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This paper deals with the general nonlinear congruential method for generating
uniform pseudorandom numbers, in which permutation polynomials over finite
prime fields play an important role. It is known that these pseudorandom numbers
exhibit an attractive equidistribution and statistical independence behavior. In the
context of parallelized simulation methods, a large number of parallel streams of
pseudorandom numbers with strong mutual statistical independence properties are
required. In the present paper, such properties of parallelized nonlinear congruential
generators are studied based on the discrepancy of certain point sets. Upper and
lower bounds for the discrepancy both over the full period and over (sufficiently
large) parts of the period are established. The method of proof rests on the classical
Weil bound for exponential sums.  1997 Academic Press

1. INTRODUCTION

Nonlinear congruential methods for generating uniform pseudorandom
numbers in the interval [0, 1) have been studied intensively during the last
years. Reviews of the development of this area can be found in the survey
articles [2, 5, 10, 14, 17] and in the monograph [15]. The present paper
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concentrates on the general nonlinear congruential method with prime
modulus. Pseudorandom numbers within the generated sequences have
nice equidistribution and statistical independence properties [3, 4, 6–8, 13].
Nowadays, the growing field of parallel computing has a need for generating
many parallel streams of uniform pseudorandom numbers with mutual
statistical independence properties. This important task provides the moti-
vation for the following analysis of a parallelized version of the general
nonlinear congruential method.

Let p $ 5 be an arbitrary prime, and identify Zp 5 h0, 1, . . . , p 2 1j
with the finite field of order p. Let Z*p 5 Zp\ h0j denote its multiplicative
group. For i [ h1, . . . , sj with s $ 2, let gi : Z R Zp be a monic permutation
polynomial of Zp with gi(0) 5 0 and degree di as a polynomial over Zp ,
where 3 # di # p 2 2 is assumed in order to avoid trivial and uninteresting
cases. The reader is referred to [11] for an introduction to the theory of
permutation polynomials over finite fields. For parameters ai [ Z*p and
bi [ Zp , a nonlinear congruential sequence (y(i)

n )n$0 of elements of Zp is
defined by

y(i)
n ; ai gi(n) 1 bi (mod p), n $ 0,

and a sequence (x(i)
n )n$0 of nonlinear congruential pseudorandom numbers in

the interval [0, 1) is obtained from x(i)
n 5 y(i)

n /p for n $ 0. Obviously, these
sequences are purely periodic with period length p and hy(i)

0 , y(i)
1 , . . . ,

y(i)
p21 j 5 Zp .
In the following, mutual statistical independence properties of the parallel

streams (x(i)
n )n$0 of uniform pseudorandom numbers are studied based on

the equidistribution behavior of the s-tuples

xn 5 (x(1)
n , . . . , x(s)

n ) [ [0, 1)s, n $ 0,

which can be analyzed by the discrepancy of corresponding point sets in
[0, 1)s. For N arbitrary points t0 , t1 , . . . , tN21 [ [0, 1)s, the discrepancy is
defined by

DN(t0 , t1 , . . . , tN21) 5 sup
J

uFN(J) 2 V(J)u,

where the supremum is extended over all subintervals J of [0, 1)s, FN(J) is
N21 times the number of points among t0 , t1 , . . . , tN21 falling into J, and
V(J) denotes the s-dimensional volume of J. It should be observed that
the discrepancy of N true random points from [0, 1)s is almost always of
an order of magnitude N21/2(log log N)1/2 according to Kiefer’s probabilistic
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law of the iterated logarithm for discrepancies [9]. Subsequently, for 1 #
N # p, the abbreviation

D(s)
N 5 DN(x0 , x1 , . . . , xN21)

will be used. In the third section, upper and lower bounds for the discrep-
ancy D(s)

p over the full period are established and discussed. Additionally,
parts of the period are studied, and upper and lower bounds for the discrep-
ancy D(s)

N with N , p are given in the fourth section. In the fifth section,
an upper bound for the average value of these discrepancies is presented.
The second section contains some basic auxiliary results.

2. AUXILIARY RESULTS

Subsequently, for integers k $ 1 and q $ 2, let Ck(q) be the set of all
nonzero lattice points (h1 , . . . , hk) [ Zk with 2 q/2 , hj # q/2 for 1 #
j # k. Define

r(h, q) 5 Hq sin(f uhu/q) for h [ C1(q),

1 for h 5 0,

and

r(h, q) 5 p
k

j51

r(hj , q)

for h 5 (h1 , . . . , hk) [ Ck(q). For real t, the abbreviation e(t) 5 e2f it will
be used, and u ? v stands for the standard inner product of u, v [ Rk.

The following five results are known. The first one follows from [12,
Lemma 2.2]; see also [15, Theorem 3.10]. Lemma 2 can be deduced from
[16, Lemma 3]; see also [1, Theorem 1; 15, Corollary 3.11]. Lemma 3 follows
from [15, Corollary 3.17], and Lemma 4 is a special version of the classical
Weil [18] bound for exponential sums; see also [11, Theorem 5.38]. Finally,
Lemma 5 is cited from [8, Lemma 3].

LEMMA 1. Let N $ 1 and q $ 2 be integers. Let tn 5 yn/q with yn [ h0,
1, . . . , q 2 1jk for 0 # n , N be points in [0, 1)k. Then the discrepancy
of the points t0 , t1 , . . . , tN21 satisfies

DN(t0 , t1 , . . . , tN21) #
k
q

1
1
N O

h[Ck(q)

1
r(h, q) UON21

n50
e(h ? tn)U.
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LEMMA 2. Let p $ 5 be a prime, let N $ 1 be an integer, and let tn 5
yn /p with yn [ Zk

p for 0 # n , N be points in [0, 1)k. Suppose the real
number B is such that

UON21

n50
e(h ? tn)U# B

for all lattice points h [ Zk with h ò 0 (mod p). Then the discrepancy of
the points t0 , t1 , . . . , tN21 satisfies

DN(t0 , t1 , . . . , tN21) #
k
p

1
B
N S 4

f 2 log p 1 1.38 1
0.64

p Dk

.

LEMMA 3. The discrepancy of N arbitrary points t0 , t1 , . . . , tN21 [
[0,1)k satisfies

DN(t0 , t1 , . . . , tN21) $
f

2N((f 1 1)l 2 1) Pk
j51 max(1, uhj u)

UON21

n50
e(h ? tn)U

for any nonzero lattice point h 5 (h1 , . . . , hk ) [ Zk, where l denotes the
number of nonzero coordinates of h.

LEMMA 4. Let p $ 3 be a prime. Let Q : Z R Zp be a polynomial with
deg(Q) $ 1 as a polynomial over Zp . Then

UO
z[Zp

e(Q(z)/p)U# (deg(Q) 2 1)p1/2.

LEMMA 5. Let 1 # N # q be integers. Let t0 , t1 , . . . , tq21 [ [0, 1)k be
arbitrary points, and put t̃n 5 (n/q, tn) [ [0, 1)k11 for 0 # n , q. Then the
discrepancies of the two point sets t0 , t1 , . . . , tN21 and t̃0 , t̃1 , . . . , t̃q21 satisfy

DN(t0 , t1 , . . . , tN21) #
q
N

Dq( t̃0 , t̃1 , . . . , t̃q21).

3. DISCREPANCY OVER THE FULL PERIOD

In the following, the abbreviations d 5 maxhd1 , . . . , ds j and d̃ 5 max
hd1 , d2j will be used, where d1 , . . . , ds are the degrees of the underlying
permutation polynomials g1 , . . . , gs in the parallelized nonlinear congru-
ential method.
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THEOREM 1. Let g1 , . . . , gs be linearly independent over Zp . Then the
discrepancy D(s)

p over the full period in the parallelized nonlinear congruential
method satisfies

D(s)
p # (d 2 1)p21/2 S 4

f 2 log p 1 1.38 1
0.64

p Ds

1
s
p

for all parameters a1 , . . . , as [ Z*p and b1 , . . . , bs [ Zp .

Proof. First, for h 5 (h1 , . . . , hs) [ Zs, put

S(h) 5 Op21

n50
e(h ? xn).

Then a short calculation shows that

uS(h)u 5 UOp21

n50
e SOs

i51
hi y

(i)
n /pDU

5 UOp21

n50
e SOs

i51
hiai gi (n)/pDU

5 U O
z[Zp

e(Q(h; z)/p)U,
where the polynomial Q(h; ?) : Z R Zp is defined by

Q(h; z) ; h1a1g1(z) 1 ? ? ? 1 hsasgs(z) (mod p).

Since Q(h; 0) 5 0 and g1 , . . . , gs are linearly independent over Zp , the
polynomial Q(h; ?) is nonconstant over Zp for all lattice points h [ Zs with
h ò 0 (mod p). Therefore, Weil’s bound for exponential sums in Lemma
4 (with Q 5 Q(h; ?)) implies that

uS(h)u # (deg(Q(h; ?)) 2 1)p1/2 # (d 2 1)p1/2

for all lattice points h [ Zs with h ò 0 (mod p). Hence, Lemma 2 can be
applied with N 5 p, k 5 s, tn 5 xn for 0 # n , p, and B 5 (d 2 1)p1/2.
This yields the desired result. n
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THEOREM 2. Let g1 , g2 be linearly independent over Zp . Let 0 ,
t # Ïp/(p 2 1) and a2 [ Z*p be fixed. Then there exist more than (p 2
(p 2 1) t2)/((d̃ 2 1)2 2 t2) values of a1 [ Z*p such that the discrepancy
D(s)

p over the full period in the parallelized nonlinear congruential method
satisfies

D(s)
p $

t
2(f 1 2)

p21/2

for all permutation polynomials g3 , . . . , gs and all parameters a3 , . . . ,
as [ Z*p and b1 , . . . , bs [ Zp .

Proof. First, for a1 [ Zp, put

T(a1) 5 Op21

n50
e((a1 g1(n) 1 a2 g2(n))/p).

Since g2 is a permutation polynomial over Zp , one obtains T(0) 5 0. Hence,
a short calculation shows that

O
a1[Z*

p

uT(a1 )u2 5 O
a1[Zp

uT(a1 )u2

5 O
a1[Zp

Op21

k,n50
e((a1(g1(k) 2 g1(n)) 1 a2(g2(k)

2 g2(n))) /p)

5 Op21

k,n50
e(a2(g2(k) 2 g2(n))/p) O

a1[Zp

e(a1(g1(k)

2 g1(n))/p) 5 p2,

where the last equality follows from the fact that the inner sum over a1 is
p for k 5 n and 0 for k ? n. Now, let A(t) denote the number of values
of a1 [ Z*p with uT(a1)u $ tp1/2. Since g1 , g2 are linearly independent over
Zp , it follows as in the proof of Theorem 1 that uT(a1)u # (d̃ 2 1)p1/2

for all a1 [ Z*p . Therefore,

O
a1[Z*

p

uT(a1 )u2 5 O
a1[Z*

p

uT(a1) u$tp1/2

uT(a1 )u2 1 O
a1[Z*

p

uT(a1)u,tp1/2

uT(a1 )u2 , A(t)(d̃ 2 1)2p

1 (p 2 1 2 A(t))t2p

5 A(t)((d̃ 2 1)2 2 t2)p 1 (p 2 1)t2p,
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which implies that A(t) . (p 2 (p 2 1)t2)/((d̃ 2 1)2 2 t2). Finally, Lemma
3 is applied with N 5 p, k 5 s, tn 5 xn for 0 # n , p, and h 5 (1, 1,
0 , . . . , 0) [ Zs. This yields

D(s)
p $

1
2(f 1 2)p UOp21

n50
e(h ? xn)U

5
1

2(f 1 2)p UOp21

n50
e((y(1)

n 1 y(2)
n )/p)U5

1
2(f 1 2)p

uT(a1 )u.

Hence, there exist more than (p 2 (p 2 1)t2)/((d̃ 2 1)2 2 t2) values of
a1 [ Z*p with

D(s)
p $

t
2(f 1 2)

p21/2,

which is the desired result. n

The upper bound in Theorem 1 for the discrepancy D(s)
p over the full

period is independent of both the parameters a1 , . . . , as, b1 , . . . , bs and
the specific choice of the permutation polynomials g1 , . . . , gs in the
parallelized nonlinear congruential method, as long as g1 , . . . , gs are
linearly independent over Zp with maximal degree d. This upper bound is
of the order of magnitude dp21/2(log p)s, which fits well the asymptotic
behavior of the discrepancy of p true random points from [0, 1)s according
to the law of the iterated logarithm, provided the maximal degree d is
bounded. In general, the upper bound for D(s)

p is the best possible up to
the logarithmic factor, since Theorem 2 implies that, for any underlying
permutation polynomials with bounded degree d̃, there exists a positive
fraction of the parameters in the parallelized nonlinear congruential method
such that D(s)

p is of an order of magnitude at least p21/2. The upper bound
for D(s)

p could suggest that a small value of the maximal degree d is most
favorable. However, it should be observed that the number of parallel
streams is bounded by d, since the underlying permutation polynomials
g1 , . . . , gs are assumed to be linearly independent over Zp . Additionally,
it is not known whether the dependence of the upper bound on d is the
best possible.

4. DISCREPANCY OVER PARTS OF THE PERIOD

Subsequently, let a polynomial g0 : Z R Zp be defined by g0(z) ; z
(mod p).
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THEOREM 3. Let g0 , g1 , . . . , gs be linearly independent over Zp . Then
the discrepancy D(s)

N over parts of the period in the parallelized nonlinear
congruential method satisfies

D(s)
N #

(d 2 1)p1/2

N S 4
f 2 log p 1 1.38 1

0.64
p Ds11

1
s 1 1

N

for 1 # N , p and all parameters a1 , . . . , as [ Z*p and b1 , . . . , bs [ Zp .

Proof. First, for h̃ 5 (h0 , h) 5 (h0 , h1 , . . . , hs ) [ Zs11, put

S̃(h̃) 5 Op21

n50
e(h ? xn 1 h0 n/p).

Then a short calculation shows that

uS̃(h̃)u 5 UOp21

n50
e SSh0 n 1 Os

i51
hi y

(i)
n D@pDU

5 UOp21

n50
e SSh0 n 1 Os

i51
hi ai gi (n)D@pDU

5 U O
z[Zp

e(Q̃(h̃; z)/p)U ,

where the polynomial Q̃(h̃; ?) : Z R Zp is defined by

Q̃(h̃; z) ; h0 g0 (z) 1 h1 a1 g1 (z) 1 ? ? ? 1 hsas gs(z) (mod p).

Since Q̃(h̃; 0) 5 0 and g0 , g1 , . . . , gs are linearly independent over Zp ,
the polynomial Q̃(h̃; ?) is nonconstant over Zp for all lattice points h̃ [
Zs11 with h̃ ò 0 (mod p). Therefore, Weil’s bound for exponential sums in
Lemma 4 (with Q 5 Q̃(h̃; ?)) implies that

uS̃(h̃)u # (deg(Q̃(h̃; ?)) 2 1)p1/2 # (d 2 1)p1/2
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for all lattice points h̃ [ Zs11 with h̃ ò 0 (mod p). Hence, Lemma 2 can
be applied with N 5 p, k 5 s 1 1, tn 5 x̃n 5 (n/p, xn) for 0 # n , p, and
B 5 (d 2 1)p1/2. This yields

Dp(x̃0 , x̃1 , . . . , x̃p21 ) #
s 1 1

p
1 (d 2 1)p21/2 S 4

f 2 log p 1 1.38 1
0.64

p Ds11

.

Finally, Lemma 5 is used with q 5 p, k 5 s, and tn 5 xn for 0 # n , p,
which completes the proof. n

THEOREM 4. Let g0 , g1 , g2 be linearly independent over Zp . Let 1 #
N , p and 0 , t # Ï(p2 2 2p 1 N)/(p 2 1)2 be fixed. Then there exist
more than

CN (t) 5
p2 2 2p 1 N 2 (p 2 1)2t 2

(d̃ 2 1)2 (p/N) ((4/f 2) log p 1 1.38)2 2 t2

ordered pairs (a1 , a2) [ Z*p 3 Z*p such that the discrepancy D(s)
N over parts

of the period in the parallelized nonlinear congruential method satisfies

D(s)
N $

t
2(f 1 2)

N 21/2

for all permutation polynomials g3 , . . . , gs and all parameters a3 , . . . ,
as [ Z*p and b1 , . . . , bs [ Zp .

Proof. First, for a1 , a2 [ Zp and 1 # N , p, put

TN(a1 , a2) 5 ON21

n50
e((a1 g1(n) 1 a2 g2(n))/p).

(i) Subsequently, an upper bound for uTN(a1 , a2)u with a1 , a2 [ Z
*
p

is established. Straightforward calculations show that

TN (a1 , a2 ) 5 Op21

n50
e((a1 g1(n) 1 a2 g2(n))/p) ON21

k50

1
p Op21

u50
e(u(n 2 k)/p)

5
1
p Op21

u50
SON21

k50
e(2ku/p)D SOp21

n50
e((un 1 a1 g1(n) 1 a2 g2 (n))/p)D ,
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where the first equality follows from the fact that on the right-hand side
the sum over k is 1 for 0 # n , N and 0 for N # n , p. Hence, one obtains

uTN (a1 , a2 )u #
1
p Op21

u50
UON21

k50
e(ku/p)U U O

z[Zp

e(Q(u; z)/p)U ,

where the polynomial Q(u; ?) : Z R Zp is defined by

Q(u; z) ; ug0(z) 1 a1 g1 (z) 1 a2 g2(z) (mod p).

Since Q(u; 0) 5 0 and g0 , g1 , g2 are linearly independent over Zp , the
polynomial Q(u; ?) is nonconstant over Zp for all u [ Z. Therefore, Weil’s
bound in Lemma 4 (with Q 5 Q(u; ?)) implies that

U O
z[Zp

e(Q(u; z)/p)U# (deg(Q(u; ?)) 2 1)p1/2 # (d̃ 2 1)p1/2

for all u [ Z. This yields

uTN (a1 , a2 )u # (d̃ 2 1)p1/2 SN
p

1
1
p Op21

u51
UON21

k50
e(ku/p)UD

5 (d̃ 2 1)p1/2 SN
p

1
1
p Op21

u51
Usin(fuN /p)

sin(fu/p) UD
, (d̃ 2 1)p1/2 SN

p
1

4
f 2 log p 1 0.38 1

0.64
p D

, (d̃ 2 1)p1/2 S 4
f 2 log p 1 1.38D ,

where [1, Theorem 1] was used in the penultimate step.

(ii) Since g1 , g2 are permutation polynomials over Zp , a short calcula-
tion shows that

O
a1,a2[Z*

p

uTN (a1 , a2)u2 5 O
a1[Zp

a2[Z*
p

uTN (a1 , a2 )u2 2 O
a2[Zp

uTN (0, a2 )u2 1 uTN (0, 0)u2
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5 ON21

k,n50
S O

a1[Zp

e(a1 (g1 (k) 2 g1 (n))/p)DS O
a2[Z*

p

e(a2 (g2 (k) 2 g2 (n))/p)D
2 ON21

k,n50
O

a2[Zp

e(a2 (g2 (k) 2 g2 (n))/p) 1 N 2

5 p(p 2 1)N 2 pN 1 N 2 5 (p2 2 2p 1 N)N.

(iii) Now, let AN(t) denote the number of ordered pairs (a1 , a2) [
Z*p 3 Z*p with uTN (a1 , a2 )u $ tN 1/2. Then it follows from the results in (i)
and (ii) that

O
a1,a2[Z*

p

uTN (a1 , a2)u2 5 O
a1,a2[Z*

p

uTN(a1 , a2)u$tN1/2

uTN (a1 , a2 )u2 1 O
a1,a2[Z*

p

uTN(a1 , a2)u,tN1/2

uTN (a1 , a2 )u2

, AN(t)(d̃ 2 1)2pS 4
f 2 log p 1 1.38D2

1 ((p 2 1)2 2 AN(t))t2N

5 AN(t)S(d̃ 2 1)2pS 4
f 2 log p 1 1.38D2

2 t2ND1 (p 2 1)2t2N,

which implies that AN(t) . CN(t).

(iv) Finally, Lemma 3 is applied with k 5 s, tn 5 xn for 0 # n , N,
and h 5 (1, 1, 0 , . . . , 0) [ Zs. This yields

D(s)
N $

1
2(f 1 2)N UON21

n50
e(h ? xn )U

5
1

2(f 1 2)N UON21

n50
e((y(1)

n 1 y(2)
n )/p)U

5
1

2(f 1 2)N
uTN(a1 , a2)u.

Hence, it follows from part (iii) that there exist more than CN(t) ordered
pairs (a1 , a2) [ Z*p 3 Z*p with

D(s)
N $

t
2(f 1 2)

N 21/2,

which is the desired result. n
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The upper bound in Theorem 3 for the discrepancy D(s)
N over parts of

the period is independent of both the parameters a1 , . . . , as , b1 , . . . , bs

and the specific choice of the permutation polynomials g1 , . . . , gs in the
parallelized nonlinear congruential method, provided g0 , g1 , . . . , gs are
linearly independent over Zp with maximal degree d. This upper bound is
of the order of magnitude dN21p1/2(log p)s11. On the other hand, Theorem
4 implies that, for any underlying permutation polynomials, there exist
parameters in the parallelized nonlinear congruential method such that
D(s)

N is of an order of magnitude at least N 21/2. Concerning the role of d in
the upper bound, the reader is referred to the discussion at the end of the
previous section.

5. AVERAGE DISCREPANCY

In the following, it will be assumed that ai ; aci (mod p) for i [
h1, . . . , sj with parameters c1 , . . . , cs [ Z*p and an additional parameter
a [ Z*p . For 1 # N # p, the abbreviation D(s)

N;a 5 DN (x0 , x1 , . . . , xN21 )
will be used.

THEOREM 5. Let g1 , . . . , gs be linearly independent over Zp . Then the
average value of the discrepancy D(s)

N;a over the parameter a [ Z*p in the
parallelized nonlinear congruential method satisfies

1
p 2 1 O

a[Z*p

D(s)
N;a , d1/2N21/2 S2

f
log p 1

7
5Ds

for 1 # N # p and all parameters c1 , . . . , cs [ Z*p and b1 , . . . , bs [ Zp .

Proof. First, for h 5 (h1 , . . . , hs) [ Zs, a [ Z*p , and 1 # N # p, put

SN(h; a) 5 ON21

n50
e(h ? xn).

(i) A short calculation shows that

O
a[Z*

p

uSN(h; a)u2 5 O
a[Zp

UON21

n50
e Sa Os

i51
hi ci gi (n)/pDU2

2 N 2

5 ON21

k,n50
O

a[Zp

e(a(Q(h; k) 2 Q(h; n))/p) 2 N 2,
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where the polynomial Q(h; ?) : Z R Zp is defined by

Q(h; z) ; h1c1 g1 (z) 1 ? ? ? 1 hscs gs(z) (mod p).

Since Q(h; 0) 5 0 and g1 , . . . , gs are linearly independent over Zp , the
polynomial Q(h; ?) is nonconstant over Zp for all lattice points h [ Zs with
h ò 0 (mod p). Therefore,

O
a[Z*

p

uSN(h; a)u2 5 p ON21

k50
#h0 # n , N u Q(h; n) 5 Q(h; k)j 2 N 2

# deg(Q(h; ?))pN 2 N 2 # (dp 2 N)N

for all lattice points h [ Zs with h ò 0 (mod p).

(ii) Now, Lemma 1 is applied with k 5 s, q 5 p, and tn 5 xn for 0 #
n , N. This yields

D(s)
N;a #

s
p

1
1
N O

h[Cs(p)

1
r(h, p)

uSN(h; a)u

for any a [ Z*p . Hence, the average value of the discrepancy D(s)
N;a over

a [ Z*p satisfies

1
p 2 1 O

a[Z*
p

D(s)
N;a #

s
p

1
1
N O

h[Cs(p)

1
r(h, p) S 1

p 2 1 O
a[Z*

p

uSN (h; a)uD
#

s
p

1
1
N O

h[Cs(p)

1
r(h, p) ! 1

p 2 1 O
a[Z*

p

uSN (h; a)u2 ,

where the last step follows from the Cauchy–Schwarz inequality. Now,
note that s # d, since the underlying permutation polynomials g1 , . . . , gs

with maximal degree d are assumed to be linearly independent over Zp .
Finally, part (i) can be used to obtain

1
p 2 1 O

a[Z*
p

D(s)
N;a #

s
p

1 ! dp 2 N
N(p 2 1) O

h[Cs(p)

1
r(h, p)

#
d
N

1 !d
N O

h[Cs(p)

1
r(h, p)

# !d
N S1 1 O

h[Cs(p)

1
r(h, p)D, !d

N S2
f

log p 1
7
5Ds
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for d # N # p, where in the last step [12, Lemma 2.3] was applied. If 1 #
N , d, then the result is trivial, since the upper bound is greater than 1. n

THEOREM 6. Let g1 , . . . , gs be linearly independent over Zp . Let 1 #
N # p , c1 , . . . , cs [ Z*p , b1 , . . . , bs [ Zp , and 0 , a # 1 be fixed. Then
there exist more than (1 2 a)(p 2 1) values of a [ Z*p such that the
discrepancy D(s)

N;a in the parallelized nonlinear congruential method satisfies

D(s)
N;a , a21d 1/2N 21/2 S2

f
log p 1

7
5Ds

.

Proof. Subsequently, the abbreviation

M 5 d 1/2N 21/2 S2
f

log p 1
7
5Ds

will be used. Suppose that there exist at most (1 2 a)(p 2 1) values of
a [ Z*p with D(s)

N;a , a21M. Then there exist at least a(p 2 1) values of
a [ Z*p with D(s)

N;a $ a21M, which implies that oa[Z*
p

D(s)
N;a $ (p 2 1)M.

This contradiction to Theorem 5 proves the desired result. n

The upper bound in Theorem 5 for the average value of the discrepancy
D(s)

N;a (over the parameter a) is independent of both the parameters c1 ,
. . . , cs , b1 , . . . , bs and the specific choice of the permutation polynomials
g1 , . . . , gs in the parallelized nonlinear congruential method, as long as
g1 , . . . , gs are linearly independent over Zp with maximal degree d. This
upper bound is of the order of magnitude d 1/2N21/2(log p)s, which fits well
the asymptotic behavior of the discrepancy of N true random points from
[0, 1)s according to the law of the iterated logarithm, provided the maximal
degree d is bounded and N is not too small. Theorem 6 provides even
more information, since it implies that, for any underlying linearly indepen-
dent permutation polynomials with bounded degree d and parameters
c1 , . . . , cs , b1 , . . . , bs , only an arbitrarily small percentage of the values
of the parameter a may lead to a discrepancy D(s)

N;a with an order of magni-
tude that is greater than d 1/2N21/2(log p)s. A remark similar to that at the
end of the third section could be made regarding the choice of the value
of d.
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