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Abstract

In this paper, a neural network (NN) based internal model control (IMC) - PID controller is proposed for a non-
linear process. The controller structure has been outlined and its performance is demonstrated on a conical tank
process. The control of liquid level in a conical tank is nonlinear due to the variation in the area of cross section of the
tank system with its change in shape. The model of the process is identified using standard step response based
system identification technique and it is approximated to be first order plus dead time (FOPDT) model. From the
results it is observed that fuzzy controller shows much better integral absolute error (IAE) and integral squared error
(ISE) performance criteria than the conventional controller.
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1.INTRODUCTION

With the development of cutting edge technology, the interest on the study of non-linear system is
increased because of the fact that most industrial processes are inherently non-linear which includes large
time delays and lags and strong interactions. Despite the advent of many complicated control theories and
techniques, PID controller is the classical control algorithm in the field of process control and it still
predominates in the process industries due to its robustness and effectiveness for a wide range of
operating conditions and partly to its functional simplicity [1]. For designing the controllers, the process
dynamics are described adequately by a first-order plus time delay (FOPTD) model. The PID tuning
method was proposed by [2] and Astrom et al. reported an excellent review on the design of PID
controllers. Chidambaram et al [3] designed the PID controllers for unstable FOPTD model. Padma Sree
et al. [4] proposed a simple method for PI/PID controller settings for stable FOPTD and also for unstable
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FOPTD systems. Cvejn [5] presented the PI/PID controller settings for the first order systems with dead
time, based on the modulus optimum criterion. The settings provide fast closed-loop response to changes
of the reference input. Although optimal values of the parameters are valid for the reference tracking
problem, a compensation of the disturbance lag that preserves the stability margin is proposed for the
disturbance rejection problem.

The conventional PID provides convenient tuning parameter to adjust the response, robustness and
speed of the closed-loop system because it has only one tuning parameter. But when the characteristics
variation and uncertainty factors are included in the control system, it is difficult to accomplish
satisfactory control performance by using conventional PID controllers [6]. For this reason, free
intelligent control schemes have gained the researcher attention. In recent years, Artificial Neural
Networks (ANNs) have become an attractive tool to construct complex nonlinear process models [7],
great capability to solve the complex nonlinear mathematical problems [8].The ability of neural networks
to represent nonlinear relations leads to the idea of using networks directly in a model-based control
strategy. Chen [9] described an improved conventional PID control scheme using linearization through a
specified neural network for control of nonlinear processes. The linearization of the neural network model
is used to extract the linear model for updating the controller parameters Tokuda et al [10] designed a
method of multi loop PID controllers with neural net based decoupler for nonlinear multivariable systems
with mutual interactions. This method consists of a decoupler given by the sum of a static decoupler and a
neural-net based decoupler, and multiloop PID controllers. The results confirmed that the training
efficiency was improved instead of the complicated trail-and-error in designing the user-specified
parameters included in the neural networks. Fuatalarcin [11] developed a IMC based on NN to adjust
control parameters for roll motions of a container ship. Tarun et al. [7] established the ANN based IMC
controller with modified BP algorithm for both set point and regulatory control problems of a CSTR .This
approach provides accurate control for non linear processes without explicit model identification and
linearization. Shahrakia et al [12] analysed a PID neural network and compared with Cancellation and
pole placement algorithms through computer simulation and experimental study and proved that PIDNN
requires less trial and error for tuning and has more robust performance

In this work, a neural based PID controller is designed for controlling liquid level in a conical tank.
The process model is experimentally determined from step response analysis. The performances are
compared with that of the conventional controller, based on Integral Squared Error (ISE) and Integral
Average Error (IAE).

The paper is organized as follows, the developed model elucidated in section II, system identification
is presented in section III, IMC and neural based PID controller design is elaborated in section IV and V,
and finally results and discussion are appended in section VI.

2. MODELING OF THE SYSTEM

The conical tank system which exhibits the non linearity is taken to find out the model for
simulation. Owing to the non linearity, the process dynamics are analyzed in four segments to obtain
effective models for the operating ranges. The operating regions are chosen as 0-15 cm as model 1, 15-
27 cm as model 2, 27-36 cm as model 3 and 36-43 cm as model 4. The corresponding mathematical
models are found for these sections.

The real time system has a conical tank, reservoir and water pump, current to pressure convertor,
compressor, Differential Pressure Transmitter (DPT), ADAM module and a Personal Computer which
acts as the controller and forms a closed loop. The inflow rate to the conical tank is regulated by
changing the stem position of the pneumatic valve by passing the control signal from computer to the
I/P converter through digital to analog converter (DAC) of ADAM module. The operating current for
regulating the valve position is 4-20 mA, which is converted to 3-15 psi of compressed air pressure.
The water level inside the tank is measured using DPT which is calibrated for 0-43 cm and is converted
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to an output current range of 4-20 mA. This output current is given to the controller through analog to
digital converter (ADC) of ADAM module. The ADAM module is used for interfacing the personal
computer with the conical tank system thus forming a closed loop. The module can be operated
manually with the console software provided and also with programming software like LabVIEW,
MATLAB, etc. The schematic diagram for process layout is shown in Figure 1.
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Fig. 1 Schematic diagram of conical tank system

3. SYSTEM IDENTIFICATION

System identification is normally done by step response methods. The maximum flow rate is
maintained at 7 LPM. Four responses covering the full height of the conical tank are obtained as model
1 for 0-15 ¢cm, model 2 for 15-27 ¢cm, model 3 for 27-36 cm and model 4 for 36-43 cm. The models are
obtained by two-point method and Sundaresan-Krishnaswamy method [13] and the simulated response
of the models are found to be more coincide with real time responses. From the structure, the model is
predicted to be similar to first order plus time delay (FOPDT) system and it is given as
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The comparison of real time and simulation response curves for model 1, model 2, model 3 and model
4 are shown in Fig.2, Fig.3, Fig.4 and Fig.5 respectively
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Figure 2: Comparison of real time and simulated responses of model 1
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Figure 3: Comparison of real time and simulated responses of model 2
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Figure 4: Comparison of real time and simulated responses of model 3
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Figure 5: Comparison of real time and simulated responses of model 4
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4. DESIGN OF IMC PID CONTROLLER

The controller has to be designed for maintaining the optimal set point of the system after deriving
the transfer function model. This can be achieved by properly selecting the tuning parameters Kp and 1;
for a PID controller. The IMC technique is one of the recent traditional tuning techniques that yield
better values among the techniques available for conventional methods. For a FOPDT model, the IMC

tuning values based on Chien and Fruehauf [14] is given as

k=23
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Applying the techniqu_e, the IMC tuning parameters obtained are as shown in Table 1.

TABLE 1: CONTROL PARAMETERS

Parameters Model 1 Model 2 Model 3 Model 4
K =K, 0.174 0.344 0.4718 0.4095
. _ﬂ 0.018 0.0217 0.0237 0.0206
K=Kty 0.404 1.335 2.238 1.8325

5. DESIGN OF NEURAL BASED PID CONTROLLER
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The neural based PID control consists of conventional PID control and neural network, which
combines the excellence of PID and neural network. The structure of the neural based PID control
system is shown in Fig. 6.The neural network inputs are set point, error signal and the controller output.
The data are collected from the closed loop response with conventional PID controller. The error signal
data is taken as input and the controller output data is taken as target. These data are used to train the
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neural network. The Levenberg-Marquardt training algorithm is used for training the network. Once
trained, the output of the neural network will be the optimal values of proportional gain K, integral
gain K; and derivative gain 3.
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Figure 6: Block diagram of neural based PID controller

6. RESULTS AND COMPARISON

Both the conventional PID controller and neural based PID controller are implemented in the model
and simulated using SIMULINK. The comparative responses are shown in Figure 7, Figure 8, Figure 9
and Figure 10.
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Figure 7: Comparison of responses of PID and NN based PID controller for model 1
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Figure 8: Comparison of responses of PID and NN based PID controllers for model 2
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Figure 9: Comparison of responses of PID and NN based PID controllers for model 3
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Figure 10: Comparison of responses of PID and NN based PID controllers for model 4
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From the graph it is observed that the NN based controller shows faster settling time and less over
shoot compared to IMC controller for set point tracking. Comparison of responses on the basis of ISE and
IAE values reveals that the performance of NN based controller is much better than IMC controller and
the results are shown in Table 2.

TABLE 2: PERFORMANCE INDICES

Controller ISE IAE
Model 1 PID 394.56 70.57
NN based PID 365.31 63.26
Model 2 PID 305.32 53.64
NN based PID 258.09 45.30
Model 3 PID 455.32 75.67
NN based PID 364.31 62.03
Model 4 PID 366.73 62.34
NN based PID 359.53 59.02

7. CONCLUSION

In this paper, a neural based IMC controller for the level control of conical tank system is
presented. Comparison of the proposed controller with conventional PID controller highlights its
superiority. The response curve for different model of the system thus obtained using the neural
controller is compared with response obtained by a conventional controller. For each set point, the
proposed controller gives lower ISE and IAE than the other control scheme. Comparing the
performance of responses, the neural control scheme performs very well and thus can be used for
nonlinear varying processes.
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