u, v, w can be
removed yielding an isometric subgraph. If this vertex is eitheru or w, then it can be seen,
using the same reasoning as in the proof of (A), that we must havexy = 1 which is a con-
tradiction. Therefore, we may assume this vertex is one ofx, y or v. Hence, there must exist
some vertexz ∈ V(G) with xz = yz = vz = 1 and, without loss of generality,zu = xu. Let
x1, y1 be such thatx1x = 1, y1y = 1, x1u = xu − 1 andy1w = yw − 1. Then considering
the verticesu, y, z and y1 we see thaty1z = 1 must hold by (A). Similarly we must have
x1z = 1. But then we must also havex1, y1 = 1, so thatx1, x, v, y1, y is an induced 5-cycle,
a contradiction that completes the proof of (B). 2
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