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Hyperbolic Bridged Graphs

JACK H. KOOLEN AND VINCENT MouLTon'

Given a connected gragh, we take, as usual, the distancgbetween any two vertices y of G
to be the length of some geodesic betwagemdy. The graphG is said to bes-hyperbolic, for some
§ > 0, if for all verticesx, y, u, v in G the inequality

XY+ uv < max{xu+ yv, Xv + yu} + 6

holds, andG is bridgedif it contains no finite isometric cycles of length four or more. In this paper,
we will show that a finite connected bridged graph is 1-hyperbolic if and only if it does not contain
any of a list of six graphs as an isometric subgraph.

(© 2002 Elsevier Science Ltd. All rights reserved.

1. INTRODUCTION

In this paper, all graphs are simple and connected, but they are not necessarily finite. As is
well known, a (connected) grapgh comes equipped with a natural metric on its vertex set
V (G), given by defining the distanocey between any pair of vertices y € V(G) to be the
length of some shortest path @eodesidetweerx andy. Given a quartex, y, u, v € V(G),
defined(x, y, u, v) to be the absolute value of the difference between the largest and the
second largest of the three sums

XU+ yv, Xv + yu, and XY + Uv.

The graphG is calleds-hyperbolic, for some& > 0, if we haved(x, y,u,v) < § for all
quartet, y, u, v in V(G), or, equivalently, if

XYy + uv < max{xu+ yv, Xxv + yu} + 8 (1)

holds for all quartet, y, u, v in V(G). The hyperbolicity,§*, of G is then defined to be
the supremum of the valuésx, y, u, v) taken over all quartets, y, u, v in V(G), andG is
calledhyperbolicif its hyperbolicity is finite.

Hyperbolic graphs arise naturally in the area of geometric group theory as Cayley graphs of
hyperbolic groupg11] (see [10, 11for more details on such groups). Moreover, the notion
of hyperbolicity is of implicit interest in metric graph theory [1, 2], and—due to the fact that
hyperbolicity is closely related to concepts arising in the study of trees—also in T-theory [8],
classificatiortheory [6], and phylogenetic analysis [13].

In [5], we proposed the study of graphs with low hyperbolicity. Such graphs can have an
interestingstructure: for example, in [2, Proposition 1] (see also [7]), it is shown that the
0-hyperbolic graphs are precisely théock graphs, i.e., graphs in which every 2-connected
subgraph is complete, and in [5] tréhiordal graphs, i.e., graphs containing imalucedcycles
of length exceeding three [4, 12], have hyperbolicity strictly bounded by two. As usual, the
diameterof a connected grapB is defined to be the maximum distance between any pair of
vertices inG. Using Eqn (1) once again, it is straightforward to check that a graph with finite
diameterd is (ZL%J)—hyperbolic, and, using this fact, it can be seen thé&tm + i)-cycle,

m > 1, has hyperbolicity 2nfiori = 0, 2,3 and, arguing directly, that @m + 1)-cycle has

TTo whom correspondence should be addressed.
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FIGURE1. The 2mx 2m-grid, with chords as indicated in the diagram—a part of the so-chégdgonal
grid—forms a bridged graph with hyperbolicity at least 2as can be easily checked by considering the
four corner vertices).
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FIGURE 2. Some bridged graphs with hyperbolicity 2.

hyperbolicity 2m— 1. In consequence, a finite isometric cycle contained in a 1-hyperbolic
graph must have length three or five. Hence, it is perhaps a bit surprising to note that the
class of so-calledbridged graphs, consisting of graphs that do not contain fisivenetrid
cycles of length larger than three [4, 9, 16], contains graphs with arbitrarily large hyperbolicity
(e.g.see Figure 1). In this paper, we classify the finite 1-hyperbolic bridged graphs or—
equialently—the finite 1-hyperbolic graphs that do not contain induced (or, equivalently,
isometric) 5-cycles. In particular, we prove thatfis a finite connected bridged graph, then
G is 1-hyperbolic if and only ifG contains none of the graphs in Figure 2 as an isometric
subgraph.

Theproof of this result relies on two key properties that a 1-hyperbolic graph enjoys, which
we now describe. The first property is related to the concepthinfbigons[15] and the

TIn general, a subgrapH of a graphG is called isometric if the distance between any pair of verticed iis the
same as that i. Thus, an isometric cycle is clearly induced, in particular, a chordal graph is always bridged, and,
conversely, every induced 5-cycle is isometric.
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FIGURE 3. Properties (IB1) and (1B2) of an interval-bridged graph.

fellow traveller property14], both of which are standard tools used in the study of hyperbolic
groups.

Given a grapltG, we define thénterval [x, y] between any two vertices y € V(G) to be
the set of verticeg € V (G) that satisfy the equalityz+ zy = xy. In addition, we define the
breadth of the interval between two verticesndy in V(G) to be the maximum value for
uv, taken over all vertices, v in the interval[x, y] satisfyingxu = Xxv, and thebreadth of
G, denoted biG), to be the supremum of the interval breadths taken over all interv&slih
a graph iss-hyperbolic, then it is straightforward to check using Eqn (1) that its breadth is at
mosts. Thus we obtain the first key property that a 1-hyperbolic grapatisfies.
Breadth property: The breadth of5 is at most one.

The second property looks slightly more technical, but also follows in a straightforward
fashion from Eqgn (1).
Short-cut property: If ty, to, t3, t4 is a path inG with tit3 = tty = 2, and there is some
x € V(G) such thaixt; < xtp = xt3 > xt holds, thert;t4 < 2.

We define a graph that satisfies both the breadth and short-cut propertieghio.bie
Section 2, we prove that a thin graph not containing induced 5-cyciateival-bridged, i.e.
the graph satisfies the following two properties (see Figure 3).

(IB1) If x,y,u,v € V(G) are distinct vertices witlku = yu, xv = yv = 1andx, y € [u, v],
thenxy = 1.

(IB2) If x,y,u € V(G) aredistinct vertices withxu = yu andxy = 1, then there exists
some vertexw € V(G) with xw = yw = 1 andw € [x, u] N[y, u].

Note that a finite bridged graph satisfies both of these properties (see appendix for a proof
of this fact), so that such a graph is, in particular, interval-bridged. In addition, it follows as
a straightforward consequence of properties (IB1) and (IB2) that an interval-bridged graph
G cannot contain an isometriccycle for anyn > 4, n # 5 and also that if5 contains an
isometric 5-cycle, then it must also contain a vertex that is adjacent to every vertex in this
5-cycle.

Given an interval-bridged grap®, we show in Section 3, th& satisfieghe breadth prop-
erty if and only if graph (lll) in Figure 2 is not an isometric subgraphfand also thaG
satisfies the short-cut property if and only if graph (V) in Figure 2 is not an isometric subgraph
of G (seeCorollary 5 and Theorem 2, respectively). Therefore, an interval-bridged graph is
thinif and only if it contains neither graph (lll) nor graph (IV) as an isometric subgraph.

We now state the key result in this paper, whose proof can be found in Section 4.
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THEOREM1. Let G be a connected, thin graph that contains no induseycles.Then
G is 2-hyperbolic and bridged. Moreover, G has hyperbolicity equal to two if and only if G
contains at least one of the grap(, (I1), (V) or (VI) of Figure2 as an isometric subgraph.

Notethat as a corollary of the above classification of thin interval-bridged graphs and this
theorem we obtain the main result of [5], namely:

COROLLARY 1 ([5, THEOREM1]). If G is a connected, chordal graph, then Gidyper-
bolic. Moreover G has hyperbolicity equal to two if and only if it contains at least one of the
graphs(l) or (1) in Figure 2 as an isometric subgraph.

As we have already seen, a finite isometric cycle in a 1-hyperbolic graph must have length
three or five. Thus, as a consequence of the above classification of thin interval-bridged graphs
and Theorem 1, we obtain the following result.

COROLLARY 2. Let G be a connected graph that contains no induseycles.Then G is
1-hyperbolic if and only if G is interval-bridged and does not contain any of the graphs in
Figure 2 as an isometric subgraph.

In view of the fact that finite bridged graphs are interval-bridged (see Appendix), we imme-
diately obtain the following result in view of the last corollary.

COROLLARY 3. Let G be a finite connected bridged graph. Then G-ksyperbolicif and
only if G does not contain any of the graphs in Fig@ras an isometric subgraph.

To conclude, we discuss in Section 5 the problem of characterizing 1-hyperbolic fraphs
In particular, we prove in Proposition 4 that a thin graph is hyperbolic. This indicates that the
concepbf short-cuts might be a useful tool for the study of hyperbolic graphs in general.

2. THIN GRAPHS

In this section, we present some results concerning thin graphs that will be used throughout
the rest of this paper.

ProPOSITIONI. If G is a connected, thin graph that contains no indudeclclesthen it
is interval-bridged.

PROOF. We must show thab satisfiegroperties (IB1) and (1B2).

(IB1): This property follows directly from big) < 1.

(IB2): Let x,y,u € V(G) be distinct vertices withku = yu andxy = 1. If xu = 1,
then (IB2) clearly holds withw := u. So suppos&u > 2, and letx;, y1 be on geodesics from
x tou andy to u, respectively, withxx; = y1y = 1 andxiu = yju = xu — 1. Applying
the short-cut property to the path, x, y, y1 and the vertexi, we see thakiy; < 2 holds. If
X1 = Y1, then (IB2) holds withw := x3. If x1y1 = 1, thenx, y, y1, X1 is a 4-cycle and since
br(G) < 1, without loss of generality we havey; = 1, and so (IB2) holds withw := ;.
Now if X1y1 = 2, then letv be such thakyv = y1v = 1. Thenxy, v, y1, Y, X is a 5-cycle, and
since (IB2) must hold if eithexy; or yx; equals one, we can assumg = yx; = X1y1 = 2.
Hence, we must havev = yv = 1 asG contains no 5-cycles and I&§ < 1. If uv = xu,
then since biG) < 1, we havexiy; < 1, which is a contradiction. This impliesy = xu—1,
and therefore (IB2) holds witlv := v. This completes the proof of the proposition. O

TWe recently discovered through a personal communication that Bandelt and Chepoi appear to have a classification
for 1-hyperbolic graphs—see Remark 1 for more details.
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We now present a consequence of the short-cut property that holds for thin graphs, which will
beused later in the proof of Theorem 1.

PROPOSITION2. Suppose that G is a connected, thin graph. Lett., t, be a pathin G,
n > 4,and xe V(G). If xt; < xt; and either xt{ < Xth_1 < Xt,_» or Xt, < Xth_1 holds,
then there exists somel,<i < n — 3, with {tj;3 < 2.

PrOOF. First we assume that bo#tt; < xt, andxt, < Xxt,—1 hold. In this case, there must
clearly existsome, j with 1 <i, j <nandi +1 < j, suchthakt = xtj andxt, = xt +1,
foralli < p < j.Now, if j =i 4+ 2, then since biG) < 1, we haveijt; < 1, and hence
titi+s < 2, whereasiff > i + 3 thent;tj.3 < 2 clearly holds by the short-cut property. Thus,
in view of these facts, we are reduced to considering the case wherethethxt,_1 = Xth_2
andxt,_3 < xt, hold. But thent,_st, < 2 by the short-cut property, which completes the
proof. a

The following result follows more-or-less immediately from this proposition.

COROLLARY 4. If G is a connected, thin graph, then any isometric cycle in G must have
lengththree or five.

REMARK 1. In fact, Proposition 2 implies that cycles in finite, connected, thin graphs must
in general satisfy even stronger conditions than the one we have presented in Corollary 4.
For example, one can show that every cycle of length at least six has to have at least two
essentially different short-cuts. Bandelt and Chepoi appear to have characterized 1-hyperbolic
graphs using similar properties for cycles of length at least six, and the exclusion of a finite
set of graphs occurring as isometric subgraphs (personal communication).

3. INTERVAL-BRIDGED GRAPHS

We begin this section by characterizing the interval-bridged graphs with breadth &,least
k > 1. To do this we will need the following result.

PROPOSITION3. Suppose that G is a connected, interval-bridged graph, and x €
V(G). Iftg:=u,ty,...,th ;== visapathin G, and we define

m:= ngax {xt} — max{xu, xv},
1= n

=u,...,

then w + m < n holds.

PrOOF. First note that we may assume without loss of generality ttha4 tj holdsfor
0 <i # j < n.We prove the proposition using induction mn Clearly the proposition holds
for m = 0. Assuman > 1. Then there exists somjel < j < n— 1, with

,,,,,

Hence, there exisp,q,0 < p < j < g < n, for whichxtp = xty = xtj — 1 andxt =
Xtj, p <i < q, all hold.

If g — p = 2, then by applying (IB1) tdp, tpy1, tp12 andx, we see thatpty = 1 holds.
Thus,to, t1, ..., tp, tg, . .., tn is @ path inG of lengthn — 1, and since

max {Xt} = max {xt}—1,
i=0,...,p,q,...,N i=0,...,n

the proposition follows by induction.
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FIGURE 4. The double cardhouse graph of height

Thus we may assumg — p > 2. Now, by (IB2), for eachj,ti 1, p <i < q — 1, there
exists a vertexw; € V(G) with witj = witiy1 = 1, andxw; = xt — 1. Moreover, by (IB1)
we havewjwi;1 < 1forp <i < g —2,tpwpy1 < 1, andtqwg—2 < 1. Hence, once any
possible repeats are removed from the sequence of vertices

to,t]_,...,tp,wp+1, ...,quz,tq,...,tn,

a path inG of length less than or equal to— 1 is obtained, and since

max{_ max  {xt}, max {Xwi}] = max {xt}—1,
i=0,...,p.q,...,n i=p+1,p+2,...,-2 i=0,...,n
the proposition follows by induction. O

COROLLARY 5. Let G be a connected, interval-bridged graph. Thhe(G) > k, k > 1, if
and only if G contains the graph depicted in Figdras an isometric subgraph. In particular,
br(G) < 1if and only if graph(lll) in Figure 2 is not contained as an isometric subgraph
inG.

ProoF. Clearly brG) < k implies that the graph pictured in Figure 4 is not an isometric
subgraptof G.

Conversely, suppose 8§ > k holds. We show that this implies that the graph pictured in
Figure 4 must be an isometric subgraphzof

Sincebr(G) > k, we must have vertices, y, u, v € V(G) with xu = Xv, uv = k, and
XU+ uy = xv + vy = xy. Note that by Proposition 3, we must haxe, yu > k. Now

lettp := u,ty,...,t := v be a geodesic iG. By Proposition 3 we havat; < xu and

yti < yu, forall 0 < i < k. Sincexu + uy = xy, it follows that bothxt = xu and
yt = yuhold for all 0 <i < k. Now applying (IB2) tatjtj 11 andx foreach O<i <k —1,

we obtain a vertexwv; with witi = witiy1 = 1 andxw; = xtp — 1,0 < i < k- 1.
By (IB1), applied totj, wi, wij+1 andx, we havew;wj+; = 1 for each 0< i < k — 2, and
hence, by Proposition 3y, w1, ..., wk_1 iS a geodesic iiG. Thus we have constructed the

first ‘layer’ of triangles bordering the central geodesic of lenktim the graph pictured in
Figure 4. By repeatedly applying (IB1), (IB2) and Proposition 3 in a similar fashion, it is now
straightforvard to construct the graph in Figure 4 layer by layer, and to check that this graph
is indeed an isometric subgraph@f We leave the details to the reader. O

In general, graphs with bounded breadth are not necessarily hyperbolic, even if they have
bounded degree—see Figure 5. Hence, it is interesting to note that in [15] Papasoglu shows
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FIGURE5. An infinite string of odd-length cycles. This graph has breadth zero and bounded degree, but
it is not hyperbolic.

that if the Cayley graph associated to a finitely generated group has bounded breadth, then
this Cayley graph is necessarily hyperbolic.

Note that a complete graph on four vertices minus an edge clearly has breadth one, and that
this is an induced subgraph in every one of the graphs (1)-(VI) pictured in Figure 2. Hence,
it immediately follows from Corollary 3 that an interval-bridged graptwith breadth zero
is 1-hyperbolic. It is thus natural to ask the following question: supposeéxhsian interval-
bridged graph with bounded breadth, theGifiyperbolic?

We now classify the interval-bridged graphs that satisfy the short-cut property.

THEOREM 2. Let G be a connected, interval-bridged graph. Then G contains gf&ph
in Figure 2 as an isometric subgraph if and only if it does not satisfy the short-cut property.

PROOF. ltis straightforward to see that@ containsgraph (IV) as an isometric subgraph,
thenG does not satisfy the short-cut property.

Conversely, ifG does not satisfy the short-cut property, then there must exist some path
t1, to, t3, t4 in G with t1t4 = 3, and a vertex € V(G) with xt, = xt3, xt; < Xt and
Xty < xt3.

Note that by (IB2), there must exist some veriex € V(G) with wit, = w1tz = 1, and
w1X = Xty — 1. Now if xty < Xts, then it follows by (IB1) thatwit; = wit4 = 1 holds, and
hencetits < 3, a contradiction. Thusts = xt3. But then, by (IB2), there must exist a vertex
wy € V(G) with watz = woty = 1, andxw, = xt3 — 1. Moreover, by (IB1) we must have
wiw2 = wit; = 1.

Now consider the verticeg, w1, wo, all of which are at distancgt, — 1 from x. Then
by repeated application of (IB1) and (IB2) to these vertices using the vgrtéxis now
straightforward to show that graph (IV) can be constructed as an isometric subgr@pbyof
adding ‘layers’ to the graph induced on the vertitgd,, t3, t4, w1, w2 in the same way that
was described in the proof of Corollary 5. The details are left to the reader. o

4. PROOF OFTHEOREM1

The proof of Theorem 1 is similar in spirit to the proof of [5, Theorem 1], although it is
significantlymore complicated. As the proof is quite lengthy, we will break it up into a series
of interconnected claims for the sake of clarity.

Let G be a connected, thin graph that does not contain any induced 5-cycles. Note that
G is interval-bridged by Proposition 1, ar@ is bridged by Corollary 4. Now, given any
C € IN, defines* = 4§ to be the maximum value df(x, y, u, v) taken over all quartets
X, ¥, U, v € V(G) satisfying

XU+ yv, Xv+yu < Xxy+uv <C (2)

(see Section 1 for the definition 8fx, vy, u, v)). Note thatt* < C clearly holds. We will show
that§* < 2 holds, and that, in the cagé = 2 holds,G must contain one of the graphs (l),
(1D, (V) or (V1) in Figure 2. The theorem follows from this.
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Suppose* > 1.Letx, y, u,v € V(G) be a quartet satisfying Eqn (2) such that
Xy + Uv = max{xu+ yv, Xxv + yu} + §* (3)

holds, and assume
(*) Xy + uv is minimal amongst all quartets satisfying Eqn (3).
Notethatx, y, u, v must be distinct.
Before proceeding, for the reader’s convenience we briefly outline the rest of the proof. We
consider the quantity
M := min{xu, Xv, yu, yv}.

As a consequence of Claims 3, 4, and 5 we see that® < 3 must hold. In Claim 5, we
prove thatxu+yv = xv+yumust hold. In Claim 6 we show thatifu = xv = yu=yv = 2
holds, then either graph (1) or (I1) in Figure 2 must be an isometric subgra@heofds* = 2
holds.Using these facts we can then assume, without loss of generalitythead > 3 holds.
In Claim 8 we show that if in additiogu = yv = 2 holds, therxu = xv = 3 holds, graph (V)
of Figure 2 is an isometric subgraph @fandé* = 2 holds. To complete the proof we show
that the only other possibility is fotu = xv = yu = yv = 3 to hold, and in Claim 9 prove
that if this is the case, then graph (V1) of Figure 2 is an isometric subgraghasfdé* = 2
holds.

We now proceed with the proof. Lap := X, a1, ..., axy := U, bg := X, b1, ..., by, := v,
Co:=Y,C1,...,Cyy:=U,anddp :=y,dy, ..., dy, := v be four geodesics i®. We assume
that the sum

aiby + axy-1Cyu—1 + bxy—10y,—1 + €101

is minimal amongst all possible quartets of such geodesics. We now consider some properties
that these geodesics must satisfy.

CLAaim 1. (i) Theinequality av > byv holds(and hence, by symmetry, the inequalities
biu > aqu, v > div, dhu > CuU, &y—1y > Cyu-1Y, Gyu—1X > axu—1X, Gyy—1 > Byy_1X,
and by,_1y > dy,_1Y all hold as well).

(ii) Ifux > 2and @by < 2,thengb; = 1.

PrROOF. (i): Note thatayv > byv clearlyholds, and hence it suffices to prove that = biv
cannot hold. Suppose to the contrary that this were the case. Consider the gartgt v.
Then, asyy > Xy — 1,a1u = xu — 1, andajv = xv — 1 (sinceajv = biv), we have

a1y + uv > maxfau + yv, aqv + yu} + 8* + (a1y — Xy + 1).
Thereforea1y = xy — 1, and hence the quartt, u, v, y satisfies
a1y + uv = maxfaiu + yv, aqv + yu} + §*

andaiy + uv < Xy + uv simultaneously, in contradiction to minimality conditigr) for
X, Y, U, v. This completes the proof of (i).

(i)): Clearly axb; = 2 holds. So, there exists a vertexe V(G) for which ap, t, b is a
geodesic inG. If t # a1, then, asG does not contain a 4-cycle or a 5-cycle as an isometric
subgraph, it follows that, agib; # 1, we must haveéa; = tx = 1. But then we have a
contradiction, asub; + axu—1Cyu—1 + bxy—1dyy,—1 + €101 is by assumption minimal, but
tby < aibi. This completes the proof of (ii). O

It immediately follows from this claim tha # bj holds forall 1<i < xuand 1< j < xv;

for if this were not the case, aragl = bj were to hold for some ¥ i < xuand 1< j < xv,

then by Claim 1 (i) we would hava b, > & a; andbja; > bjby, which is clearly impossible.
We now consider what happens in the cagey = 1 holds.
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CLAIM 2. If ajby = 1, then the following equalities hold:

() ux =uby, vx = vay;
(i) xu+ yv = xv+ yu;
(i) a1y = b1y =xy — 1.

PrROOF. (i): This follows immediately from Claim 1 (i).
(i)): Suppose thatu+ yv = xv + yu does not hold, and therefore, without loss of generality,
thatxu + yv > Xv + yu holds. It follows from Eqn (3)a1y > xy — 1,a;u = xu— 1 and
a1v = Xv, that

a1y + uv = maxfaiv + uy, aju + vy} + 8* + (a1y — xy + 1),
holds, and therefore, by minimality conditiér), thata;y > xy holds. Hence,
a1y + uv > maxfav + uy, agu + vy} + 8%,

contradicting the fact thas is of hyperbolicitys*, which completes the proof of (ii).

(iii): We show thata;y = xy — 1 holds; the equalitip1y = xy — 1 then holds by symmetry.
To this end, first note that;y > xy — 1 clearly holds. Moreovegiv = xv, agu = xu—1
andxu+ yv = xv + yu all hold by (i) and (ii). It follows from Eqgn (3) that

a1y + uv = maxfagv + uy, agu + vy} + 8 — 1+ (agy — xy — 1)

holds. Therefore, by minimality conditiox) for the quartetx, y, u, v we havea;y < xy.
Moreover, ifa;x = xy were to hold, then we would have

a1y + uv = maxfav + uy, aju + vy} + 8*.

But thenas, y, u, v would also be minimal in the sense of conditian, which impliesajv +
uy = aju + vy (as can be seen by substitutiag for x and applying (ii)). However, this
contradicts the fact that botjv +uy = xv+uyandaju+vy = Xu+vy—1=xv+yu—1
hold. This completes the proof of (iii). ]

We now consider what happens in the cage; = 1 holds, together with some extra condi-
tions.

CLaim 3. If azb; = 1, then the following statements hold:

() Ifux, vx > 2, then either ay > a1y or bpy > byy holds;
(i) Ifux > 3,vx > 2andayy > a1y, then g,_1Cyy—1 = 1 holds;
(i) Ifaxy_1cyu—1 = 1and gy > a1y, then ux< 3 holds and, moreover, if ux= 3 then
biCyu—1 = 2 holds;
(iv) Ifux = 3anduy > 2, then either g,_1Cyy—1 = 1 or c1d; = 1 holds;
(v) Ifux,uy > 3and qd; = 1, then §y_1Cyy—1 = 1 holds.

In particular, it follows from (i) to (iii) that either ux< 3 or vx < 3 must hold, and that if
ux > 4 andvx > 3 both hold, thervx = 3 and Iy, _1dy,—1 = 1.

PrROOF. (i): Suppose thatyy < a1y andboy < bpy bothheld simultaneously, so that, by
Claim 2(iii), ay = bpy = xy — 2 holds. Since biG) < 1, we haveaybh, < 1, and therefore
asap, by are distinct we havayby, = 1. However, this implies thati, ag, by, by is a 4-cycle,
and therefore eitheapb; = 1 orajby = 1. But this immediately leads to a contradiction of
Claim 1(i).
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(if): Supposeayy—1Cyu—1 # 1. Consider the path
bla 8.1, a29 D) aXU—ls uv Cyu—l

and the vertexy. Sinceby = a1y < apy holds by Claim 2(iii), anduy > by,_1 holds
by Proposition 2, we must hawg,_»Cyy—1 < 2, and therefore by Claim 1(ii), we obtain
axyu—1Cyu—1 = 1 as required.

(iii): Since ycyu—1 < axu—1Y, by Claim 1, andpy > a1y = byy by Claim 2(jii), (iii) follows
immediately from (ii) and applying Proposition 2 to the verieandthe path

Cyu—1, @u—1, Axu—2, - - -, a1, b1.

(iv) and (v): Sinceagv > byv andvcy > vdjp both hold by Claim 1(i) and clearlyd; +1 = vy,
(iv) and (v) immediately follow from Proposition 2 and Claim 1(ii) by considering the vertex
v andthe paths

bl, ap, ..., au-1, U, Cyy-1,...,C1, Y, dl,

and
blv a-lv sy a-XU—lv u, Cyu—l, R Cl» dlv

respectively. O

Recall thatM is by definition equal to mindu, xv, yu, yv}. We now show thaM is bounded
below by two.

CLAIM 4. The inequality M> 2 holds.

PrROOF. Without loss of generality, assurme = 1. Together with Eqgn (3), this implies
(yu+ 1)+ Xv+1)>Xy+vu>yu+xv+2,
and hencexv = vu — 1 andyu = xy — 1. Now consider the vertex path
U, X, by, ..., Bxy—1, v, dyy_1.

By Proposition 2 and Claim 1(i), we see thgt,_1dy,_1 = 1 holds, and, by symmetry, i.e.,
swapping the roles of andu and using vertex instead ofy, one obtaingid; = 1 as well.
This implies thatxv > 2 anduy > 2 must both hold, and sinceu + vy = xv + uy holds by
Claim 2(ii), we thus havev > 3.

We now show thayv = 3 holds: ifcox > c1x, then by Claim 3(iii) (consideringid; =
bxy—1dyy,—1 = 1 instead ofayb; = axy-_1Cyu—1 = 1), we would haveyv < 3, as required.
Now, if cox = ¢1x — 1 holds, then we must hawx > dix as otherwise we would have
cod> = 1 since brG) < 1, and thus eithecod; = 1 or cidp = 1, both of which are
impossible. This implieyu < 2, since otherwise considering the verteand the path

dl’ Cl’ DR} Cuyfl, uv

we would obtain a contradiction using Proposition 2. By symmgiry< 2, but this contra-
dictsxu + vy = Xv + uy. Henceyv = 3 as required.

Therefore in view oku+yv = Xv+yu, we must havgyu = xv = 2 anduv = xy = 3. But
now if we consider the path, x, b1, v and the vertey, then since we clearly havey = 2,
andyx = yb; = yv = 3, by the short-cut property, we must hawe < 2, which contradicts
the fact thauiv = 3 holds. This completes the proof of the claim. O
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We now see thatu + vy = Xv 4+ uy must hold.

CLAIM 5. At least two of @b, axy—1Cyu—1, bxy—1dy,—1, C10; are equal to one. In parti-
cular, it follows from Claim2(ii) that xu+ vy = xv + uy must hold.

ProOF. We will show that at least one @b, axy—1Cyu—1, bxy—1dy,—1 is equal to one,
from which the claim immediately follows.
Since
Cuy—1, U, @xu—1, ..., a1, X, b1, ey be,]_, v, dyv,]_

is a path inG, using vertexy, Claim 1(i), and Proposition 2, we see that there must exist
four consecutive vertices, .. ., ts in this path witht;t4 < 2. Note that this can clearly only
happen ity equalscyy—1, axu—2, a or a;. By symmetry it suffices to consider the case where
t1 = ap holds. In this case, by Claim 1(igb1 = 1 holds, and this completes the proof of the
claim. a

Thus, in particular, by Claims 3, 4, and 5, we have 21 < 3.
We now consider what happens in the case= xu = yu = yv = 2 holds.

CLAIM 6. If xv = Xu = yu = yv = 2, then either graplfl) or graph(ll) of Figure2is an
isometricsubgraph of G and* = 2 holds.

PROOF. If xy = 4, then as biG) < 1, we must havelv = 1, so thatxy + uv = 5 which
contradicts Eqn (3). Hencey < 3. By symmetry, it follows thativ < 3. Hence, by Eqgn (3),
it follows thatxy = uv = 3 holds. Now applying Proposition 2 tg a;, X, by, v, and vertex
y we see thatyb; = 1 holds, and, hence, by symmetry, thad; = 1 holds as well. But then
va; = vcp = 2, and asiv = 3, we see by (IB1), thadyc; = 1. By symmetryb;d; = 1, and
thus we obtain either graph (1) or graph (II) of Figure 2 as an isometric subgra@haoid
henceit also follows thats* = 2 holds, as required. |

In view of this claim, and the fact that by Claim 5 we hau¢+ yv = xv + yu, to complete
the proof of Theorem 1 it suffices to assume from now on thatxv > 3 holds. We now
show that if this is the case, thagb; must equal one.

CLAIM 7. If xu, xv > 3,then ab; = 1, and hence at least one of ux anx is equal to
three.

PROOF. Supposeayib; # 1. By Claim 5 we may assume without loss of generality that
axu—1Cyu—1 = 1 holds. Applying Claim 3(iv) (withay, by replaced byayy—1, Cyy—1) we have
bxy—1dy,—1 = 1, and so by Claim 3 (v) (replacing, d; by by,_1, dy,_1) we haveayb; = 1,

a contradiction. But now by Claim 3(i)—(iii) at least onewf andvx must be less than or
equal to three, as required. O

We now consider what happens in the cgge= yv = 2.

CLAIM 8. If Xu, Xxv > 3andyu = yv = 2, then xu= xv = 3, graph(V) of Figure2is an
isometricsubgraph of G and™ = 2 holds.

PrRoOF. By Claim 7 we haveaib; = 1, therefore by Claim 3(i)—(iii), without loss of gen-
erality we haveayy_1Cyy—1 = 1 andux = 3. Moreover, by Claim 3(iv) at least one ofd;
andby,_1dy,_1 is equal to one.

If cud; = 1, thenuv < 3 andxy < 4, and sincexy + uv > xXu+ yv + 2 = 7, we have
uv = 3 and thereforepv = 2. Asva; = 3 it follows by brG) < 1 thatbjap < 1 holds,
which is a contradiction.
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Thus,cid; # 1 and therefordoy,_1dy,—1 = 1. Hencexy = 3 and thereforeiv = 4. By
the short-cut property, we hatec; < 2, and, a®;c; = 1 is impossible, there exists a vertex
w with cqw = byw = 1. Nowajw = bjw = 1 sinceay, ap, ¢1, w, by is a 5-cycle inG.
Moreover, ifwby = 1, then the graph induced o9y, u, v, a1, ag, by, bocy, d1, w in G is
graph (V) of Figure 2, so that this graph is an isometric subgrap@ ahdhences* = 2
holds. Therefore we may assumé, = 1.

Ascix = yx = dix = 3andbyx = 2 it follows thatci b, < 2 by the short-cut property, and
sinceciby; = 1 is impossible (otherwisey, y, di, b, would be an induced 4-cycle), we have
c1bo = 2. Thus, there exists somé€ < V (G) with c;w’ = bow’ = 1. Now we havev'b; = 2,
as otherwise we may replaee by w’. But then looking at the 5-cycle, c1, w’, b, b, we
have to havev’b; = 1 orwby = 1, either of which leads to a contradiction. This completes
the proof of the claim. O

In light of this claim, we may assume from now on that > 3 holds. Now, assume that
M = 2 holds, so thayv = 2 holds. Then agu + yv = Xv + yu, we havexu > 4. Hence,
by Claim 7, we haveyu = xv = 3, Xxu = 4, andajb; = axy-1Cyu—1 = 1 (where we
replacex by u, to getyu = 3 andayy-1Cyy—1 = 1). By Claim 3(iii) we also get;d; =
bxy—1dyy—1 = 1. Nowuv < 4 andxy < 4 and therefore, by Eqn (3)p = xy = 4 holds.
Applying Proposition 2 to the vertexandthe pathcy, as, ap, az, b1, (noting thatyc, < axy
andb1y < axy both hold), we havéaz < 2 orcpa; < 2, both of which are impossible.

Hence we may assuma > 3 holds, so thaM > 3 holds. The proof of Theorem 1 will
thusbe complete once we have proven the following claim:

CLAIM 9. If M > 3,then xu= xv = yv = yu = 3, graph(VI) in Figure 2 is an isometric
subgiaph of G ands* = 2 holds.

ProoOF. By Claim 7 we haveaib; = ci1d; = axy—1Cyu-1 = bxy-10dy,—1 = 1. By
Claim 3(iii) at least three oku, xv, yv, yu are equal to three and therefaxe = xv =
yv = yu = 3, asxu+ yv = Xv + yu holds. This impliexy, uv < 5. If xy = 5 holds, then
axX + agy = Xy = xbp + bpy andazx = bpx = 2 both hold. Therefore, since 63§ < 1,
it follows thatagb, < 1 holds, and therefore without loss of generaligp, = 1 holds
also, which contradicts Claim 1(i). Thereforsy < 4, and by symmetryv < 4. Since
XY+ uv > 2 4 Xu+ yv holds, we thus see that = uv = 4 holds.

Now bicp = 2 asye = 2, yap = yay = yby = 3, andcya; = aoby = 2. By symmetry
boci, apdy, apdy < 2. Moreover, adic, = 2, there must exist some vertax € V(G) so
thatcy, ap, az, b1, w is a 5-cycle inG. Hence, ass is bridged, by Claim 1 neitheipb; = 1
noray, cyy—1 = 1 can hold, so we must havea; = wap = 1. By (IB1) it also follows that
wCy = why = 1 holds. Applying the short-cut property to, by, by, d2 and the vertey, we
also see thabdy < 2 holds.

In the casawd, = 1, it is easy to see that we obtain graph (VI) as an isometric subgraph
of G (and hence obtaié* = 2), since clearlywby, = 1 asw, b1, by, dy is a 4-cycle, and also
we; = wdy; = 1, asw, dp, d1, €1, C2 is a 5-cycle.

In the casevd; = 2, then without loss of generality we may assuirth = 2 also. Now, as
wd; = wdz = 2, there must exist some vertex with w, w’, d; andw, w’, d2 both geodesics
in G by (IB2). Consider the 5-cycle, b1, by, dz, w’. Sincebid, # 1 andwd; # 1, we must
havew’b; = 1. By symmetry we have’c; = 1 also.

Consider now the 4-cycle, w’, by, bp. Then without loss of generality we can assume
w'b; = 1. If w'cy; = 1, thenay, ap, ¢z, w’, by is a 5-cycle, and hence without loss of genera-
lity, we havew’a; = 1. But then we can construct graph (VI) (and hence obtéis= 2) in
the same way as described earlier. So suppaze= 1. Then, axw’ = 2 andxc; = X¢ =
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FIGURE 6. An old friend with hyperbolicity one.

xu = 3, it follows from the short-cut property thatw’ < 2 must hold. Thus, sincev = 4

we must haveiw’ = 2. Now, suppose that, t, w’ is a geodesic iiG. Thenu, t, w, w’, az is

a 5-cycle. Ifuw = 1, then we can construct graph (VI) (and hence obdaie- 2) as earlier
replacingay by w. Thus we can assumev = 2, from whichta, = tw = 1 follows. But now
sincet, w’, by, a1, a2 is a 5-cycle, and we can assumgy’, axw’ > 1, it follows thattb; = 1
must hold, which impliesib; = 2. This is a contradiction, and hence the proof of the claim
is complete. =]

REMARK 2. If, rather than assuming th& containsno induced 5-cycles in Theorem 1,
we assumed that for every induced 5-cycleédrthere exists a vertex i (G) that is adjacent
to every vertex in the 5-cycle, then the conclusions stated in Theorem 1 would still be valid,
with ‘bridged’ replaced by ‘the only finite isometric cycles @ are either 3- or 5-cycles’.
This also shows that the conclusions of Corollary 3 would still hold if we replaced ‘bridged’
by ‘interval-bridged’.

5. CONCLUDING REMARKS

In Corollary 2, we gave a classification of the 1-hyperbolic graphs that do not contain
induced5-cycles. In general, 1-hyperbolic graphs appear to have a rich structure. This is indi-
cated by the fact that a graph with diameter two containing no induced 4-cycles is
1-hyperbolic, so that, in particular, geodetic graphs [3] (such as the Petersen graph—see
Figure 6—and the Hoffman-Singleton graph) are 1-hyperbolic. Moreover, 1-hyperbolic
graphscan be constructed, for example, from graphs not containing 4-cycles through adjoin-
ing a vertex which is adjacent to all vertices, or by gluing together pairs of 1-hyperbolic graphs
at a vertex (since, in general, the hyperbolicity of a graph is the maximal hyperbolicity of its
2-connected components).

In connection with the problem of classifying 1-hyperbolic graphs the following result is of
interest.

ProPOSITION4. If G is a connected thin graph, then G is hyperbolic.

PROOF. We are going to prove th& mustbe 10-hyperbolic. Suppose to the contrary that
G is a connected graph with [§5) < 1 which satisfies the short-cut property, and tBas not
10-hyperbolic. Let, y, u, v € V(G) be a quartet for whicld* := §(x, y, u, v) is minimal,
so that

XY+ Uv = max{xu+ yv, Xv + yu} + §* 4)

ands* > 10both hold. Assume also that
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(®) xy+ uvis minimal amongst all quartets satisfying Eqn (4), and mint yv, Xv + yu}
is in addition minimal amongst such quartets.

Note thatx, y, u, v must be distinct, and that by assumpti&in> 10. Letag := X, ay, . . .,
axy:=U,bp:=x,b1,...,bxy, :=v,C0:=VY,Cy,...,Cypy :=U,anddg := y,dy, ..., dy, :=
v, be four geodesics i6.

We first show that the quantitil := min{xu, xy, yu, yv} is less than or equal to five.
Suppose to the contrary thist > 6 holds. Considering the vertgxand the path

CyU—la u, aXU—]n ey a19 X, b17 ey bXU—19 v, dyv—ls

we see by Proposition 2 that, without loss of generality, we can asagme< 2 and there-
fore thataib, = 2 holds. By Claim 1(i) in the proof of Theorem 1, which holds given the
assumptionsve have made earlier, we haegv > biv, and henceyv > xv. Hence, as
aiby < 2, we haveajv = Xxv. Since in addition we hava;u = xu — 1 andaix > xy — 1,
it is straightforward to check that;y = xy — 1 must hold using Eqn (4) and minimality
condition(Q).

Now let w € V(G) be such thats, w, by is a geodesic irG, and consider the vertex
together with the path

alv w, b27 ceey bXU—ls v, dyv—l-

If agb; # 1, then since big) < 1 holds, we must havg y > xy, and thereford,y > xy—1.
Moreover, ifajb; = 1 holds, then since Claim 3(i) of Theorem 1 holds under the assumptions
thatwe have made, we can still assume without loss of generalityoffyat- Xy — 1 holds.
Thus, by Claim 1(i) and Proposition 2 we see that »dy,_1 = 2 must hold.

Let w’ be such thaby, _ow’ = dy,—1w’ = 1. Consider the vertex and the patly to be

/
ag, w, by, ..., byy—2, w', dyy_1.

Sinceay, w, by, ..., by,—2 andby, ..., by,—2, w’, dy,_1 are both geodesicg, does not con-
tain a short-cut (i.e. a sequence of four consecutive vertices whose first and last vertices are
at distance less than three from one another). Hence by Proposition 2 we se¢ #mat
bxy—1 mustbe distinct, and thereforsy, _1dy,_1 # 1 holds. By symmetry, we also see that
ab; # 1 must hold. Now sincey, 2y > dy,—1y andbyy > azy both hold, it follows from
br(G) < 1 and Proposition 2, thatt; = yt, must hold for allty, to of y. Hence, we have
a1y = dy,—1y so thatxy = yv holds. By symmetryku = uv holds as well. But this implies
XY+ Uv = XU+ yv, which contradicts Eqn (4). Therefold < 5 as claimed.

Now, without loss of generality, we assumg = M. Thusxy < yu+ux <uy+ M, and
uv < uX+ vx < vX + M both hold. Hence, by Eqn (4] < 2M, and sinceM < 5, we see
thats* < 10 holds, a contradiction which completes the proof of the proposition. O

In the proof of this proposition we showed thatwas 10-hyperbolic, although we suspect
that the bound of 10 can be improved upon. In fact, we believe that thexst uv in

the proof of Proposition 4 can be bounded above by 10. This would imply that only finitely
mary graphs would have to be excluded as isometric subgraphs—in addition to assuming the
breadth and short-cut properties—to assure @atould be 1-hyperbolic. However, perhaps
more importantly, this proposition indicates that the concept of short-cuts together with the
implicitly well-known concept of breadth could be useful for both determining the structure
and finding good bounds on the hyperbolicity of hyperbolic graphs.
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APPENDIX

In this appendix, we prove that a finite, bridged graph must satisfy the defining proper-
ties (IB1) and (IB2) of an interval-bridged graph.

PrRoPOSITIONS. If G is afinite, connected, bridged graph, then G is interval-bridged.

ProoF. We will show that the following two statements hold:

(A) There does not exist a quadruple of distinct vertigeyg, v, u € V(G) with xy = 2,

xv = yv =1, anduv = ux + Xv = uy + ywv all holding simultaneously.

(B) There does not exist a quintuple of distinct vertigey, u, v, w € V(G) with xy = 2,

Xv = Yyv = uw = 1, anduv = vw = uX + Xv = vy + yw all holding simultaneously.
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This will complete the proof, since (IB1) is simply a reformulation of (A) whereas, (IB2)
is a consequence of (B), which we see as followsxlet, u € V(G) be as in (IB2), so that
Xu = yu andxy = 1. We show that (IB2) holds using induction am. Whenxu = 1,
(IB2) clearly holds. Assume&u > 2. Considering geodesics, there exigty1, X2 € V(G)
with uxg = x1x2 = uy; = 1l anxxg = XX + 1 = yy; = xu— 1. So, by (B),x1y1 < 1.

If xx1 = yx, then (IB2) holds by induction. So we may assugnga = yu. Now since
yX2 = yy1 = yu— 1, we see thatoy; = 1 must hold by applying (IB1) taz, X1, y1 andy,
and thereforexy; = yy; holds, from which (IB2) follows by induction.

We show that statements (A) and (B) hold using inductioruenlf uv < 2 both these
statements are easily seen to hold, since a bridged graph does not contain either a 4-cycle or a
5-cycle as an isometric subgraph.

Now suppose that both (A) and (B) hold fap > 3, and suppose also th@t contains a
quartetx, y, u, v satisfying the conditions stated in (A).

Without loss of generality, &S is finite, we may assume that for all vertices V (G) either
the induced subgraph an(G) — {z} does not contain any quadruple of vertices satisfying the
conditions in (A), or that if this is the case, then the induced subgraph(@) — {z} is not an
isometric subgraph d&. Moreover, we may assume thatis minimal in the sense that there
isnoz e V(G) with z distinct from each ok, y, u andv and for which the induced subgraph
onV (G) — {z} is an isometric subgraph &.

Now letx’, y" in V(G) be vertices on some geodesics frano x or y, respectively, so that
XU =Yyu=1ux = xx + x'u, uy = yy + y'u all hold. Note that we can assumé #

y’, otherwise (A) holds for the quadrupie y, v, X, which by induction is a contradiction.
Moreover, ifx'y’ = 1, then (B) holds for the quintupbe, y, v, X', y’ which, by induction, is
a contradiction. Thug’y’ = 2 holds.

We now see that without loss of generality there must exist some vertexV (G) with
Xxw = yw = vw = 1 anduw = xu all holding. To see this we consider two possibilities
(which are all we need to consider, as we can clearly interchange the roteamafy and,
also the roles ofi andv can be interchanged singéy’ = 2):

(1) The induced graph o¥ (G) — {x} is an isometric subgraph @. In this case clearly
there is somev € V(G) with vw = 1 andwx’ = xx'. Moreover, we can assume=# y
sincexy = 2 andxw = 1 by minimality. We also havgw = 1, since ifyw = 2, then
we would contradict the minimality assumption (as we could repkaog w).

(2) The induced subgraph an(G) — {v} is an isometric subgraph @. This implies that
there is soma € V (G) with xw = yw = 1. Note that we must hawev < uv. Suppose
uw = uv, then we could interchange the roleswondw, and the induced subgraph
on V(G) — {w} would then be an isometric subgraph @fin which the quadruple
X, Y, U, v satisfied (A), contradicting our minimality assumption @r Thereforeuw <
uv. Moreoveryw = 1 as otherwise, y, v, w is an isometric 4-cycle i and therefore
XU = Uw.

We now show that there must exist somee V (G) with xx' = ww’ andw’x’ = w'y’ =
uw’ = 1. Clearly, there must exist some€ € V(G) with uw’ = 1 andww’ + 1 = uw. More-
over, if w’ = X/, then the quintuple’, u, y’, y, w would satisfy (B) which is a contradiction
to the inductive hypothesis. Thus # w’ andy’ # w’. In addition, considering the quintuple
X', u,w’, X, w, we see thak’w’ = 1 must hold using (B) and induction. Thus exists as
claimed.

To complete the proof of (A), take” € V(G) with w'w” = 1 andww” = ww’ — 1. Then
we havew’x > Xx'x, as otherwise by induction and (B) appliedxov, y, w’, y’ we would
havexy = 1, a contradiction. By symmetry’y > y'y. Thus applying (A) tox, X', w’, w”
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together with induction, we see that we must hatwe” = 1. Therefore by symmetry we also
havey'w” = 1. But thenx’, y’, w”, u is an isometric 4-cycle i, which contradicts the fact
thatG is bridged. This completes the proof of (A).

The proof of (B) is similar, and we only outline it. Let y, u, v, w € V(G) be vertices
satisfying the conditions given in (B). Take them to be minimal as in the proof of (A). As
described in the proof of (A), we can assume that one of the verticgsu, v, w can be
removed yielding an isometric subgraph. If this vertex is either w, then it can be seen,
using the same reasoning as in the proof of (A), that we must kgve 1 which is a con-
tradiction. Therefore, we may assume this vertex is oneg gfor v. Hence, there must exist
some vertex € V (G) with xz= yz= vz = 1 and, without loss of generalitgu = xu. Let
X1, Y1 be such thakix = 1, y1y = 1, x3u = Xu — 1 andy;w = yw — 1. Then considering
the verticesu, y, z and y; we see that;z = 1 must hold by (A). Similarly we must have
x1Z = 1. But then we must also hawe, y; = 1, so thatxy, X, v, y1, ¥ is an induced 5-cycle,
a contradiction that completes the proof of (B). |

Received 27 February 2001and accepted 19 April 2002

JACK H. KOOLEN

FSPM-Strukturbildungsprozesse,
University of Bielefeld,
D-33501 Bielefeld,
Germany
E-mail: jkoolen@mathematik.uni-bielefeld.de

AND

VINCENT MOULTON

Physics and Mathematics Department (FMI),
Mid Sweden University,
Sundsvall,
S 851-70,
Sweden
E-mail: vince@dirac.fmi.mh.se



	Introduction
	Fig. 1
	Fig. 2
	Fig. 3

	Thin Graphs
	Interval-bridged Graphs
	Fig. 4
	Fig. 5

	Proof of Theorem 1
	Concluding Remarks
	Fig. 6

	References

