
Physics Letters B 682 (2010) 435–440

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector 
Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Electroweak two-loop contribution to the mass splitting
within a new heavy SU(2)L fermion multiplet

Youichi Yamada

Department of Physics, Tohoku University, Sendai 980-8578, Japan

a r t i c l e i n f o a b s t r a c t

Article history:
Received 6 July 2009
Received in revised form 9 October 2009
Accepted 19 November 2009
Available online 24 November 2009
Editor: T. Yanagida

New heavy particles in an SU(2)L multiplet, sometimes introduced in extensions of the standard model,
have highly degenerate tree-level mass M if their couplings to the Higgs bosons are very small or
forbidden. However, loop corrections may generate the gauge-symmetry-breaking mass splitting within
the multiplet, which does not vanish in the large M limit due to the threshold singularity. We calculate
the electroweak contribution to the mass splitting for a heavy fermion multiplet, to the two-loop order.
Numerically, two-loop electroweak contributions are typically O (MeV).
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1. Introduction

In some extensions of the standard model, there are new heavy
particles which belong to an SU(2)L × U(1) multiplet F and have
no, or very small, mixing with other particles. The masses of these
particles are almost degenerate to a value M by the gauge sym-
metry. Although the spontaneous breaking of the SU(2)L × U(1)

symmetry by Higgs bosons may generate mass splitting δM among
them, the tree-level mass splitting generally behaves as δM ∼
m2

W /M and becomes very small for M � mW . This is especially
the case for a very heavy fermion multiplet where tree-level renor-
malizable couplings to the Higgs bosons F̄ F H are forbidden by
symmetry. Some of the examples are the almost pure winos or
higgsinos [1–8] in special parameter regions of the minimal super-
symmetric standard model [9], SU(2)L triplet fermions in Type III
seesaw model for neutrino masses [10,11], and also models [12,13]
where vector-like heavy fermion multiplets are added to the stan-
dard model by hand.

In such cases, it has been known [2,4,6,8,11–14] that the dom-
inant part of the gauge-symmetry-breaking mass splitting within
the multiplet F comes from the radiative correction. Although
the form of the mass correction strongly depends on models, the
contributions involving electroweak gauge bosons V = (γ , Z , W ),
shown in Fig. 1(a) for the one-loop, are common in a wide class
of extended models. Since gauge symmetry breaking in this dia-
gram comes from the squared masses (m2

W , m2
Z ) in the loops, one

naively expect the O (α2m2
W /M) contribution to the mass splitting.

However, due to the singularity of the diagram near the threshold,
at p2 = M2 ∼ (M +mV )2, O (α2mW ) contribution to the mass split-
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ting appears, which does not vanish in the M � mW limit: Roughly
speaking, it is “nondecoupling”. This mass splitting is phenomeno-
logically interesting, especially in the case where the neutral com-
ponent f 0 of F , either fermion or boson, is stable or has very long
lifetime, and may be a candidate for the cosmological dark matter.
In such a case, the loop-generated mass splitting between charged
components f Q (Q �= 0) of F and f 0 is crucial for estimating the
rates of the f Q → f 0 + · · · decays expected at colliders, and also
for possible resonant annihilation f 0 f 0 → f Q f −Q → V V for in-
direct detection of f 0 [8,13].

To evaluate the mass splitting within F to the next-to-leading
order, we need two-loop calculation of the mass correction for the
members of F . In this Letter, we perform such calculation for the
loop corrections by the standard model particles, generated by the
electroweak gauge interactions of F . For simplicity, we concentrate
on the SU(2)L -breaking and “nondecoupling” part of the mass cor-
rection, which should be relevant for the mass splitting in the
M � mW case.

2. One-loop mass correction

Since the electroweak contributions to the mass correction
should be determined by the SU(2)L × U(1) representation of F ,
we work in the framework of the Minimal Dark Matter model [13],
which has been proposed as a minimalist approach to the dark
matter problem, for the fermion case. In this case, Dirac or Majo-
rana fermions in an SU(2)L multiplet F with SU(2)L isospin I and
U(1) hypercharge Y (and having no SU(3) color) are added to the
standard model. The Lagrangian is

L = LSM + c F̄
[
γ μDμ − M

]
F , (1)
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where c = 1(1/2) for Dirac (Majorana) fermions, respectively. Note
that the mass corrections presented in this Letter are common
to both types of fermions. Dμ denotes SU(2)L × U(1) gauge co-
variant derivative for F . Since F has no direct couplings to the
Higgs boson, the members of F , f Q (with charge Q = I3 + Y ,
I3 = −I,−I + 1, . . . , I) have a common mass M at the tree-level.
We assume that M is sufficiently larger than the masses of stan-
dard model particles (W , Z , top quark t , Higgs boson h), typically
M = O (TeV) which is cosmologically favored in the Minimal Dark
Matter model [13]. We also use approximation that all other parti-
cles in the standard model are massless.

The pole mass M p of f Q at the two-loop order is given in
terms of the self energy of f Q

Σ(p) ≡ ΣK
(

p2)/p + ΣM
(

p2), (2)

as

Mp = M − ΣM(M2
p)

1 + ΣK (M2
p)

= M − [
MΣ

(1)
K

(
M2) + Σ

(1)
M

(
M2)]

− [
MΣ

(2)
K

(
M2) + Σ

(2)
M

(
M2)]

+ [
MΣ

(1)
K

(
M2) + Σ

(1)
M

(
M2)]

× [
Σ

(1)
K

(
M2) + 2M2Σ̇

(1)
K

(
M2) + 2MΣ̇

(1)
M

(
M2)]

≡ M + δM(1) + δM(2). (3)

Here Σ
(1)
K ,M and Σ

(2)
K ,M are the one-loop and two-loop parts, respec-

tively. The dot in Eq. (3) denotes the derivative with respect to the
external momentum squared. The absorptive part of the self en-
ergy is O (g6) and need not be considered here. Loop integrals are
regularized by the dimensional regularization (D = 4 − 2ε) with
the MS subtraction scheme.

The form of the one-loop mass correction δM(1) is well known
[2,6,8,11–15]. Abbreviating the factor α2/(4π), it is expressed as

δM(1) = (
C F − I2

3

)
X (1)

W + s2
W (I3 + Y )2 X (1)

γ

+ c2
W

(
I3 − t2

W Y
)2

X (1)
Z , (4)

where C F = I(I + 1), cW ≡ cos θW = mW /mZ , sW ≡ sin θW , tW ≡
tan θW , and

X (1)
V = M

[(
2 + m2

V

M2

)
B0

(
M2, M,mV

) − 1

+ 1

M2

{
A(M) − A(mV )

}]
= M

[
3

ε
− 3 log M2 + 4 − f

(
mV

M

)]
,

f (x) ≡ 2x
(
2 + x2)√4 − x2 tan−1

√
2 − x√
2 + x

− x2 + x4 log x

= 2πx − 3x2 + 3

4
πx3 + O

(
x4). (5)

We use the Passarino–Veltman one-loop functions [16] defined as

A(m) = 1

ε(1 − ε)

(
m2)1−ε

,

B0
(

p2,m1,m2
) = 1

ε

1∫
0

dz
[
(1 − z)m2

1 + zm2
2

− z(1 − z)p2 − iδ
]−ε

,

B22
(

p2,m1,m2
) = 1

2ε(1 − ε)

1∫
0

dz
[
(1 − z)m2

1 + zm2
2

− z(1 − z)p2 − iδ
]1−ε

, (6)

and

B̃22
(

p2,m1,m2
) = B22

(
p2,m1,m2

) − 1

4

[
A(m1) + A(m2)

]
. (7)

The O (mV ) term of Eq. (5) gives the nondecoupling mass splitting
within the multiplet. For example, for Y = 0, the one-loop mass
splitting between f Q and the neutral component f 0 of F is writ-
ten as [13], independent of I ,

M
(

f Q ) − M
(

f 0) = Q 2	M(1) (8)

where, in the M � mW limit,

	M(1) = α2

2

(
mW − c2

W mZ
) = (166.99 ± 0.07) MeV. (9)

The numerical value in Eq. (9) is obtained by using the pole
masses mW = (80.398 ± 0.025) GeV, mZ = 91.1876 GeV, α2 =
α(mZ )/s2

W = α(mZ )/(1 − m2
W /m2

Z ), and the QED running coupling
in the MS scheme α(mZ ) = (127.93 ± 0.03)−1, cited from Ref. [17],
as input parameters. Note that the value (9) should change by
∼ 1 MeV depending on choices of the renormalization scheme for
the input parameters.

3. Two-loop mass correction

We now calculate the two-loop mass correction δM(2) coming
from diagrams shown in Fig. 1(b–e). We use Feynman gauge fixing
for simplicity, although the final result should not depend on the
gauge fixing method.

The contribution of the diagram Fig. 1(b) with the insertion
of the one-loop self energy of the electroweak gauge boson,
Π

V 1 V 2
μν (k) = gμνΠ V 1 V 2 (k2) + O (kμkν), is written as

δM(2,1) = −(
C F − I2

3

)
	ΣW W − s2

W (I3 + Y )2	Σγγ

− 2sW cW (I3 + Y )
(

I3 − t2
W Y

)
	Σγ Z

− c2
W

(
I3 − t2

W Y
)2

	ΣZ Z , (10)

where

	ΣV 1 V 2 = ig2
∫

dDk

(2π)D

γ μ(/k + /p + M)γμΠ V 1 V 2 (k2)

[k2 − m2
V 1

][k2 − m2
V 2

][(k + p)2 − M2]
∣∣∣∣
/p=M

.

(11)

Here we list the analytic forms of Π V 1 V 2(k2) in the standard model
for completeness [18]. The contributions from the (t,b) quark
loops are, up to the overall factor Ncα2/(4π) (Nc = 3 is the color
number of quarks),

Π W W
tb

(
k2) = 1

2

[−4B̃22
(
k2

1,mt ,0
) − (

k2
1 − m2

t

)
B0

(
k2

1,mt,0
)]

,

(12)

Π
γγ
tb

(
k2) =

∑
q=t,b

s2
W Q 2

q Π v v
q

(
k2), (13)

Π
γ Z
tb

(
k2) =

∑
q=t,b

sW

cW
Q q

(
1

2
I3q − Q qs2

W

)
Π v v

q

(
k2), (14)

Π Z Z
tb

(
k2) =

∑
q=t,b

1

c2
W

(
1

2
(I3q)

2 − I3qs2
W Q q + s4

W Q 2
q

)
Π v v

q

(
k2)

+ m2
t

2c2
B0

(
k2,mt,mt

)
, (15)
W
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Fig. 1. One-loop (a) and two-loop ((b)–(e)) contributions to the self energy of the heavy fermions f in the multiplet F . The solid thick line and wavy line represent F and
electroweak gauge bosons V = (γ , Z , W ), respectively. The black circle in (b) represents the one-loop self energy of the gauge bosons Π V 1 V 2 , by the standard model particles.
where

Π v v
q

(
k2) ≡ −8B̃22

(
k2

1,mq,mq
) − 2k2

1 B0
(
k2

1,mq,mq
)
. (16)

The contributions of other quarks and leptons are obtained by ap-
propriate changes of mt , Q q , and Nc . For the gauge and Higgs
boson loops, we have, abbreviating the overall factor α2/(4π),

Π W W
V h

(
k2) = s2

W

[
8(1 − ε)B̃22

(
k2,mW ,0

) + 4k2 B0
(
k2,mW ,0

)]
+ (

1 + 8(1 − ε)c2
W

)
B̃22

(
k2,mW ,mZ

)
+ [

4c2
W k2 − m2

Z + 3m2
W

]
B0

(
k2,mW ,mZ

)
+ B̃22

(
k2,mW ,mh

) − m2
W B0

(
k2,mW ,mh

)
, (17)

Π
γγ
V h

(
k2) = s2

W

[
4(3 − 2ε)B̃22

(
k2,mW ,mW

)
+ 4k2 B0

(
k2,mW ,mW

)]
, (18)

Π
γ Z
V h

(
k2) = 4sW cW

(
3 − 2ε − 1

2c2
W

)
B̃22

(
k2,mW ,mW

)
+ sW cW

(
4k2 + 2m2

Z

)
B0

(
k2,mW ,mW

)
, (19)

Π Z Z
V h

(
k2) =

[
4c2

W (3 − 2ε) − 4 + 1

c2
W

]
B̃22

(
k2,mW ,mW

)
+ [

4c2
W k2 + 4m2

W − 2m2
Z

]
B0

(
k2,mW ,mW

)
+ 1

c2
W

[
B̃22

(
k2,mZ ,mh

) − m2
Z B0

(
k2,mZ ,mh

)]
. (20)

In addition, there are also the contributions of F to Π V 1 V 2 . How-
ever, it is shown that the resulting O (mW ) contributions to δM(2)

are completely cancelled by the renormalization of the parameters
in δM(1) .

We may calculate the integrals (11) by extending the general
formulas for the two-loop mass corrections [19], by including fi-
nite masses for (W , Z). However, since we are interested in the
SU(2)L -breaking and nondecoupling part of Eq. (11), it is preferred
to expand the integrals (11) in mW (∼ mZ ,mt,mh) and then sep-
arate the O (mW ) terms from the dominant and gauge-symmetric
O (M) terms, before numerical evaluation. This is achieved by ap-
plying the asymptotic expansion of the Feynman integrals near the
threshold p2 = M2, as described in Ref. [20]. The O (mW ) part of
the integral (11) is then obtained as

	ΣV 1 V 2 |O (mW ) → ig2
∫

dDk

(2π)D

2M

[k2 − m2
V 1

][k2 − m2
V 2

](2k · p)

× Π V 1 V 2
(
k2). (21)

In the following, we show only the O (mW ) part (21) of the cor-
rections 	ΣV 1 V 2 . By substituting the self energies (12)–(20), the
integrals (21) are expressed in terms of the two-loop functions
(a = 1,2)
i

(4π)2
X0−a(mV ,m1,m2)

≡
∫

dDk

(2π)D

M

[k2 − m2
V ]a(2k · p)

[
B0

(
k2,m1,m2

) − 1

ε

]
,

i

(4π)2
X22−a(mV ,m1,m2)

≡
∫

dDk

(2π)D

M

[k2 − m2
V ]a(2k · p)

[
B22

(
k2,m1,m2

)
− 1

ε

(
m2

1 + m2
2

4
− k2

12

)]
, (22)

and products of the one-loop functions. Note that the functions in
Eq. (22) are independent of M and have no overall divergences. We
calculate these functions by numerical integration of the Feynman
parameter integrals shown below,

X0−1(mV ,m1,m2)

= πmV

[
log

m2
V

μ2
−

1∫
0

dz

(
2

√
r1(1 − z) + r2z√

z(1 − z)

− 2 log
(√

r1(1 − z) + r2z + √
z(1 − z)

))]
, (23)

X0−2(mV ,m1,m2)

= π

2mV

[
log

m2
V

μ2
+ 2

1∫
0

dz

( √
z(1 − z)√

r1(1 − z) + r2z + √
z(1 − z)

+ log
(√

r1(1 − z) + r2z + √
z(1 − z)

))]
, (24)

X22−1(mV ,m1,m2)

= −π

3
m3

V

[
1

4

{
1 − 3(r1 + r2)

}
log

m2
V

μ2
− 2

3
+ 9

4
(r1 + r2)

+
1∫

0

dz

({−3z(1 − z) + 2(1 − z)r1 + 2zr2
}

×
√

(1 − z)r1 + zr2√
z(1 − z)

+ 3
{

z(1 − z) − (1 − z)r1 − zr2
}{

log
(√

r1(1 − z) + r2z

+ √
z(1 − z)

) − 1

2
log z(1 − z)

})]
, (25)
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X22−2(mV ,m1,m2)

= −π

2
mV

[
1

4
(1 − r1 − r2) log

m2
V

μ2
− 1

2
+ 3

4
(r1 + r2)

+
1∫

0

dz

(
−3

√
z(1 − z)

√
(1 − z)r1 + zr2

+ {
3z(1 − z) − (1 − z)r1 − zr2

}{
log

(√
(1 − z)r1 + zr2

+ √
z(1 − z)

) − 1

2
log

(
z(1 − z)

)})]
, (26)

where r1,2 ≡ m2
1,2/m2

V . μ is the MS renormalization scale.
Here we show the explicit forms of the integrals (21), after

subtracting O (1/ε) divergences from ΠV 1 V 2 by the MS scheme,
and separating the mass corrections to the gauge bosons δm2

V =
−Re Π V V (m2

V )(V = W , Z) from Π V V (k2). The (t,b) contribu-
tions coming from Eqs. (12)–(16) are, up to the overall factor
Ncα2/(4π),

	Σ tb
W W = 1

2
XW W (mt) − π

mW
δm2(tb)

W , (27)

s2
W 	Σ tb

γ γ = −4s4
W Q 2

t π2mt, (28)

2sW cW 	Σ tb
γ Z = 2s2

W Q t
(

I3t − 2Q t s2
W

)
Xγ Z (mt)

+ 2s2
W Q b

(
I3b − 2Q bs2

W

)
Xγ Z (0), (29)

c2
W 	Σ tb

Z Z = [
(I3t)

2 − 2I3t Q t s2
W + 2Q 2

t s4
W

]
X Z Z (mt)

− m2
t G0(mZ ,mt ,mt) + [

(I3b)
2 − 2I3b Q bs2

W

+ 2Q 2
b s4

W

]
X Z Z (0) − c2

W
π

mZ
δm2(tb)

Z , (30)

with

XW W (mt) = 8G22(mW ,mt,0) + 2X0−1(mW ,mt,0)

+ 2
(
m2

W − m2
t

)
G0(mW ,mt ,0), (31)

Xγ Z (mt) = 8

m2
Z

X22−1(mZ ,mq,mq) + 16π2

3

m3
t

m2
Z

+ 2X0−1(mZ ,mt ,mt) + 4πm2
t

mZ

(
1 − log

m2
t

μ2

)
, (32)

Xγ Z (0) = πmZ

(
4

3
log

m2
Z

μ2
− 20

9

)
, (33)

X Z Z (mt) = 8G22(mZ ,mt ,mt)

+ 2X0−1(mZ ,mt ,mt) + 2m2
Z G0(mZ ,mt,mt), (34)

X Z Z (0) = πmZ

(
4

3
log

m2
Z

μ2
− 8

9

)
. (35)

Here we used the notations

G22(mV ,m1,m2) ≡ X22−2(mV ,m1,m2)

+ π

2mV

[
Re B22(mV ,m1,m2)

− ((
m2

1 + m2
2

)
/4 − m2

V /12
)
/ε

]
,

G0(mV ,m1,m2) ≡ X0−2(mV ,m1,m2)

+ π [
Re B0(mV ,m1,m2) − 1/ε

]
, (36)
2mV
and substituted analytic forms of the two-loop integrals (22) at
m1 = m2 = 0 and at mV → 0. Analytic forms of other integrals in-
volving mt are shown in Appendix A. Contributions of other quarks
and leptons are obtained by taking mt → 0, where

XW W (0) = πmW

(
4

3
log

m2
W

μ2
− 8

9

)
, (37)

and, for leptons, changing (Q q , Nc). Similarly, the gauge and Higgs
boson contributions coming from Eqs. (17)–(20) are, up to the fac-
tor α2/(4π),

	Σ V h
W W = −16s2

W G22(mW ,mW ,0)

− 8s2
W

(
X0−1(mW ,mW ,0) + m2

W G0
(
m2

W ,mW ,0
))

− 2
(
8c2

W + 1
)
G22(mW ,mW ,mZ )

+ 4

3
πmW − 8c2

W X0−1(mW ,mW ,mZ )

− 2
((

5m2
W + m2

Z

)
c2

W − m2
Z s4

W

)
G0(mW ,mW ,mZ )

− 2G22(mW ,mW ,mh) + 2m2
W G0(mW ,mW ,mh)

− π

mW
δm2(V h)

W , (38)

s2
W 	Σ V h

γ γ = 10π2s4
W mW , (39)

2sW cW 	Σ V h
γ Z = 8s2

W (6c2
W − 1)

m2
Z

[
−X22−1(mZ ,mW ,mW )

− 2

3
π2m3

W − π

2
mZ m2

W

(
1 − log

m2
W

μ2

)]
+ 8

3
s2

W c2
W πmZ − 8s2

W c2
W

× [
3X0−1(mZ ,mW ,mW ) + 2π2mW

]
, (40)

c2
W 	Σ V h

Z Z = −2
(
12c4

W − 4c2
W + 1

)
G22(mZ ,mW ,mW )

+ 4

3
c4

W πmZ − 8c4
W X0−1(mZ ,mW ,mW )

− 4
(
4c2

W − 1
)
m2

W

[
G0(mZ ,mW ,mW )

]
− 2G22(mZ ,mZ ,mh) + 2m2

Z G0(mZ ,mZ ,mh)

− c2
W

π

mZ
δm2(V h)

Z . (41)

Other diagrams shown in Fig. 1(c–e) are also evaluated by using
the threshold expansion [20], keeping only the O (mV ) parts. Their
sum, with subtracting subdivergences by the MS scheme and after
the (one-loop) × (one-loop) term in Eq. (3) is added, is given as

δM(2,2) = 4πmW
(
C F − I2

3

)[
c2

W log
m2

Z

μ2

+ (
2 − c2

W

)
log

m2
W

μ2
+ 4s2

W (−1 + log 2)

]
+ 8πc2

W mZ I3
(

I3 − t2
W Y

)
log

m2
W

μ2

− 4πc2
W

(
C F − I2

3

)
f Z W . (42)

Here

f Z W ≡ −1

3

(
2 + c2

W

)
mW

1∫
0

dz z−3/2(1 − z)−1/2

× [(
c−2z + 1 − z

)3/2 − 1
]

W
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− 1

3

(
2 + c−2

W

)
mZ

1∫
0

dz z−3/2(1 − z)−1/2

× [(
c2

W z + 1 − z
)3/2 − 1

]
∼ −0.027mW , (43)

is the two-loop function appearing in Fig. 1(c, d) with both W and
Z bosons.

We then need to add the counterterms coming from the renor-
malization of the parameters in the one-loop contributions (4), (5);
(mW ,mZ ) in X (1)

W ,Z and (α2, c2
W , . . .) in the coupling constants. We

adopt the scheme where the pole masses (mW , mZ ) and the MS
running coupling of QED α(mZ ), which are used in Eq. (9), are cho-
sen as the input parameters. In this scheme, the renormalization is
achieved by removing the last O (δm2

V ) terms from 	ΣW W (27),
(38) and 	ΣZ Z (30), (41), and adding the counterterms for (α2,
c2

W , . . .) expressed as tree-level functions of (mZ , mW , α(mZ )). It
is checked that the final form of the two-loop O (mW ) mass cor-
rection to f Q is finite and independent of the MS renormalization
scale μ.

Here we comment on the mass splitting of a new heavy scalar
SU(2)L multiplet S . In contrast to the case of the fermion multi-
plet, direct couplings of S to the Higgs bosons, such as S∗ S H† H ,
should always exist [13,21]. Nevertheless, assuming that the effect
of these direct couplings is negligible, we have verified that the
nondecoupling O (mW ) parts of the one-loop [13,22] and two-loop
mass corrections δM are identical to those for the fermions in the
same gauge representation. This result is quite natural in the view
that the O (mW ) mass correction could be understood as the en-
ergy of the electroweak gauge fields around a static point source,
and should be insensitive to the spin of the source particle [13].

4. Numerical results

We show the numerical results of the two-loop contributions to
the mass splitting within the Y = 0 fermion multiplet. As seen in
Eqs. (10), (42), the one-loop relation (8) still holds with the change
	M(1) → 	M(1) + 	M(2) , where 	M(2) = 	M(2,ql) + 	M(2,V h) .

The contribution 	M(2,ql) of the quark–lepton subloop dia-
grams (including corresponding counterterms) is shown in Fig. 2
as a function of mt . At mt = 171 GeV, there is cancellation be-
tween the (t,b) subloop contribution, shown in the dashed line,
and remaining contribution with subloops of other quarks or lep-
tons, −3.3 MeV, giving the total shift −1.5 MeV at mt = 171 GeV.

The remaining contribution 	M(2,V h) from diagrams without
quarks or leptons (again including corresponding counterterms) is
shown in Fig. 3 as a function of mh . At mh = 140 GeV, the shift is
−0.9 MeV, smaller than the quark–lepton loops.

These two-loop contributions are much smaller than the
O (mW ) part of the leading one-loop contribution (4), as expected.
However, for Y = 0, it may compete with the M-dependence of the
one-loop contribution (8) which behaves like −0.5(1 TeV/M)2 MeV
for large M due to the accidental cancellation of the O (m2

W /M)

term in Eq. (8). In comparison, in the case of the higgsino-like
doublet F = ( f +, f 0) with (I = 1/2, Y = 1/2), the two-loop cor-
rections to the mass splitting M( f +) − M( f 0), which is αmZ /2 =
356.4 MeV at the one-loop, is −1.2 MeV from quark and lepton
loops at mt = 171 GeV, and −1.8 MeV from gauge and Higgs bo-
son loops at mh = 140 GeV, respectively.

5. Conclusion

We have calculated the two-loop electroweak contribution to
the O (mW ) correction to the masses of new heavy fermions in
Fig. 2. Two-loop contribution to the mass splitting 	M(2,ql) between fermions in
a heavy SU(2)L multiplet with Y = 0, from diagrams in Fig. 1(b) with quark and
lepton subloops. Solid and dashed lines denote full and (t,b) subloop contributions,
respectively.

Fig. 3. Two-loop contribution to the mass splitting 	M(2,V h) between fermions in a
heavy SU(2)L multiplet with Y = 0, from diagrams in Fig. 1(b)–(e) with gauge and
Higgs bosons.

an SU(2)L multiplet F , which causes gauge-symmetry-breaking
and “nondecoupling” mass splitting within F . Analytic formula of
the O (mW ) mass corrections have been presented for F in gen-
eral SU(2)L × U(1) representation. The two-loop contribution has
turned out to be typically O (MeV), which is of similar order to
the M dependence of the one-loop contribution for the Y = 0 case.

Appendix A

In the case of the (t,b) contributions (27)–(30), Feynman pa-
rameter integrals for the functions (22) can be analytically per-
formed. For m1 = m2 ≡ √

rmV with r > 1/4, we have

X0−1 = πmV

[
log

m2
V

μ2
− 2 + log r − 2

√
4r − 1 tan−1

√
4r − 1

]
,

(A.1)

X0−2 = π

2mV

[
log

m2
V

μ2
+ log r + 2√

4r − 1
tan−1

√
4r − 1

]
,

(A.2)
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X22−1 = −π

3
m3

V

[
1

4
(1 − 6r) log

m2
V

μ2
− 2

3
+ 7

2
r

+ 1 − 6r

4
log r + 1

2
(4r − 1)3/2 tan−1

√
4r − 1

]
, (A.3)

X22−2 = −π

2
mV

[
1

4
(1 − 2r) log

m2
V

μ2
− 1

2
+ 1

2
r

+ 1 − 2r

4
log r − 1

2

√
4r − 1 tan−1

√
4r − 1

]
. (A.4)

For m2 = 0 and m1 ≡ √
rmV ,

X0−1 = πmV

[
log

m2
V

μ2
− 2

− 2
√

r + r log r − 2(r − 1) log(1 + √
r )

]
, (A.5)

X0−2 = π

2mV

[
log

m2
V

μ2
− 2

√
r − r log r + 2(r + 1) log(1 + √

r )

]
,

(A.6)

X22−1 = −π

3
m3

V

[
1

4
(1 − 3r) log

m2
V

μ2
+ 1

12

(−8 − 6
√

r

+ 21r + 16r3/2 − 3r2 + 6r5/2)
+ (r − 3)r2

4
log r − 1

2
(r − 1)3 log(1 + √

r )

]
, (A.7)

X22−2 = −π

2
mV

[
1

4
(1 − r) log

m2
V

μ2
+ 1

12

(−6 − 6
√

r

+ 3r + 4r3/2 + 3r2 − 6r5/2) − r2(r − 1)

4
log r

+ 1

2
(r − 1)

(
r2 − 1

)
log(1 + √

r )

]
. (A.8)
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