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Abstract

For an arbitrary commutative ring k and t ∈ k, we construct a 2-functor St which sends a tensor category
to a new tensor category. By applying it to the representation category of a bialgebra we obtain a family
of categories which interpolates the representation categories of the wreath products of the bialgebra. This
generalizes the construction of Deligne’s category Rep(St , k) for representation categories of symmetric
groups.
c⃝ 2012 Elsevier Inc. All rights reserved.
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1. Introduction

Let k be a commutative ring. In [5], Deligne introduced a tensor category Rep(St , k) for an
arbitrary t ∈ k, “the category of representations of the symmetric group of rank t over k” in some
sense. This category is consisting of objects which imitate some classes of representations of the
symmetric group of indefinite rank. If the rank t is a natural number, the usual representation
category of the symmetric group will be restored by taking a quotient of Deligne’s category.

Generalizations of Deligne’s category are considered by many authors, e.g. Knop [10,11],
Etingof [6] and Mathew [16]. In this paper we give another generalization: we extend Deligne’s
construction to a 2-functor St which sends a tensor category to another tensor category. In
other words, for each tensor category C the 2-functor St provides a new tensor category St (C).
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Using this 2-functor, Deligne’s category is obtained by applying it to the trivial tensor category
consisting of only one object. Moreover if we apply St to a representation category of some
bialgebra, we will get a family of new tensor categories which interpolates the representation
categories of the wreath products of the bialgebra. For a finite group G, Knop’s interpolation
Rep(G ≀ St , k) is essentially the same as ours but in general either construction does not include
the other. For example, in Knop’s category T (A, δ), the tensor product is always symmetric and
every object has its dual; however our St (C) satisfies neither of them unless the base category C
does.

The 2-functor St naturally preserves various structures of categories such as duals, braidings
(symmetric or not), twists, traces and so on (see the Appendix). In particular, if C is a braided
tensor category then so is St (C). In this case, we can represent and calculate morphisms in St (C)
by string diagrams. These diagrams are generalizations of those used for partition algebras [9,15]
and can be regarded as “C-colored” variants of them. For example, there is a morphism in St (C)
represented by a diagram

ϕ ψ ξ

•
U1

•
U2

•
U3

•
V1

•
V2

•
V3

•
V4

��

�?

where U1, U2, U3, V1, V2, V3 and V4 are objects of C and ϕ, ψ and ξ are suitable morphisms
in C. Composition of such morphisms is expressed by vertical connection of diagrams and
tensor product by horizontal arrangement. By Theorem 4.31 we also prove that St (C) can be
described in terms of generators (i.e. pieces of diagrams) and relations (i.e. local transformation
of diagrams). In fact it has a universal property which says that it is the smallest braided
tensor category which satisfies these relations. Its generators and the relations are listed in
Proposition 4.26.

In the rest of the paper we extend the result of Comes and Ostrik [3] which describes the
structure of Deligne’s category. Assume that k is a field of characteristic zero and let C be
an abelian semisimple tensor category whose every simple object U satisfies EndC(U ) ≃ k.
In this case, we can completely describe the structure of the category St (C); we classify the
indecomposable objects, simple objects and blocks. We parameterize them using sequences of
Young diagrams indexed by the simple objects of C. See Theorem 5.6 for details. In fact, ignoring
the structure of tensor product, this category is equivalent to the direct sum of some copies of
Deligne’s category Rep(St−m, k) as m ∈ N varies. In particular, if t ∉ N then St (C) is also abelian
semisimple and we can produce a large number of new abelian semisimple tensor categories
which cannot be realized as representation category of algebraic structure.

1.1. Conventions and notations

In this paper, a ring means an associative ring with unit and ring homomorphisms preserve
the unit. A module over a ring is always a left module and unital. We use the symbol k to denote
a commutative ring and for k-modules U and V , we write U ⊗ V instead of U ⊗k V for short.
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For a category C the notation U ∈ C means that U is an object of C. For U, V ∈ C, we denote
by HomC(U, V ) the set of morphisms from U to V . If U = V we also denote it by EndC(U ).
For a natural transformation η : F → G between two functors F,G : C → D, we denote its
component at an object U ∈ C by η(U ) : F(U ) → G(U ). We do not ask the meanings of the
terms “small” and “large” about sizes of categories; some readers may interpret them with class
theory while others prefer to use Grothendieck universes.

We include zero in the set of natural numbers, so N = {0, 1, 2, . . .}.

2. The language of linear categories

In this section we quickly review the theory of linear categories.

2.1. Definition and properties

Definition 2.1. (1) A category C is called a k-linear category if for each objects U, V ∈ C,
HomC(U, V ) is endowed with a structure of k-module and the composition of morphisms is
k-bilinear.

(2) A functor F : C → D between two k-linear categories is called k-linear if for any U, V ∈ C
the map F : HomC(U, V ) → HomD(F(U ), F(V )) is k-linear. We define k-multilinear
functor in the same way.

(3) A k-linear transformation is just a natural transformation between two k-linear functors.

Some authors call a k-linear category a k-preadditive category or a k-category. These below are
examples of k-linear categories which we use later.

Definition 2.2. (1) We denote by T rivk the trivial k-linear category consisting of a single object
1 ∈ T rivk which satisfies EndT rivk (1) ≃ k.

(2) For a k-algebra A, we denote by Mod(A) the category consisting of A-modules and A-
homomorphisms, and Rep(A) the full subcategory of Mod(A) consisting of A-modules
which are finitely generated and projective over k.

(3) For two k-linear categories C and D, we denote by Homk(C,D) the category consisting of
k-linear functors from C to D and k-linear transformations between them.

In a k-linear category finite product and finite coproduct coincide and both are called direct
sum. k-linear functors and transformations are automatically compatible with taking direct sum.

Definition 2.3. Let C be a k-linear category.

(1) C is called additive if for any U1, . . . ,Um ∈ C there exists their direct sum U1⊕· · ·⊕Um ∈ C
(including zero object for m = 0).

(2) C is called Karoubian (or idempotent complete) if for any U ∈ C and any idempotent
e = e2

∈ EndC(U ) there exists its image eU ∈ C. In other words, C is Karoubian if every
idempotent e ∈ EndC(U ) admits a direct sum decomposition U ≃ eU ⊕ (1− e)U .

(3) C is called pseudo-abelian if it is additive and Karoubian.

For example, Mod(A) and Rep(A) are both pseudo-abelian k-linear categories. The category
Homk(C,D) of k-linear functors is additive or Karoubian if the target category D is.

Definition 2.4. A k-linear category C is called hom-finite (resp. projective) if HomC(U, V ) is
finitely generated (resp. projective) over k for every U, V ∈ C.
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For example, Rep(k) is clearly hom-finite and projective. If k is Noetherian Rep(A) is also hom-
finite for any k-algebra A since Hom A(U, V ) ⊂ Homk(U, V ). Similarly if k is a hereditary ring
Rep(A) is automatically projective.

Definition 2.5. Let C be a pseudo-abelian k-linear category. An indecomposable object in C is
an object U such that U ≃ U1⊕U2 implies either U1 ≃ 0 or U2 ≃ 0. C is called a Krull–Schmidt
category if it satisfies the following two conditions:

(1) every object in C is a finite direct sum of indecomposable objects,
(2) the endomorphism ring of each indecomposable object in C is a local ring.

It is clear that every hom-finite pseudo-abelian linear category over a field is a Krull–Schmidt
category. In such a category, the factors in the indecomposable decomposition of an object is
uniquely determined.

Theorem 2.6. Let C be a Krull–Schmidt category. Let U ≃ V1⊕· · ·⊕Vm ≃ W1⊕· · ·⊕Wn ∈ C
be two decompositions of an object into indecomposable objects. Then m = n and Vi ≃ Wi after
reordering if necessary.

This is a generalization of the usual Krull–Schmidt theorem for modules over a ring, and the
proof of them are same. See e.g. [1]. So to describe the structure of a Krull–Schmidt category all
we need is the classification of indecomposable objects and morphisms between them.

2.2. Envelopes

A k-linear category is not necessarily additive nor Karoubian in general; so the direct sum of
objects or the image of an idempotent does not necessarily exist. But we can formally add the
results of these operations into our category to make a new category including them.

Definition 2.7. Let C be a k-linear category.

(1) Define the k-linear category Add(C) as follows:
Object A finite tuple (U1, . . . ,Um) of objects in C.

Morphism HomAdd(C)((U1, . . . ,Um), (V1, . . . , Vn)) :=


i, j HomC(Ui , V j ) and the com-
position of morphisms is same as the product of matrices.

We simply denote (U ) ∈ Add(C) by U , then (U1, . . . ,Um) ≃ U1⊕ · · · ⊕Um and the empty
tuple () is a zero object. Add(C) is called the additive envelope of C.

(2) Define the k-linear category Kar(C) as follows:
Object A pair (U, e) of an object U ∈ C and an idempotent e = e2

∈ EndC(U ).
Morphism HomKar(C)((U, e), (V, f )) := f ◦ HomC(U, V ) ◦ e.
We denote (U, idU ) ∈ Kar(C) by U , then (U, e) ≃ eU . Kar(C) is called the Karoubian
envelope (or the idempotent completion) of C.

(3) P s(C) := Kar(Add(C)) is called the pseudo-abelian envelope of C.

Clearly Add(C) is additive and Kar(C) is Karoubian. P s(C) is pseudo-abelian since Kar(C)
is additive when C is: (U, e) ⊕ (V, f ) ≃ (U ⊕ V, e ⊕ f ). The base category C is embedded in
Add(C) (resp. Kar(C), P s(C)) as a full subcategory and this embedding is a category equivalence
if and only if C is additive (resp. Karoubian, pseudo-abelian).
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Example 2.8.

Add(T rivk) ≃ (The category of finitely generated free k-modules),

P s(T rivk) ≃ (The category of finitely generated projective k-modules)
= Rep(k).

To describe the universal properties of the operation P s we should use the notions of 2-
categories and 2-functors. For their definitions, see e.g. [13]. Let us denote by Catk the 2-
category consisting of (small) k-linear categories, functors and transformations, and by PsCatk
the full sub-2-category of Catk consisting of pseudo-abelian k-linear categories. For a k-linear
functor F : C → D, we can extend it to the functor P s(F) : P s(C) → P s(D) between the
envelopes in the obvious manner. Moreover, for a k-linear transformation η : F → G we can
also define the transformation P s(η) : P s(F)→ P s(G). So the operation P s : Catk → PsCatk
is actually a 2-functor between these 2-categories. This is the left adjoint of the embedding
PsCatk ↩→ Catk in the 2-categorical sense; that is, if D is pseudo-abelian then the restriction of
functors induces a category equivalence

Homk(P s(C),D) ∼−→ Homk(C,D).

We say a pseudo-abelian k-linear category C is generated by a full subcategory C′ ⊂ C if every
object in C is isomorphic to some direct summand of a direct sum of objects in C′, or equivalently,
P s(C′) ≃ C. When this condition is satisfied we also say objects in C′ generate C.

2.3. Tensor categories

A tensor category is a kind of generalization of categories which have binary “product”,
associative and unital up to isomorphism, such as the category of vector spaces with tensor
product.

Definition 2.9. (1) A k-tensor category is a k-linear category C equipped with a k-bilinear
functor⊗ : C× C → C called the tensor product and a functorial isomorphism αC called the
associativity constraint with components αC(U, V,W ) : (U ⊗ V ) ⊗ W

∼
−→ U ⊗ (V ⊗ W )

such that the diagram below commutes:

(U ⊗ V )⊗ (W ⊗ X)
αC(U,V,W⊗X)

((RRRRRRRRRRRRR

((U ⊗ V )⊗W )⊗ X

αC(U⊗V,W,X)
66lllllllllllll

αC(U,V,W )⊗id X

��

U ⊗ (V ⊗ (W ⊗ X)).

(U ⊗ (V ⊗W ))⊗ X
αC(U,V⊗W,X)

// U ⊗ ((V ⊗W )⊗ X)

idU⊗αC(V,W,X)

OO

(2) A unit object of a k-tensor category C is an object 1C ∈ C equipped with two functorial
isomorphisms λC(U ) : 1C ⊗U

∼
−→ U and ρC(U ) : U ⊗ 1C

∼
−→ U called the unit constraints
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such that the diagram below commutes:

(U ⊗ 1C)⊗ V
αC(U,1C ,V ) //

ρC(U )⊗idV %%KKKKKKKKK U ⊗ (1C ⊗ V )

idU⊗λC(V )yysssssssss

U ⊗ V .

Since the equality (U ⊗ V ) ⊗ W = U ⊗ (V ⊗ W ) is too strict in category theory, we need
a functorial isomorphism instead. However, Mac Lane’s coherence theorem [14] allows us to
define the m-fold tensor product U1 ⊗ · · · ⊗ Um for multiple objects U1, . . . ,Um ∈ C since it
does not depend on the order of taking tensor product up to a unique isomorphism. Similarly for
an object U1 ⊗ · · · ⊗Um we can freely insert or remove tensor products of unit objects.

Remark that a unit object is unique up to a unique isomorphism if exists. If C has a unit object
1C then EndC(1C) is also a commutative ring and C has two (possibly different) structures of
EndC(1C)-linear category induced by λC and ρC .

Assumption 2.10. In this paper we do not treat tensor categories without units. We always
assume that each k-tensor category C is endowed with a fixed unit object 1C ∈ C. In addition,
we require that the unit object 1C satisfies EndC(1C) ≃ k.

In the rest of this paper, we omit writing the isomorphisms αC , λC and ρC explicitly for a
k-tensor category C since the reader can complete them easily if needed.

Example 2.11. T rivk has the unique structure of k-tensor category. Mod(k) and Rep(k) are k-
tensor categories with usual tensor products of modules. More generally, for a bialgebra A over k,
the k-linear categories Mod(A) and Rep(A) have structures of k-tensor category. For A-modules
U and V , the k-module U ⊗V becomes an A-module via the coproduct of A, ∆A : A→ A⊗ A.
The unit object 1A is defined to be k as a k-module and the action of A is the scalar multiplication
by the counit of A, ϵA : A→ k.

Next we define the corresponding structures on functors and transformations. Again we need
functorial isomorphisms to avoid using equations.

Definition 2.12. (1) A k-tensor functor F : C → D between k-tensor categories is a k-linear
functor equipped with functorial isomorphisms µF (U, V ) : F(U ) ⊗ F(V )

∼
−→ F(U ⊗ V )

and ιF : 1D
∼
−→ F(1C) such that the diagrams below commute:

F(U )⊗ F(V )⊗ F(W )
id F(U )⊗µF (V,W )//

µF (U,V )⊗id F(W )

��

F(U )⊗ F(V ⊗W )

µF (U,V⊗W )

��
F(U ⊗ V )⊗ F(W )

µF (U⊗V,W )
// F(U ⊗ V ⊗W ),

F(U )
id F(U )⊗ιF//

ιF⊗id F(U )

�� NNNNNNNNNNN

NNNNNNNNNNN
F(U )⊗ F(1C)

µF (U,1C)
��

F(1C)⊗ F(U )
µF (1C ,U )

// F(U ).

In other words, the isomorphisms µF and ιF must be associative and unital.
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(2) A k-tensor transformation η : F → G between k-tensor functors is a k-linear transformation
such that the diagrams below commute:

F(U )⊗ F(V )
µF (U,V )//

η(U )⊗η(V )
��

F(U ⊗ V )

η(U⊗V )
��

G(U )⊗ G(V )
µG (U,V )

// G(U ⊗ V ),

1D
ιF // F(1C)

η(1C)
��

1D ιG
// G(1C).

In other words, a k-tensor transformation η must satisfy that η(U ⊗ V ) = η(U )⊗ η(V ) and
η(1C) = id1D .

Beware that the category Hom⊗k (C,D) consisting of k-tensor functors and transformations is
no longer k-linear.

2.4. Braided tensor categories

A braided tensor category is a tensor category equipped with a functorial isomorphism called
braiding, which allows us to swap two objects in a tensor product U ⊗ V .

Definition 2.13. (1) A braiding (also called a commutativity constraint) on a k-tensor category
C is a functorial isomorphism σC(U, V ) : U ⊗ V

∼
−→ V ⊗ U such that the diagrams below

commute:

U ⊗ V ⊗W
σC(U,V⊗W ) //

σC(U,V )⊗idW $$JJJJJJJJJ V ⊗W ⊗U ,

V ⊗U ⊗W
idV⊗σC(U,W )

::ttttttttt

U ⊗W ⊗ V
σC(U,W )⊗idV

$$JJJJJJJJJ

U ⊗ V ⊗W
σC(U⊗V,W )

//

idU⊗σC(V,W )
::ttttttttt

W ⊗U ⊗ V .

The inverse of the braiding σC is defined by σ−1
C (V,W ) := σC(W, V )−1. A braiding σC is

called symmetric if σC = σ
−1

C .
(2) A k-tensor category C equipped with a braiding σC is called a k-braided tensor category. If

the braiding is symmetric, we call it a k-symmetric tensor category.
(3) A k-braided tensor functor F : C → D between k-braided tensor categories is a k-tensor

functor such that the diagram below commutes:

F(U )⊗ F(V )
µF (U,V )//

σD(F(U ),F(V ))
��

F(U ⊗ V )

F(σC(U,V ))
��

F(V )⊗ F(U )
µF (V,U )

// F(V ⊗U ).

(4) A k-braided tensor transformation is just a k-tensor transformation between two k-braided
tensor functors.
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The axiom says that the braiding σC(U1⊗ · · · ⊗Um, V1⊗ · · · ⊗ Vn) between tensor products
is determined by σC(Ui , V j ) at each terms Ui and V j . It also indicates that for each g ∈ Bm ,
where Bm is the braid group of order m, there is a well-defined functorial isomorphism

σ
g

C (U1, . . . ,Um) : U1 ⊗ · · · ⊗Um
∼
−→ Ug−1(1) ⊗ · · · ⊗Ug−1(m)

which permutes the terms of tensor products along g using the braiding σC . When the braiding
is symmetric then σ g

C is well-defined for g ∈ Sm , an element of the symmetric group.

Example 2.14. If A is a cocommutative bialgebra then the transposition map U ⊗ V
∼
−→

V ⊗ U ; u ⊗ v → v ⊗ u for U, V ∈ Mod(A) is an A-homomorphism. Thus this functorial
isomorphism defines a structure of k-symmetric tensor category on Mod(A). On the other hand,
the quantum enveloping algebra Uq(g) over k = C(q) is not cocommutative, but the category of
finite dimensional h-semisimple Uq(g)-modules has a non-symmetric braiding introduced by an
R-matrix.

3. Representation category of wreath product

Let d ∈ N. For each k-algebra A, we can construct a new algebra A ≀ Sd called the wreath
product of A of rank d following the two steps below:

A −→ A⊗d
−→ A ≀Sd .

(1) Create the d-fold tensor product algebra A⊗d
= A⊗ · · · ⊗ A from the base algebra A. Then

the symmetric group Sd of rank d naturally acts on A⊗d by permutation of terms.
(2) Create the semidirect product algebra A ≀ Sd = A⊗d o Sd by twisting the product via the

action Sd y A⊗d .

For these three algebras we have corresponding representation categories

Rep(A) −→ Rep(A⊗d) −→ Rep(A ≀Sd).

One of the remarkable facts is, under suitable conditions, that we can proceed these steps using
the categorical language only and create these representation categories without the information
about the base algebra A itself. This operation can be applied to an arbitrary k-linear category C
which is not of the form of representation category of algebra. The procedure for this construction
is as follows:

C −→ C�d
−→ (C�d)Sd .

(1) Create the d-fold tensor product category C�d
= C� · · ·�C from the base category C. Then

the symmetric group Sd naturally acts on it.
(2) Take the category (C�d)Sd of Sd -invariants in Sd y C�d .

We denote the result above by Wd(C) := (C�d)Sd . In this section we see how this process works.
Actually the category St (C) for t ∈ k, which is our main product in this paper, interpolates the
family of categories Wd(C) for d ∈ N.

3.1. Tensor product of categories

First we study the tensor product of k-linear categories. Recall that if A and B are both k-
algebras then so is A ⊗ B naturally. We see that tensor product of algebras in representation
theory corresponds to that of categories in category theory.
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Definition 3.1. Let C,D be k-linear categories. Their tensor product C � D is the k-linear
category defined as follows:

Object a symbol U � V for a pair of objects U ∈ C and V ∈ D.
Morphism HomC�D(U � V,U ′ � V ′) := HomC(U,U ′) ⊗ HomD(V, V ′) and composition

of morphisms is diagonal. We denote a morphism by f � g instead of f ⊗ g for
f ∈ HomC(U,U ′) and g ∈ HomD(V, V ′).

This operation naturally defines a 2-bifunctor � : Catk ×Catk → Catk . For k-linear functors
F : C → C′ and G : D → D′, the k-linear functor F � G : C � D → C′� D′ acts on objects and
morphisms diagonally. For k-linear transformations η : F → F ′ and κ : G → G ′, the k-linear
transformation η � κ : F � G → F ′ � G ′ is defined by

(η � κ)(U � V ) := η(U )� κ(V ) : F(U )� G(V )→ F ′(U )� G ′(V )

at each U ∈ C and V ∈ D.

The product � is associative and commutative up to equivalence, so we can write C1�· · ·�Cd
without any confusions. If all terms are equal to C, we denote it by C�d

:= C � · · · � C. It is
convenient to set C�0

:= T rivk , the unit with respect to �. The operation C → C�d also defines
a 2-functor Catk → Catk .

One of the purpose of considering the tensor product of categories is to create a universal
object related to k-bilinear functors: the category of k-bilinear functors C×D → E is equivalent
to the category of k-linear functors C � D → E . It is equivalent to say that the natural functor

Homk(C � D, E) ∼−→ Homk(C,Homk(D, E))

is a category equivalence (recall that the category Homk(D, E) is again k-linear). For pseudo-
abelian categories, it is natural to define the tensor product by C�D := P s(C � D). It satisfies
the same universality as above in the 2-category PsCatk . The unit for � is P s(T rivk) ≃ Rep(k).

Now let us pay attention to its representation-theoretic properties listed in the next proposition.
Recall that for a k-algebra A, Mod(A) is the category of all A-modules and Rep(A) is the
category of A-modules which are finitely generated and projective over k.

Proposition 3.2. Let A and B be k-algebras.

(1) There is a canonical functor Mod(A)�Mod(B) → Mod(A ⊗ B) which sends an object
U � V to the (A ⊗ B)-module U ⊗ V on which A ⊗ B acts diagonally.

(2) If Rep(A) is hom-finite and projective, the restriction Rep(A)�Rep(B)→ Rep(A⊗ B) of
this functor is fully faithful.

(3) Suppose that k is a field. If A and B are separable k-algebras, the restricted functor above
gives a category equivalence.

Proof. (1) Obvious.
(2) Let U,U ′ ∈ Rep(A) and V, V ′ ∈ Rep(B). By the assumptions V ′ and Hom A(U,U ′) are

finitely generated and projective over k, thus we get

Hom A⊗B(U ⊗ V,U ′ ⊗ V ′) ≃ Hom B(V, Hom A(U,U
′
⊗ V ′))

≃ Hom B(V, Hom A(U,U
′)⊗ V ′)

≃ Hom A(U,U
′)⊗ Hom B(V, V ′).
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(3) Since the functor is fully faithful by (2), it suffices to prove that the functor is essentially
surjective. For a separable k-algebra C , let I (C) be the set of all finite dimensional irreducible
C-modules up to isomorphism. Since A ⊗ B is also separable, it suffices to show that the image
of the functor contains I (A⊗ B). If k is algebraically closed the statement follows from the well
known fact

I (A ⊗ B) = {U ⊗ V | U ∈ I (A), V ∈ I (B)}.

For a general field k, let k be the algebraic closure of k and let us denote a field extension
• ⊗ k by •. We use the next fact to prove the statement. The proof is easy and we omit it.

Lemma 3.3. Let C be a separable k-algebra. Then for each L ∈ I (C) there exists unique
L ′ ∈ I (C) such that L appears in the irreducible components of L ′.

By the lemma for A and B we get that each object in I (A ⊗ B) is a direct summand of U ⊗ V
for some U ∈ I (A) and V ∈ I (B). Using the lemma for A ⊗ B again, we conclude the
statement. �

We interpret these results as follows. Using the data of representation categories of A and B
we can imitate that of A ⊗ B to some extent, even if we do not know about the base algebras A
and B themselves. So we regard Rep(A)�Rep(B) as a replica of Rep(A⊗ B) for any A and B.

3.2. Group action on category

Suppose that a group G acts on a k-algebra A by k-linear automorphisms of algebra. For the
consistency of notations we denote the action of g ∈ G by conjugation a ∈ A → gag−1

∈ A.
Then for each g ∈ G and an A-module U , we can define the twisted A-module

g ·U := {symbol g · u | u ∈ U }

whose A-action is defined by a(g · u) := g · (g−1ag)u. This defines a G-action on the k-linear
category Mod(A) described below.

Definition 3.4. Let G be a group and C a k-linear category. An action M : G y C is a collection
of k-linear endofunctors Mg : U → g · U on C for all g ∈ G equipped with functorial isomor-

phisms µg,h
M (U ) : g · (h · U ) ≃ gh · U for each g, h ∈ G and ιM(U ) : U ≃ 1 · U for the unit

element 1 ∈ G such that the diagrams below commute:

g · (h · (k ·U ))
g·µh,k

M(U )
//

µ
g,h

M(k·U )
��

g · (hk ·U )

µ
g,hk

M (U )
��

gh · (k ·U )
µ

gh,k
M (U )

// ghk ·U ,

g ·U
g·ιM(U ) //

ιM(g·U )
�� MMMMMMMMMMM

MMMMMMMMMMM
g · (1 ·U )

µ
g,1

M(U )
��

1 · (g ·U )
µ

1,g
M(U )

// g ·U .

For example, on any k-linear category C we can define the trivial action of G by Mg := IdC .
If groups G and H act on k-linear categories C and D respectively, Gop

×H and G×H naturally
act on Homk(C,D) and C � D respectively.

Definition 3.5. Let G be a group and C be a k-linear category on which G acts.
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(1) A G-invariant object U ∈ C is an object equipped with a collection of isomorphisms
κ

g
U : g ·U ≃ U for all g ∈ G such that the diagrams below commute:

g · (h ·U )
g·κh

U //

µ
g,h

M(U )
��

g ·U
κ

g
U // U

gh ·U
κ

gh
U

// U ,

U

ιM(U )
�� DDDDDDDD

DDDDDDDD

1 ·U
κ1

U

// U .

(2) A G-invariant morphism ϕ : U → V between G-invariant objects is a morphism such that
the diagram below commutes:

U
ϕ //

κ
g
V

��

V

κ
g
U

��
g ·U g·ϕ

// g · V .

(3) We denote by C G the k-linear category consisting of G-invariant objects and morphisms.

Remark 3.6. Although we do not use it explicitly in this paper, one can easily define the
2-category G-Catk consisting of k-linear categories with G-actions along with G-equivalent
functors and G-equivalent transformations. Taking invariants C → C G is a 2-functor G-Catk →

Catk and this is the right adjoint of the 2-functor which attaches the trivial G-action to a given
category.

Now let G be a group acts on a k-algebra A. Recall that the semidirect product A o G of A
and G is a k-algebra which is isomorphic to A ⊗ k[G] as k-module and its product is defined
by (a ⊗ g)(b ⊗ h) := a(gbg−1) ⊗ gh for a, b ∈ A and g, h ∈ G. We see here that making the
semidirect product of an algebra is exactly taking the invariants of a category.

Proposition 3.7. For G and A as above, there are equivalences Mod(A)G
∼
−→ Mod(A o G)

and Rep(A)G
∼
−→ Rep(A o G).

Proof. For each G-invariant A-module U , using isomorphisms κg
U : g ·U ≃ U , we can define a

A o G action on it by (a ⊗ g)u := aκg
U (g · u). On the other hand, for each (A o G)-module U ,

there are natural A-module isomorphisms g ·U ≃ U ; g · u → (1⊗ g)u. It is easy to check that
they are well-defined and two functors above are inverse to each other. �

Now suppose that a group G acts on a k-linear category C. To create G-invariant objects in
C, we can use the technique of restriction and induction as we do for ordinary representations of
groups.

Definition 3.8. Let H ⊂ G be a group and its subgroup and C a k-linear category on which G
acts. We denote by ResG

H : C G
→ C H the obvious forgetful functor and call it the restriction

functor. If it has the left adjoint, we denote it by I ndG
H : C H

→ C G and call it the induction
functor.

Proposition 3.9. Let G, H and C be as above. If #(G/H) < ∞ and C is additive, then the
induction functor exists. In this case, I ndG

H is also the right adjoint of ResG
H .
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Proof. First let us choose representatives of the left coset G/H , namely G/H = {g1, . . . , gl}.
For U ∈ C H we define an object I ndG

H (U ) ∈ C by

I ndG
H (U ) :=


i=1,...,l

gi ·U.

Take any h ∈ G. For each i ∈ {1, . . . , l}, there exist unique h(i) ∈ H and i ′ ∈ {1, . . . , l} such
that hgi = gi ′h(i). Thus there is an isomorphism

h · I ndG
H (U ) ≃


i=1,...,l

h · (gi ·U ) ≃


i=1,...,l

gi ′ · (h
(i)
·U ) ≃


i=1,...,l

gi ′ ·U ≃ I ndG
H (U ).

These isomorphisms define a structure of G-invariant object on I ndG
H (U ). It is easy to check that

this construction is functorial and gives the left adjoint of ResG
H . The last statement follows from

considering the opposite category. �

Corollary 3.10. Let C be a k-linear category on which a group G acts. Suppose that #G < ∞

and #G ∈ k is invertible. Then all objects of the form I ndG
{1}(U ) for U ∈ C generate a pseudo-

abelian category P s(C)G .

Proof. Take an arbitrary U ∈ P s(C)G . There are morphisms in P s(C)G

U
i
−→ I ndG

{1}ResG
{1}(U )

p
−→ U

induced by g ·U ≃ g for all g ∈ G. Since p ◦ i = (#G)idU , the idempotent (#G)−1i ◦ p has its
image in I ndG

{1}ResG
{1}(U ) isomorphic to U . �

3.3. Wreath product of algebra

Now we consider the main topic of this section, representation categories of wreath products.

Notation 3.11. Let X be a finite set. We denote by P(X) the set of all equivalence relations on
X , and for p ∈ P(X) we write x ∼p y if x and y are equivalent with respect to p. There is a
natural bijection from the set of partitions of X to P(X):

X = X1 ⊔ · · · ⊔ Xl
1:1
←→ x ∼p y ⇐⇒ x, y are in the same X i .

So we call p ∈ P(X) a partition and represent by p = {X1, . . . , Xl} that each X i is an
equivalence class of X by p. We denote by #p the number of its equivalence classes and call
it the length of p.

P(X) is partially ordered with respect to strength of relations. For two partitions p, q ∈ P(X)
we write p ≤ q if x ∼q y implies x ∼p y. We also say that the partition q is a refinement of p
when p ≤ q . The common refinement p ∧ q ∈ P(X) of two partitions p, q ∈ P(X) is defined
by

x ∼p∧q y ⇐⇒ x ∼p y and x ∼q y.

Beware that it is the least upper bound of p and q , not the greatest lower bound in the language
of partially ordered set.
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We denote by SX the group of all bijections from X to X itself and call the symmetric group
on X . For p = {X1, . . . , Xl} ∈ P(X), we define the subgroup Sp ⊂ SX by

Sp := {g ∈ SX | x ∼p g(x) for all x ∈ X}

≃ SX1 × · · · ×SXl .

It is called a Young subgroup of SX . SX also acts on P(X) as follows: for g ∈ SX and
p ∈ P(X), g(p) ∈ P(X) is a partition such that

x ∼g(p) y ⇐⇒ g−1(x)∼p g−1(y).

If d ∈ N and X = {1, . . . , d}, we simply denote P(X) and SX by P(d) and Sd respectively.

Definition 3.12. For a k-algebra A and d ∈ N, the wreath product A ≀ Sd of A by Sd is the
semidirect product A⊗d o Sd where the symmetric group Sd acts on the d-fold tensor product
A⊗d by permutation of terms. More explicitly, A ≀ Sd is the k-algebra which is isomorphic to
A⊗d
⊗ k[Sd ] as k-module and its product is defined by

(a1 ⊗ · · · ⊗ ad ⊗ g)(b1 ⊗ · · · ⊗ bd ⊗ h) = (a1bg−1(1))⊗ · · · ⊗ (adbg−1(d))⊗ gh

for a1, . . . , ad , b1, . . . , bd ∈ A and g, h ∈ Sd . For p ∈ P(d), let A ≀ Sp := A⊗d o Sp.
Obviously it is a k-subalgebra of A ≀Sd .

Let us create representation categories of wreath products of algebras in the language of
categories. We already know what should it be by the preceding arguments.

Definition 3.13. Let d ∈ N and C be a k-linear category. We denote by Wd(C) := (C�d)Sd the
category of Sd -invariants in the d-fold tensor product category C�d where the symmetric group
Sd acts on it by permutation of terms. This induces a 2-functor Wd : Catk → PsCatk .

Note that the Sd -action on Mod(A⊗d) induced by Sd y A⊗d coincides with that we used in
the definition above. Combining Propositions 3.2 and 3.7, we obtain the next results.

Proposition 3.14. Let A be a k-algebra.
(1) There is a canonical functor Wd(Mod(A))→ Mod(A ≀Sd).
(2) If Rep(A) is hom-finite and projective, then the restriction Wd(Rep(A))→ Rep(A ≀Sd) is

fully faithful.
(3) Suppose that k is a field. If A is a separable k-algebra, the restricted functor above gives a

category equivalence.

It is not hard to check that when C is a k-tensor category our category Wd(C) also has a
canonical structure of k-tensor category induced from that of C. We have an enriched 2-functor
Wd : ⊗-Catk →⊗-PsCatk where⊗-Catk is the 2-category of k-tensor categories, functors and
transformations, and ⊗-PsCatk is its full sub-2-category consisting of pseudo-abelian ones. On
the other hand, if A is a k-bialgebra then the coproduct ∆A and the counit ϵA of A will be lifted
to those of A ≀Sd : for a1, . . . , ad ∈ A and g ∈ Sd ,

∆Ad (a1 ⊗ · · · ⊗ ad ⊗ g) =


(a(1)1 ⊗ · · · ⊗ a(1)d ⊗ g)⊗ (a(2)1 ⊗ · · · ⊗ a(2)d ⊗ g),

ϵAd (a1 ⊗ · · · ⊗ ad ⊗ g) = ϵA(a1) · · · ϵA(ad)

so A ≀ Sd is also a k-bialgebra. Here we use the Sweedler notation ∆A(a) =


a(1) ⊗ a(2) to
write coproducts. These structures are of course compatible and Wd(Mod(A))→ Mod(A ≀Sd)

induces a k-tensor functor. The same holds for k-braided tensor categories.



14 M. Mori / Advances in Mathematics 231 (2012) 1–42

3.4. Induced objects from Young subgroups

For an object U ∈ C, its d-fold tensor product U�d
∈ C�d is clearly Sd -invariant. More

generally, let p ∈ P(d) and take U1, . . . ,Ud ∈ C such that Ui = U j whenever i ∼p j . Then the
object U1 � · · ·� Ud is Sp-invariant and we can induce this object to the Sd -invariant object

I ndp(U1 � · · ·� Ud) := I ndSd
Sp
(U1 � · · ·� Ud) ∈ Wd(C).

In this subsection we study the pseudo-abelian full subcategory W ′
d(C) of Wd(C) generated by

objects of this form. That is, an object in W ′
d(C) is a direct summand of a direct sum of objects

I nd p(U1 � · · ·� Ud). Note that if #Sd = d! is invertible in k, W ′
d(C) coincides with the whole

category Wd(C) by Corollary 3.10.

By its definition in the proof of Proposition 3.9,

I ndp(U1 � · · ·� Ud) ≃


g∈Sd/Sp

Ug−1(1) � · · ·� Ug−1(d)

as object in C�d , so

HomC�d (I ndp(U1 � · · ·� Ud), I ndq(V1 � · · ·� Vd))

≃


g∈Sd /Sp
h∈Sd /Sq

HomC(Ug−1(1), Vh−1(1))⊗ · · · ⊗ HomC(Ug−1(d), Vh−1(d)).

The symmetric group Sd acts on the space of C�d -morphisms above by permutation and Wd(C)-
morphisms are exactly the fixed points of this action. To describe them more precisely, we first
study the diagonal action Sd y Sd/Sp ×Sd/Sq . It is clear that the map

Sd/Sp ×Sd/Sq → Sp \Sd/Sq

(g, h) → g−1h

induces a bijection Sd \ (Sd/Sp ×Sd/Sq)
1:1
−→Sp \Sd/Sq , and the stabilizer subgroup of

each (g, h) ∈ Sd/Sp ×Sd/Sq is

gSpg−1
∩ hSq h−1

= Sg(p) ∩Sh(q) = Sg(p)∧h(q).

Thus the orbit decomposition gives a bijection
k∈Sp\Sd/Sq

Sd/Sp∧k(q)
1:1
−→ Sd/Sp ×Sd/Sq

(k; g) −→ (g, gk).

Here the notation k ∈ Sp \Sd/Sq means that k runs over the representatives of the Sp-orbits
of Sd/Sq . If we choose another representative xk ∈ Sd/Sq for x ∈ Sp, there are canonical
isomorphisms

Sp∧k(q)
∼
−→ Sp∧xk(q) Sd/Sp∧k(q)

∼
−→ Sd/Sp∧xk(q)

y → xyx−1, g → gx−1,
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so the bijection above is well-defined. This gives us an isomorphism

HomWd (C)(I ndp(U1 � · · ·� Ud), I ndq(V1 � · · ·� Vd))

≃

 
g∈Sd /Sp
h∈Sd /Sq

HomC(Ug−1(1), Vh−1(1))⊗ · · · ⊗ HomC(Ug−1(d), Vh−1(d))

Sd

≃


k∈Sp\Sd/Sq

 
g∈Sd/Sp∧k(q)

HomC(Ug−1(1), V(gk)−1(1))

⊗ · · · ⊗ HomC(Ug−1(d), V(gk)−1(d))

Sd

≃


k∈Sp\Sd/Sq

(HomC(U1, Vk−1(1))⊗ · · · ⊗ HomC(Ud , Vk−1(d)))
Sp∧k(q) .

Here, for each direct summand

(HomC(U1, Vk−1(1))⊗ · · · ⊗ HomC(Ud , Vk−1(d)))
Sp∧k(q)

in the right-hand side, its embedding is induced from

ϕ1 ⊗ · · · ⊗ ϕd →


g∈Sd/Sp∧k(q)

ϕg−1(1) � · · ·� ϕg−1(d).

If C is a k-tensor category, we can calculate tensor product of objects in the same manner. In
the k-tensor category C�d ,

I ndp(U1 � · · ·� Ud)⊗ I ndq(V1 � · · ·� Vd)

≃


g∈Sd /Sp
h∈Sd /Sq

(Ug−1(1) � · · ·� Ug−1(d))⊗ (Vh−1(1) � · · ·� Vh−1(d))

≃


g∈Sd /Sp
h∈Sd /Sq

(Ug−1(1) ⊗ Vh−1(1))� · · ·� (Ug−1(d) ⊗ Vh−1(d))

≃


k∈Sp\Sd/Sq


g∈Sp∧k(q)

(Ug−1(1) ⊗ V(gk)−1(1))� · · ·� (Ug−1(d) ⊗ V(gk)−1(d))

≃


k∈Sp\Sd/Sq

I ndp∧k(q)((U1 ⊗ Vk−1(1))� · · ·� (Ud ⊗ Vk−1(d))).

This isomorphism is clearly Sd -invariant. Moreover if C has a braiding, the induced braiding at
these objects are the direct sum of the morphisms

I ndp∧k(q)((U1 ⊗ Vk−1(1))� · · ·� (Ud ⊗ Vk−1(d)))

∼
−→ I ndq∧k−1(p)((V1 ⊗Uk(1))� · · ·� (Vd ⊗Uk(d))).

Thus the full subcategory W ′
d(C) is closed under the tensor product and the braiding of Wd(C).

3.5. Restriction and induction

Let d1, d2 ∈ N and put d := d1 + d2. We write i ′ := d1 + i for i = 1, . . . , d2. There is a
natural embedding of groups Sd1 × Sd2 ↩→ Sd where Sd1 and Sd2 acts on {1, . . . , d1} and
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{1′, . . . , d ′2} respectively. Since there is a fully faithful embedding of categories

C G�D H
→ (C�D)G×H

when groups G and H acts on C and D respectively, we have the induction functor

I ndSd
Sd1×Sd2

: Wd1(C)�Wd2(C)→ Wd(C).

To keep notations simple, we also use the binary operator ∗ to denote this induction functor:

U1 ∗U2 := I ndSd
Sd1×Sd2

(U1 � U2).

This operator is associative and commutative up to canonical isomorphisms. The direct sum
category W•(C) :=


d∈N Wd(C) forms a graded k-symmetric tensor category with respect to

the product ∗.
In the other direction, we have no natural restriction functors since the embedding of

categories above is not invertible in general. However, for an object of the form I ndp(U1 �
· · ·� Ud) we can calculate its restriction to Sd1 ×Sd2 . We omit the proof of the next lemma.

Lemma 3.15. For U1, . . . ,Ud ∈ C, in the k-linear category (C�d)Sd1×Sd2

I ndp(U1 � · · ·� Ud)

≃


g∈Sd1×Sd2\Sd/Sp

I ndq(Ug−1(1) � · · ·� Ug−1(d1)
)

�I ndq ′(Ug−1(1′) � · · ·� Ug−1(d ′2)
).

Here q ∈ P(d1) and q ′ ∈ P(d2) are the restriction of the equivalent relation g(p) ∈ P(d) to
each components. The notation g ∈ Sd1 ×Sd2 \Sd/Sp is same as the previous one.

Thus we can define the restriction functor on W ′
d(C):

ResSd
Sd1×Sd2

: W ′
d(C)→ W ′

d1(C)�W ′
d2(C).

It is both the left and the right adjoint of the restricted induction functor on W ′
d(C).

On the other hand, let d1, d2 ∈ N and put d := d1d2. Let us write i ( j)
:= ( j − 1)d1 + i for

i = 1, . . . , d1 and j = 1, . . . , d2. The wreath product of the symmetric group Sd1 ≀Sd2 can also
be embedded into Sd naturally: the j-th component of (Sd1)

d2 correspond to the permutations

on {1( j), . . . , d( j)
1 } and Sd2 shuffles the index j of i ( j) for all i = 1, . . . , d1 simultaneously. This

gives us the induction functor and the restriction functor again:

I ndSd
Sd1 ≀Sd2

: Wd2(Wd1(C))→ Wd(C),

ResSd
Sd1 ≀Sd2

: W ′
d(C)→ W ′

d2(W ′
d1(C)).

Their calculations are same for Sd1 ×Sd2 but using Sd1 ≀Sd2 .

4. Wreath product in non-integral rank

In this section we introduce our main product in this paper, the category St (C). It interpolates
Wd(C), the categories of representations of wreath products from d ∈ N to t ∈ k. The original
idea of the arguments is due to Deligne [5] who first consider the representation theory of
symmetric group of non-integral rank.
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4.1. Definition of 2-functor St

To apply the 2-functor St , we need the fixed “unit object” in the target category. So we
introduce the notion of “category with unit” as follows.

Definition 4.1. (1) A k-linear category with unit is a k-linear category C equipped with a fixed
object 1C ∈ C which satisfies EndC(1C) ≃ k.

(2) A k-linear functor with unit from C to D is a k-linear functor F : C → D along with an
isomorphism ιF : 1D

∼
−→ F(1C).

(3) A k-linear transformation with unit from F to G is a k-linear transformation η : F → G
which satisfies the same condition as k-tensor transformations, i.e. η(1C) = id1D . See the
diagram on the right in Definition 2.12(2).

We denote by 1-Catk the 2-category consisting of k-linear categories, functors and
transformations with unit. Obviously there are forgetful 2-functors ⊗-Catk → 1-Catk → Catk .
The reader should check that we can apply all the 2-functors we have defined to categories with
unit and create new categories with unit.

Now fix a k-linear category C with unit and d ∈ N.

Definition 4.2. Let I be a finite set and UI = (Ui )i∈I be a family of objects in C indexed by I .
Set m = #I and write I = {i1, . . . , im}. Let us define [UI ]d ∈ Wd(C) by

[UI ]d :=


Ui1 ∗ · · · ∗Uim ∗ 1

�(d−m)
C , if m ≤ d,

0, otherwise.

This object is well-defined because it does not depend on the order of i1, . . . , im . We also write
[UI ]d as [Ui1 , . . . ,Uim ]d .

Before studying these objects, we introduce some notations.

Definition 4.3. Let I1, . . . , Il be finite sets. A recollement (gluing) of I1, . . . , Il is a partition
r ∈ P(I1 ⊔ · · · ⊔ Il) such that for any a = 1, . . . , l and i, i ′ ∈ Ia , i ∼r i ′ implies i = i ′. In
other words, r is a recollement if each Ia → (I1 ⊔ · · · ⊔ Il)/∼r is injective. Let us denote by
R(I1, . . . , Il) the set of recollements of I1, . . . , Il .

For {a1, . . . , ap} ⊂ {1, . . . , l}, let πa1,...,ap : R(I1, . . . , Il) → R(Ia1 , . . . , Iap ) be the map
which takes restriction of equivalence relation via Ia1 ⊔ · · · ⊔ Iap ⊂ I1 ⊔ · · · ⊔ Il .

Notation 4.4. For example, R(I, J ) is the set of partitions of the form

r = {{i, j}, . . . , {i ′}, . . . , { j ′}, . . .}

where i, i ′, . . . ∈ I and j, j ′, . . . ∈ J . For convenience, we represent such r by

r = {(i, j), . . . , (i ′,∅), . . . , (∅, j ′), . . .}

where ∅ is another index different from any element of I ⊔ J so that we can simply write
recollement as r = {(i, j), . . .}. For more than two sets I1, . . . , Il , we use the same notation
r = {(i1, . . . , il), . . .} ∈ R(I1, . . . , Il). For any family of objects UI in C, the symbol Ui denotes
the unit element 1C if i = ∅.
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Definition 4.5. Let UI , VJ be finite families of objects in C. For r ∈ R(I, J ), define the k-
module

H(UI ; VJ ) :=


r∈R(I,J )

Hr (UI ; VJ )

where for each r ∈ R(I, J ),

Hr (UI ; VJ ) :=

(i, j)∈r

HomC(Ui , V j ).

This k-module is N-graded by length of recollements. Let

Hd(UI ; VJ ) :=


r∈R(I,J )
#r=d

Hr (UI ; VJ )

and write H≤d(UI ; VJ ) :=


e≤d H e(UI ; VJ ) and H>d(UI ; VJ ) :=


e>d H e(UI ; VJ ). Obvi-
ously Hd(UI ; VJ ) = 0 unless #I, #J ≤ d ≤ #I + #J .

Let I, J be finite sets such that #I, #J ≤ d. Write I = {i1, . . . , im}, J = { j1, . . . , jn} and let
p, q ∈ P(d) as

p = {{1}, . . . , {m}, {m + 1, . . . , d}}, q = {{1}, . . . , {n}, {n + 1, . . . , d}}

respectively. For each g ∈ Sd , we can take a unique recollement r ∈ R(I, J ) which satisfies
ik ∼r jl if and only if g(k) = l. The correspondence g → r induces a bijection Sp \ Sd/

Sq
1:1
−→{r ∈ R(I, J ) | #r ≤ d}. Thus the isomorphism in Section 3.4 gives

HomWd (C)([UI ]d , [VJ ]d) ≃ H≤d(UI ; VJ ).

This is also true when #I > d or #J > d because both sides are zero.
For Φ ∈ H≤d(UI ; VJ ), let us denote by [Φ]d : [UI ]d → [VJ ]d the map corresponding to Φ

via the isomorphism above. We give an explicit description of it here.

Definition 4.6. Let I, J be finite sets. We say that a sequence ((i1, j1), . . . , (id , jd)) for
i1, . . . , id ∈ I ⊔ {∅}, j1, . . . , jd ∈ J ⊔ {∅} is adapted to a recollement r ∈ R(I, J ) if the
sequence obtained by removing all (∅,∅)’s from it is equal to a permutation of all the elements
in the set r = {(i, j), . . .}.

Recall that [UI ]d is a direct sum of objects of the form Ui1 � · · ·� Uid (i1, . . . , id ∈ I ⊔ {∅}) in

C�d . Let r ∈ R(I, J ) and Φ ∈ Hr (UI , VJ ). Each matrix entry of [Φ]d : [UI ]d → [VJ ]d at the
cell

Ui1 � · · ·� Uid → V j1 � · · ·� V jd

for i1, . . . , id ∈ I ⊔ {∅}, j1, . . . , jd ∈ J ⊔ {∅} is equal to Φ (after reordering the tensor terms) if
((i1, j1), . . . , (id , jd)) is adapted to r and otherwise zero.

We extend the usage of this symbol [Φ]d for Φ ∈ H>d(UI ; VJ ) so that [Φ]d = 0. Thus
we have a k-linear map [•]d : H(UI ; VJ ) → HomWd (C)([UI ]d , [VJ ]d) which is surjective and
whose kernel is H>d(UI ; VJ ).

Example 4.7. Let us consider the case d = 3. Take objects U, V ∈ C then we have

HomW3(C)([U ]3, [V ]3) ≃ HomC(U, V )⊕ (HomC(U,1C)⊗ HomC(1C, V )).
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Let us confirm this directly as follows. In C�3,

[U ]3 ≃ (U � 1C � 1C)⊕ (1C � U � 1C)⊕ (1C � 1C � U ),

[V ]3 ≃ (V � 1C � 1C)⊕ (1C � V � 1C)⊕ (1C � 1C � V ).

For morphisms ϕ : U → V , ψ : U → 1C and ξ : 1C → V in C, the morphisms [ϕ]3 : [U ]3 →
[V ]3 and [ψ ⊗ ξ ]3 : [U ]3 → [V ]3 in C�3 are represented by the matrices

[ϕ]3 :=

ϕ � 1 � 1 0 0
0 1 � ϕ � 1 0
0 0 1 � 1 � ϕ

 ,

[ψ ⊗ ξ ]3 :=

 0 ξ � ψ � 1 ξ � 1 � ψ

ψ � ξ � 1 0 1 � ξ � ψ

ψ � 1 � ξ 1 � ψ � ξ 0


respectively where 1 stands for id1C : 1C → 1C . It is clear that the space of all S3-invariant

morphisms in C�3 are spanned by them. It is true for all d ≥ 2 but when d = 0 or 1 the matrices
become smaller and some of the non-zero terms disappear.

What we have to do next is to compute the composition of these morphisms.

Definition 4.8. Let r ∈ R(I, J ), s ∈ R(J, K ) be two recollements. We define the set

R(s ◦ r) := {u ∈ R(I, J, K ) | π1,2(u) = r, π2,3(u) = s}.

For u ∈ R(s ◦ r), Φ ∈ Hr (UI ; VJ ) and Ψ ∈ Hs(VJ ;WK ), we denote by Ψ ◦u Φ ∈ Hπ1,3(u)(UI ;

WK ) the element obtained by composing terms of Φ ⊗Ψ using compositions

HomC(Ui , V j )⊗ HomC(V j ,Wk)→ HomC(Ui ,Wk)

for all (i, j, k) ∈ u. If both i and k are ∅, the composite of 1C → V j → 1C is regarded as a
scalar in k ≃ EndC(1C).

Lemma 4.9. Let Φ ∈ Hr (UI ; VJ ),Ψ ∈ Hs(VJ ;WK ) be as above. Then

[Ψ ]d ◦ [Φ]d =


u∈R(s◦r)

Pu(d) [Ψ ◦u Φ]d

where Pu is the polynomial

Pu(T ) :=


#π1,3(u)≤a<#u

(T − a) = (T − #π1,3(u)) · · · (T − #u + 1).

Note that the degree #u − #π1,3(u) of Pu does not depend on the choice of u ∈ R(s ◦ r). This
is equal to the number of “orphans” (∅, j,∅) ∈ u in J .

Proof. If #I > d or #K > d , both sides above are zero and the equation clearly holds. Otherwise
the composite is a sum of morphisms of the form [Ψ ◦u Φ]d . Since π1,3 : R(s ◦ r)→ R(I, K ) is
injective, we can uniquely write

[Ψ ]d ◦ [Φ]d =


u∈R(s◦r)
#π1,3(u)≤d

au[Ψ ◦u Φ]d
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for some au ∈ N for each u ∈ R(s ◦ r). So take u ∈ R(s ◦ r) with #π1,3(u) ≤ d and fix a
sequence ((i1, k1), . . . , (id , kd)) adapted to π1,3(u). Since the matrix entry of [Ψ ]d ◦[Φ]d in C�d

at the cell

Ui1 � · · ·� Uid → Wk1 � · · ·� Wkd

coincides with au(Ψ ◦u Φ), au is equal to the number of sequences ( j1, . . . , jd) such that both
((i1, j1), . . . , (id , jd)) and (( j1, k1), . . . , ( jd , kd)) are adapted to the recollements r and s re-
spectively. For a = 1, . . . , d, ja ∈ J ⊔ {∅} is uniquely determined if at least one of ia and ka is
not ∅. Thus only we can choose is the positions of j ∈ J correspond to orphans (∅, j,∅) ∈ u.
The number of them is #u − #π1,3(u) and we can place them in d − #π1,3(u) distinct positions.
So the number of choices is Pu(d) = (d − #π1,3(u)) · · · (d − #u + 1). �

We remark that in the composition law above the rank d only appears as polynomials in the
coefficients. So we can change d ∈ N into an arbitrary t ∈ k. This is the definition of our category
St (C).

Definition 4.10. Let C be a k-linear category with unit and t ∈ k. We define the k-linear category
St (C) by taking the pseudo-abelian envelope of the category defined as follows:

Object A finite family of objects in C written as ⟨UI ⟩t for UI = (Ui )i∈I . We also write
⟨UI ⟩t = ⟨Ui1 , . . . ,Uim ⟩t when I = {i1, . . . , im}.

Morphism For objects ⟨UI ⟩t and ⟨VJ ⟩t ,

HomSt (C)(⟨UI ⟩t , ⟨VJ ⟩t ) ≃ H(UI ; VJ ).

For each Φ ∈ H(UI ; VJ ), we denote by ⟨Φ⟩t the corresponding morphism in S 0
t (C).

The composition of morphisms is given by

⟨Ψ ⟩t ◦ ⟨Φ⟩t :=


u∈R(s◦r)

Pu(t) ⟨Ψ ◦u Φ⟩t

for each Φ ∈ Hr (UI ; VJ ), Ψ ∈ Hs(VJ ;WK ).

The unit object 1St (C) of St (C) is the object ⟨⟩t corresponding to the empty family.

Lemma 4.11. The category St (C) is well-defined; that is, there are identity morphisms and the
composition of morphisms is associative.

Proof. The identity morphism of ⟨UI ⟩t is given by
i∈I

idUi


t
∈


HrI (UI ;UI )


t

where rI = {(i, i) | i ∈ I } ∈ R(I, I ). To prove associativity, we first prove the case for replacing
k with the polynomial ring k[T ] and t with the indeterminate T ∈ k[T ]. Let Φ ∈ H(UI ; VJ ),
Ψ ∈ H(VJ ;WK ) and Θ ∈ H(WK ; X L). Set

⟨Υ ⟩T =

⟨Θ⟩T ◦ ⟨Ψ ⟩T


◦ ⟨Φ⟩T − ⟨Θ⟩T ◦


⟨Ψ ⟩T ◦ ⟨Φ⟩T


.

For all d ∈ N, we have [Υ |T=d ]d = 0 by Lemma 4.9. Since [•]d is an isomorphism when
d ≥ #I + #L , we have Υ |T=d = 0 for such d. Thus Υ = 0 and we get the associativity for t ∈ k
by substituting T = t . �
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Definition 4.12. For a functor F : C → D with unit, let St (F) be the functor St (C) → St (D)
with unit which sends ⟨UI ⟩t to ⟨F(UI )⟩t and ⟨Φ⟩t to ⟨F(Φ)⟩t . For a k-linear transformation
η : F → G with unit, let us define the k-linear transformation St (η) : St (F)→ St (G) with unit
by

St (η)(⟨UI ⟩t ) :=


i∈I

η(Ui )

t
∈


HrI (F(UI );G(UI ))


t

where rI = {(i, i) | i ∈ I } ∈ R(I, I ). These operations define a 2-functor St : 1-Catk →

1-PsCatk where 1-PsCatk is defined as same as before.

Now the following statements are obvious.

Theorem 4.13. Let d ∈ N. For finite families UI , VJ of objects in C, the map

HomSd (C)(⟨UI ⟩d , ⟨VJ ⟩d) → HomWd (C)([UI ]d , [VJ ]d)

⟨Φ⟩d → [Φ]d

is surjective and its kernel is

H>d(UI ; VJ )


d . In particular, it is an isomorphism when d ≥

#I + #J . This map induces a functor Sd(C)→ Wd(C); ⟨UI ⟩d → [UI ]d . If d! is invertible in k,
this functor is also essentially surjective on objects.

Remark 4.14. Deligne’s category Rep(St , k) in [5] is equal to St (T rivk), in our language. Since
St (C) ≃ St (P s(C)), this is also equivalent to St (Rep(k)). Its generalization Rep(G ≀ St , k) for a
finite group G by Knop [10,11] is equivalent to the full subcategory of St (Rep(k[G])) generated
by ⟨k[G]⟩⊗m

t where k[G] is the regular representation of G.

4.2. St for tensor categories

When C is a k-tensor category, we can calculate the tensor product of objects of the form
[UI ]d in the same manner as in the previous subsection. It holds for families UI and VJ that

[UI ]d ⊗ [VJ ]d ≃


r∈R(I,J )
#r≤d


Tr (UI , VJ )


d ≃


r∈R(I,J )


Tr (UI , VJ )


d .

Here, for each r ∈ R(I, J ), Tr (UI , VJ ) is the family

Tr (UI , VJ ) := (Ui ⊗ V j )(i, j)∈r

indexed by the set r = {(i, j), . . .}. Remark that there is a bijection

R(I, J, K , L)
1:1
←→


r∈R(I,J )
s∈R(K ,L)

R(r, s)

where R(r, s) denotes the set of recollements between the sets r = {(i, j), . . .} and s = {(k, l),
. . .}. Via this bijection a recollement u ∈ R(I, J, K , L) correspond to u′ ∈ R(π1,2(u), π3,4(u))
which satisfies ((i, j), (k, l)) ∈ u′ if and only if (i, j, k, l) ∈ u. So using this bijection the
morphisms between tensor products are given by

HomWd (C)([UI ]d ⊗ [VJ ]d , [WK ]d ⊗ [X L ]d) ≃


u∈R(I,J,K ,L)
#u≤d

Hu(UI , VJ ;WK , X L)
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where for each u ∈ R(I, J, K , L),

Hu(UI , VJ ;WK , X L) := Hu′(Tπ1,2(u)(UI , VJ ); Tπ3,4(u)(WK , X L))

≃


(i, j,k,l)∈u

HomC(Ui ⊗ V j ,Wk ⊗ Xl).

The proof of the next lemma is same as that of Lemma 4.9.

Lemma 4.15. For Φ ∈ Hr (UI ;WK ) and Ψ ∈ Hs(VJ ; X L),

[Φ]d ⊗ [Ψ ]d =


u∈R(r⊗s)

[Φ⊗u Ψ ]d .

Here,

R(r ⊗ s) := {u ∈ R(I, J, K , L) | π1,3(u) = r, π2,4(u) = s}

and Φ⊗u Ψ ∈ Hu(UI , VJ ;WK , X L) is obtained by composing terms of Φ ⊗ Ψ using tensor
products

HomC(Ui ,Wk)⊗ HomC(V j , Xl)→ HomC(Ui ⊗ V j ,Wk ⊗ Xl)

for all (i, j, k, l) ∈ u.

Definition 4.16. We define tensor products on St (C) in the same manner as above: for families
UI and VJ of objects in C,

⟨UI ⟩t ⊗ ⟨VJ ⟩t :=


r∈R(I,J )


Tr (UI , VJ )


t

and for morphisms Φ ∈ Hr (UI ;WK ) and Ψ ∈ Hs(VJ ; X L),

⟨Φ⟩t ⊗ ⟨Ψ ⟩t :=


u∈R(r⊗s)

⟨Φ⊗u Ψ ⟩t .

This tensor product induces a structure of k-tensor category to St (C) and we have an enriched
2-functor St : ⊗-Catk →⊗-PsCatk . For d ∈ N, Sd(C)→ Wd(C) induces a k-tensor functor.

The generalized formula for m-fold tensor products is as follows. The symbols

Tr (UI1 , . . . ,UIm ) for r ∈ R(I1, . . . , Im),

Hr (UI1 , . . . ,UIm ; VJ1 , . . . , VJn ) for r ∈ R(I1, . . . , Im, J1, . . . , Jn)

are defined in the same manner as in the case m = n = 2.

Lemma 4.17. Let UI1 , . . . ,UIm , VJ1 , . . . , VJn be families of objects in C. Then

⟨UI1⟩t ⊗ · · · ⊗ ⟨UIm ⟩t ≃


r∈R(I1,...,Im )


Tr (UI1 , . . . ,UIm )


t ,

HomSt (C)(⟨UI1⟩t ⊗ · · · ⊗ ⟨UIm ⟩t , ⟨VJ1⟩t ⊗ · · · ⊗ ⟨VJn ⟩t )

≃


r∈R(I1,...,Im ,J1,...,Jn)


Hr (UI1 , . . . ,UIm ; VJ1 , . . . , VJn )


t .

By specializing it to the case that the all families are of size one, we get:
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Corollary 4.18. For U1, . . . ,Um, V1, . . . , Vn ∈ C,

⟨U1⟩t ⊗ · · · ⊗ ⟨Um⟩t ≃


p∈P(m)

⟨Tp(U1, . . . ,Um)⟩t ,

HomSt (C)(⟨U1⟩t ⊗ · · · ⊗ ⟨Um⟩t , ⟨V1⟩t ⊗ · · · ⊗ ⟨Vn⟩t )

≃


p∈P(m,n)


Hp(U1, . . . ,Um; V1, . . . , Vn)


t .

Here P(m) = P({1, . . . ,m}) and P(m, n) := P({1, . . . ,m} ⊔ {1′, . . . , n′}).

Note that the object ⟨U1, . . . ,Um⟩t is obtained as a direct summand of ⟨U1⟩t ⊗ · · · ⊗ ⟨Um⟩t
by the corollary above. Thus St (C) is also generated by objects of this form.

4.3. Base change

Let r ∈ R(I, J ) be a recollement between finite sets I and J . As before, we regard r as a set
r = {(i, j), . . .}. This set is naturally identified with the pushout I ⊔ J/∼r . Conversely, for such
r , let us denote by r the pullback

r := {(i, j) ∈ I × J | i ∼r j} = {(i, j) ∈ r | i, j ≠ ∅}.

So I , J , r and r form a cartesian and cocartesian square

rPp

����
��

�
� o

��>
>>

>>

I � o

��>
>>

>>
JOo

����
��

�

r

in the category of finite sets. Remark that there are bijections

R(I, J )
1:1
←→{set r with injective maps I ↩→ r, J ↩→ r such that I ⊔ J → r is surjective}/ ∼

1:1
←→{set r with injective maps r ↩→ I, r ↩→ J }/ ∼ .

Let UI , VJ be families of objects in C. Take a recollement r ∈ R(I, J ) and write

r = {(i, j), . . . , (i ′,∅), . . . , (∅, j ′), . . .}

where i, i ′, . . . ,∈ I and j, j ′, . . . ,∈ J . Using this representation, let us write

UI = (Ui , . . . ,Ui ′ , . . .), VJ = (V j , . . . , V j ′ , . . .).

respectively. Let us introduce four families

Ur := (Ui , . . . ,Ui ′ , . . . , V j ′ , . . .), Ur := (Ui , . . .),

Vr := (V j , . . . ,Ui ′ , . . . , V j ′ , . . .), Vr := (V j , . . .)

indexed by the sets r and r respectively.
Take an element Φ ∈ Hr (UI ; VJ ) of the form

Φ = ϕ(1)i, j ⊗ · · · ⊗ ϕ
(2)
i ′ ⊗ · · · ⊗ ϕ

(3)
j ′ ⊗ · · ·
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where ϕ(1)i, j : Ui → V j , ϕ
(2)
i ′ : Ui ′ → 1C and ϕ(3)j ′ : 1C → V j ′ . By the composition law in St (C),

we have that the map ⟨Φ⟩t : ⟨UI ⟩t → ⟨VJ ⟩t factors through ⟨Ur ⟩t and ⟨Vr ⟩t ; that is, the composite

⟨UI ⟩t

⟨···⊗ϕ
(3)
j ′
⊗···⟩

t
##GGGGGGGG

⟨VJ ⟩t

⟨Ur ⟩t
⟨···⊗ϕ

(1)
i, j ⊗···⟩t

// ⟨Vr ⟩t

⟨···⊗ϕ
(2)
i ′
⊗···⟩

t

;;wwwwwwww

is equal to ⟨Φ⟩t . Now let us consider another composite which goes through ⟨Ur ⟩t and ⟨Vr ⟩t :

⟨Ur ⟩t

⟨···⊗ϕ
(1)
i, j ⊗···⟩t // ⟨Vr ⟩t

⟨···⊗ϕ
(3)
j ′
⊗···⟩

t

##GG
GG

GG
GG

G

⟨UI ⟩t

⟨···⊗ϕ
(2)
i ′
⊗···⟩

t

;;wwwwwwww
⟨VJ ⟩t .

We denote this morphism by the symbol ⟨⟨Φ⟩⟩t . By the composition law, we get the formula

⟨⟨Φ⟩⟩t =

s≤r
⟨Φ|s⟩t

immediately. Here, for each recollement s ≤ r , Φ|s ∈ Hs(UI ; VJ ) is obtained by composing
terms of Φ using

HomC(Ui ,1C)⊗ HomC(1C, V j )→ HomC(Ui , V j )

for each i ∈ I and j ∈ J such that i �r j but i ∼s j . Thus we have another isomorphism ⟨⟨•⟩⟩t :
H(UI ; VJ ) → HomSt (C)(⟨UI ⟩t , ⟨VJ ⟩t ) and morphisms of the form ⟨⟨Φ⟩⟩t also form a basis of
HomSt (C)(⟨UI ⟩t , ⟨VJ ⟩t ).

Conversely, we can explicitly represent a morphism of the form ⟨Φ⟩t as a linear combination
of morphisms ⟨⟨Ψ ⟩⟩t . For each recollements s ≤ r , their Möbius function is given by µ(s, r) =
(−1)#r−#s since the subset {u ∈ R(I, J ) | s ≤ u ≤ r} is isomorphic to the power set of a set of
order #r − #s as partially ordered set. Thus we have the inverse formula

⟨Φ⟩t =

s≤r
(−1)#r−#s

⟨⟨Φ|s⟩⟩t .

Now let us take two morphisms ⟨⟨Φ⟩⟩t : ⟨UI ⟩t → ⟨VJ ⟩t and ⟨⟨Ψ ⟩⟩t : ⟨VJ ⟩t → ⟨WK ⟩t and
calculate the composite of them. Let Φ ∈ Hr (UI ; VJ ) and Ψ ∈ Hs(VJ ;WK ) be

Φ = ϕ(1)i, j ⊗ · · · ⊗ ϕ
(2)
i ′ ⊗ · · · ⊗ ϕ

(3)
j ′ ⊗ · · ·

Ψ = ψ (1)j,k ⊗ · · · ⊗ ψ
(2)
j ′ ⊗ · · · ⊗ ψ

(3)
k′ ⊗ · · ·

as same as before. Let J1 ⊂ J be the union of images r ↩→ J and s ↩→ J and denote by VJ1 the
subfamily of VJ indexed by J1. By the composition law, the composite ⟨Vr ⟩t → ⟨VJ ⟩t → ⟨Vs⟩t
is equal to the scalar multiple of the composite ⟨Vr ⟩t → ⟨VJ1⟩t → ⟨Vs⟩t . Here, its scalar
coefficient is given by

Pr,s(t)


j ′∈J\J1

ψ
(2)
j ′ ◦ ϕ

(3)
j ′
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where Pr,s is the polynomial

Pr,s(T ) :=


#J1≤a<#J

(T − a) = (T − #J1) · · · (T − #J + 1)

and we regard each ψ (2)j ′ ◦ ϕ
(3)
j ′ : 1C → V j ′ → 1C as scalar via EndC(1C) ≃ k. Then we can

complete the square

⟨Vu⟩t

%%KKK

· · · // ⟨Vr ⟩t

%%JJJ
JJ

99sss
⟨Vs⟩t

// · · ·

⟨VJ1⟩t

99ttttt

using the base change formula. To apply the formula, we regard J1 as a recollement J1 ∈ R(r , s)
via the injective maps r ↩→ J1 and s ↩→ J1. The sum is taken over all recollements u ∈ R(r , s)
such that u ≤ J1. Taken together, we obtain the formula in the next proposition.

For u ∈ R(r , s), let us denote by u′ ∈ R(I, K ) the induced recollement on I and K by the
injective maps u ↩→ r ↩→ I and u ↩→ s ↩→ K . Let s ◦ r be the maximal element of R(s ◦ r),
i.e. the equivalent relation on I ⊔ J ⊔ K generated by r and s, so J ′1 = π1,3(s ◦ r).

Proposition 4.19. Let r ∈ R(I, J ), s ∈ R(J, K ), Φ ∈ Hr (UI ; VJ ) and Ψ ∈ Hs(VJ ,WK ) as
above. Put Ξ := Ψ ◦(s◦r) Φ ∈ HJ ′1

(HI ,WK ). Then

⟨⟨Ψ ⟩⟩t ◦ ⟨⟨Φ⟩⟩t = Pr,s(t)

u≤J1

(−1)#J1−#u
⟨⟨Ξ |u′⟩⟩t .

The inequality #r , #s ≥ #u = #u′ for r , s and u above gives us the next corollary.

Corollary 4.20. Let UI , VJ and WK be families of objects in C. Take d, e ∈ N and let f :=
max{d + #K , e + #I } − #J . Then

⟨⟨H≥e(VJ ,WK )⟩⟩t ◦ ⟨⟨H
≥d(UI , VJ )⟩⟩t ⊂ ⟨⟨H

≥ f (UI ,WK )⟩⟩t .

In particular, ⟨⟨H≥d(UI ,UI )⟩⟩t is a two-sided ideal of End St (C)(⟨UI ⟩t ) for any d.

4.4. Restriction and induction

We also interpolate the restriction functors defined in Section 3.5 to arbitrary ranks.

Definition 4.21. Let C be a k-linear category with unit and t1, t2 ∈ k. Put t = t1 + t2. We define
the functor ResSt

St1×St2
: St (C)→ St1(C)� St2(C) by

ResSt
St1×St2

(⟨UI ⟩t ) :=

I ′⊂I

⟨UI ′⟩t1 � ⟨UI\I ′⟩t2 .

The map for morphisms is defined as follows. Fix subsets I ′ ⊂ I and J ′ ⊂ J and take r ∈
R(I, J ). Let r ′ ∈ R(I ′, J ′) and r ′′ ∈ R(I \ I ′, J \ J ′) be the restricted recollements of r to each
subsets. Then

Hr ′(UI ′; VJ ′)⊗ Hr ′′(UI\I ′; VJ\J ′) ≃ Hr ′⊔r ′′(UI ; VJ ).



26 M. Mori / Advances in Mathematics 231 (2012) 1–42

Here r⊔r ′ ∈ R(I, J ) is the equivalence relation generated by r and r ′. For each Φ ∈ Hr (UI , VJ ),
the matrix entry of ResSt

St1×St2
(⟨Φ⟩t ) at the cell

⟨UI ′⟩t1 � ⟨UI\I ′⟩t2 → ⟨VJ ′⟩t1 � ⟨VJ\J ′⟩t2

is defined to be zero if r ≠ r ′ ⊔ r ′′; otherwise

⟨Φ′⟩t1 � ⟨Φ′′⟩t2 when we write Φ =


Φ′⊗Φ′′

using Φ′ ∈ Hr ′(UI ′; VJ ′) and Φ′′ ∈ Hr ′′(UI\I ′; VJ\J ′).

Definition 4.22. Let C be a k-linear category with unit, t1, t2 ∈ k and put t = t1t2. We define the
functor ResSt

St1 ≀St2
: St (C)→ St2(St1(C)) by

ResSt
St1 ≀St2

(⟨UI ⟩t ) :=


p∈P(I )


⟨Up⟩t1


t2
.

Here, p runs over all partitions of I and ⟨Up⟩t1 is the family of objects in St1(C) indexed by
p = {I1, . . . , Il}:

⟨Up⟩t1 := (⟨UI1⟩t1 , . . . , ⟨UIl ⟩t1).

The map for morphisms is defined in the same manner; the matrix entry of ResSt
St1 ≀St2

(⟨Φ⟩t ) for

Φ ∈ Hr (UI , VJ ) at the cell
⟨Up⟩t1


t2
→


⟨Vq⟩t1


t2

is induced from Φ if r is compatible with p, q and otherwise zero.

The well-definedness of these functors is proved by the same argument as the previous one:
consider the case for the indeterminate rank T ∈ k[T ] and check that equations hold for all
T = d ≫ 0 in Wd(C). Note that for a k-braided tensor category C, it is easier to define them
using the universality of St (C), see Theorem 4.31.

On the other hand, it does not seem possible to interpolate the induction functors to general
t1, t2 ∈ k. For example, if the functor I ndSt

St1×St2
exists it should multiply “dimensions” of

objects by the binomial coefficient t !/(t1!t2!), which is not a polynomial in t1, t2. However, in the
special case where one of the parameters t2 = d2 ∈ N is a natural number and d2! is invertible in
k, we can define associative ∗-product by

St1(C)�Wd2(C)→ St1+d2(C)
⟨U1, . . . ,Um⟩t1 � [V1, . . . , Vd2 ]d2 → ⟨U1, . . . ,Um, V1, . . . , Vd2⟩t1+d2

since Wd2(C) is generated by objects of this form. This defines the action of k-tensor category
W•(C) on S•(C) :=


t∈k St (C).

4.5. St for braided tensor categories

If a k-tensor category C has a braiding σC then the 2-functor St naturally induces a braiding
σSt (C) of St (C). Here its component ⟨UI ⟩t ⊗ ⟨VJ ⟩t

∼
−→ ⟨VJ ⟩t ⊗ ⟨UI ⟩t is the direct sum of

isomorphisms 
(i, j)∈r

σC(Ui , V j )

t
:

Tr (UI , VJ )


t
∼
−→


Tr̃ (VJ ,UI )


t
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for all r ∈ R(I, J ) where r̃ ∈ R(J, I ) is the corresponding recollement to r via I ⊔ J
1:1
←→ J ⊔ I .

Clearly if the braiding σC is symmetric then so is σSt (C).

As we have seen, it is too complicated to describe the morphisms in St (C). But if a braiding
σC of the category C is given, we can use a very powerful tool: the graphical representation of
morphisms. First we represent object ⟨U1⟩t ⊗ · · · ⊗ ⟨Um⟩t by labeled points placed side-by-side:

⟨U1⟩t ⊗ · · · ⊗ ⟨Um⟩t = •
U1

•
U2

· · · •
Um

.

When m = 0, “no points” denotes the unit object 1St (C). Recall that objects of this form generate
the pseudo-abelian category St (C); so to describe St (C) it suffices to consider morphisms
between them. We represent such morphisms by strings which connect points from top to bottom.

For each morphism ϕ : U → V in C, we have ⟨ϕ⟩t : ⟨U ⟩t → ⟨V ⟩t . We represent it by a string
with a label ϕ . If ϕ = idU : U → U , the label may be omitted:

⟨ϕ⟩t =

•
U

•

V

ϕ ,

•
U

•

U

idU =

•
U

•

U

= id⟨U ⟩t .

By definition, the spaces of morphisms 1St (C) → ⟨1C⟩t and ⟨1C⟩t → 1St (C) are both
isomorphic to EndC(1C). Take morphisms ιC and ϵC from them respectively which correspond
to id1C . We represent them by broken strings:

ιC =

•

1C

�?

, ϵC =

•
1C

�?
.

As we have seen, ⟨U ⊗ V ⟩t is a direct summand of ⟨U ⟩t ⊗ ⟨V ⟩t . We denote its retraction by
µC(U, V ) : ⟨U ⟩t ⊗ ⟨V ⟩t → ⟨U ⊗ V ⟩t and section ∆C(U, V ) : ⟨U ⊗ V ⟩t → ⟨U ⟩t ⊗ ⟨V ⟩t . We
represent them by ramifications of strings:

µC(U, V ) =

•
U

•
V

•

U ⊗ V

, ∆C(U, V ) =

•

U
•

V

•
U ⊗ V

.

Let us denote by τC(U, V ) the braiding σSt (C)(⟨U ⟩t , ⟨V ⟩t ) : ⟨U ⟩t ⊗ ⟨V ⟩t
∼
−→ ⟨V ⟩t ⊗ ⟨U ⟩t

for short. This morphism is represented by crossing strings. We distinguish the braiding from its



28 M. Mori / Advances in Mathematics 231 (2012) 1–42

inverse by the sign of the crossing, the overpass and the underpass:

τC(U, V ) =

•
U

•
V

•

V
•

U

::
::

::
::

:

��
��

����

, τ−1
C (U, V ) =

•
U

•
V

•

V
•

U
��

��
��

��
�

::
::

::::
.

We represent the tensor product of these morphisms by placing corresponding diagrams side-
by-side. Finally we connect these diagrams from top to bottom to represent the composite of
them.

Example 4.23. The diagram in the introduction

ϕ ψ ξ

•
U1

•
U2

•
U3

•
V1

•
V2

•
V3

•
V4

��

�?

denotes the composite of morphisms

⟨U1⟩t ⊗ ⟨U2⟩t ⊗ ⟨U3⟩t
τ−1

C (U1,U2)⊗id⟨U3⟩t
−−−−−−−−−−−−→ ⟨U2⟩t ⊗ ⟨U1⟩t ⊗ ⟨U3⟩t
id⟨U2⟩t

⊗µC(U1,U3)⊗ιC
−−−−−−−−−−−−−−→ ⟨U2⟩t ⊗ ⟨U1 ⊗U3⟩t ⊗ ⟨1C⟩t
⟨ϕ⟩t⊗⟨ψ⟩t⊗⟨ξ⟩t
−−−−−−−−−→ ⟨V1 ⊗ V2⟩t ⊗ ⟨V4⟩t ⊗ ⟨V3⟩t

∆C(V1,V2)⊗id⟨V4⟩t
⊗id⟨V3⟩t

−−−−−−−−−−−−−−−−→ ⟨V1⟩t ⊗ ⟨V2⟩t ⊗ ⟨V4⟩t ⊗ ⟨V3⟩t
id⟨V1⟩t

⊗id⟨V2⟩t
⊗τC(V4,V3)

−−−−−−−−−−−−−−−→ ⟨V1⟩t ⊗ ⟨V2⟩t ⊗ ⟨V3⟩t ⊗ ⟨V4⟩t

for ϕ : U2 → V1 ⊗ V2, ψ : U1 ⊗U3 → V4 and ξ : 1C → V3.

Recall that we can decompose the space of morphisms

⟨U1⟩t ⊗ · · · ⊗ ⟨Um⟩t → ⟨V1⟩t ⊗ · · · ⊗ ⟨Vn⟩t

by partitions P(m, n) as in Corollary 4.18. It is easy to show that if we take the morphism
represented by the diagram above, this morphism is decomposed as

q≤p
⟨Θq⟩t

using suitable Θq ∈ Hq(U1, . . . ,U3; V1, . . . , V4) for each q ≤ p where p ∈ P(3, 4) is a parti-
tion {{2, 1′, 2′}, {1, 3, 4′}, {3′}}. Moreover, the top component Θp is equal to ϕ ⊗ ψ ⊗ ξ .
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To apply this argument globally, we have to fix a “shape” of each partition. For example,

{{1, 3, 1′}, {2, 2′}} →

•
1

•
2

•
3

•

1′
•

2′

((
((
(

mmmmmmmmmm

�����

, {{1, 2′}, {2, 3}, {1′}} →

•
1

•
2

•
3

•

1′
•

2′
44

44
44

44
44

, . . . .

Let us describe it more precisely. For each partition p ∈ P(m, n), first we fix an order of the
components p = {I1, . . . , Il}. For each k = 1, . . . , l, write

Ik = {ik,1, ik,2, . . . , ik,a(k), j ′k,1, j ′k,2, . . . , j ′k,b(k)}

so that ik,1 < ik,2 < · · · < ik,a(k) and jk,1 < jk,2 < · · · < jk,b(k). Next we choose braid group
elements g ∈ Bm and h ∈ Bn which satisfy

(g−1(1), . . . , g−1(m)) = (i1,1, i1,2, . . . , i1,a(1), . . . , il,1, il,2, . . . , il,a(l)),

(h−1(1), . . . , h−1(n)) = ( j1,1, j1,2, . . . , j1,b(1), . . . , jl,1, jl,2, . . . , jl,b(l)).

These are what we called the shape of p. Using these data, we define a “diagram labeling” map

f p : Hp(U1, . . . ,Um; V1, . . . , Vn)

−→ HomSt (C)(⟨U1⟩t ⊗ · · · ⊗ ⟨Um⟩t , ⟨V1⟩t ⊗ · · · ⊗ ⟨Vn⟩t )

for each p ∈ P(m, n) as follows. Put

Ũk := Uik,1 ⊗Uik,2 ⊗ · · · ⊗Uik,a(k) , Ṽk := V jk,1 ⊗ V jk,2 ⊗ · · · ⊗ V jk,b(k) .

For ϕk : Ũk → Ṽk (k = 1, . . . , l), the corresponding morphism f p(ϕ1 ⊗ · · · ⊗ ϕl) is defined to
be

f p(ϕ1 ⊗ · · · ⊗ ϕl) := (τ
h

C )
−1
◦∆p

C ◦ (⟨ϕ1⟩t ⊗ · · · ⊗ ⟨ϕl⟩t ) ◦ µ
p

C ◦ τ
g

C

where τ g
C and τ h

C are braidings along g and h respectively and

µ
p

C : ⟨Ug−1(1)⟩t ⊗ · · · ⊗ ⟨Ug−1(m)⟩t → ⟨Ũ1⟩t ⊗ · · · ⊗ ⟨Ũl⟩t

∆p
C : ⟨Ṽ1⟩t ⊗ · · · ⊗ ⟨Ṽl⟩t → ⟨Vh−1(1)⟩t ⊗ · · · ⊗ ⟨Vh−1(n)⟩t

are suitable composites of µC, ιC and ∆C, ϵC respectively (this notion is well-defined since µC
is associative and ∆C is coassociative; see Proposition 4.26). So the morphism in Example 4.23
is written as f p(ϕ ⊗ ψ ⊗ ξ) if we choose a suitable shape of p. It is easy to check that this map
also satisfies unitriangularity

f p(Φ) = ⟨Φ⟩t +

q�p

⟨Θq⟩t . (Θq ∈ Hq(U1, . . . ,Um; V1, . . . , Vn)).

Thus by the induction on the partial order of the partitions, we have another isomorphism

HomSt (C)(⟨U1⟩t ⊗ · · · ⊗ ⟨Um⟩t , ⟨V1⟩t ⊗ · · · ⊗ ⟨Vn⟩t )

≃


p∈P(m,n)

f p(Hp(U1, . . . ,Um; V1, . . . , Vn)).

Notice that this isomorphism depends on the shapes of the partitions we have chosen.
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We say that a diagram is of standard form if it represents a composite

(τ h
C )
−1
◦∆p

C ◦ (⟨ϕ1⟩t ⊗ · · · ⊗ ⟨ϕl⟩t ) ◦ µ
p

C ◦ τ
g

C

for some p ∈ P(m, n). Of course this notion also depends on the shapes we have chosen. Bring
these arguments all together, we have the next proposition.

Proposition 4.24. Every morphism ⟨U1⟩t⊗· · ·⊗⟨Um⟩t → ⟨V1⟩t⊗· · ·⊗⟨Vn⟩t can be represented
by a linear combination of diagrams of standard form. In such a representation, the correspond-
ing component of Hp(U1, . . . ,Um; V1, . . . , Vn) at each p ∈ P(m, n) is uniquely determined.

Remark 4.25. Several known algebras are appeared as the endomorphism ring of an object of the
form ⟨U ⟩⊗m

t ∈ St (C). For Deligne’s case C = Rep(k), EndSt (C)(⟨1k⟩
⊗m
t ) is the partition alge-

bra introduced by Jones [9] and Martin [15]. More generally, fix r ∈ N and let C := Rep(k)Z/rZ

the category of (Z/rZ)-graded k-modules (Deligne’s case is when r = 1). Let U = 1k[−1]
which has a component 1k at degree 1, so

HomC(U
⊗m,U⊗n) ≃


k, if m ≡ n(mod r),
0, otherwise.

The endomorphism ring EndSt (C)(⟨U ⟩
⊗m
t ) is called the r -modular party algebra [12]. It is

spanned by diagrams whose number of input legs and that of output legs are congruent mod-
ulo r at each its connected component.

Another example is Knop’s case, C = Rep(k[G]) for a finite group G. The endomorphism
ring EndSt (C)(⟨k[G]⟩

⊗m
t ) is the G-colored partition algebra of Bloss [2]. To represent mor-

phisms he uses little different diagrams from ours but we can easily translate them into our form
using the following morphisms: the right multiplication k[G] → k[G] by g ∈ G, the diagonal
embedding k[G] → k[G] ⊗ k[G] and projection k[G] ⊗ k[G] → k[G]. Note that in either case
objects of the form ⟨U ⟩⊗m

t generate the whole pseudo-abelian category St (C).

4.6. Universality of St (C)

The last proposition tells us that St (C) is generated by the morphisms ⟨ϕ⟩t , µC(U, V ), ιC ,
∆C(U, V ) and ϵC as pseudo-abelian k-braided tensor category. Next we study the relations
between them. Note that functoriality of the braiding implies that any diagram can pass under
and jump over a string (including the Reidemeister move of type III):

GGGGGGGGG

--
-

��
�

��� ((
((
( =

GGGGGGGGG

���
---

((
(((

��
�

,

--
-

��
�

�����

(((((

www
ww

ww

=

((
((

(

��
��
�

���
---

ww
ww

www ,

and of course we can also apply the Reidemeister move of type II:

= = .

In addition, we can transform diagrams along the local moves listed in the next proposition.
The proof is easy and straightforward. We prove later that these equations are enough to define
St (C) by generators and relations.
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Proposition 4.26. In St (C), the morphisms ⟨ϕ⟩t , µC(U, V ), ιC , ∆C(U, V ) and ϵC satisfy the
equations below.

(1) ⟨•⟩t : C → St (C) is a k-linear functor:

id = ,

ϕ

ψ
= ψ ◦ ϕ , aϕ + bψ = a ϕ + b ψ .

(2) µC : ⟨•⟩t⊗⟨•⟩t → ⟨•⊗•⟩t and ∆C : ⟨•⊗•⟩t → ⟨•⟩t⊗⟨•⟩t are both k-linear transformations:

ϕ ψ
=
ϕ ⊗ ψ

, ϕ ψ
=

ϕ ⊗ ψ
.

(3) Associativity and coassociativity:

= , = .

(4) Unitality and counitality:

�?
= =

�?

,
�?

= =

�?
.

(5) µC and ∆C commute with braidings:
EEEE yyy

=
σC

,

yy
y EE

EE
=

σC
.

(6) Compatibility between µC and ∆C :









= , 44

44
4

= .

(7) µC is a retraction and ∆C is a section:

= .

(8) Quadratic relation on braidings:

66
66

66
66

66

��
��
�

�����

−

��
��

��
��

��66
66

6

66666

= σC − σ
−1

C

rrr
rLLL

L

rrrr
LLLL

.

(9) The object ⟨1C⟩t is of dimension t:

�?
�?
= tid1St (C) .

Using these equations, we can easily calculate composites of morphisms. Calculating tensor
products is easier: it is nothing but arranging diagrams horizontally. Note that the rank t appears
only when we remove isolated components from diagrams using the last equation (9).
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Example 4.27.

• • • •

• •

ξ χ ω

�? �?

**
**

ssss

hhhh ,,
,,

,

��
��
�

wwwwww

GGGGGG

◦

•

• • • •

ϕ ψ

�? 22
22

2

rrrrrrr

?????
�����

KK

LLLL

=

•

• •

ϕ
ψ

ξ
χ

ω

44
44

4

,,
,,

������

;;;;;;

= t (ξ ◦ ϕ)

•

• •

(χ ⊗ ω) ◦ ψ

ssssss

KKKKKK

.

Notice that ⟨•⟩t : C → St (C) is a k-linear functor between k-braided tensor categories but
not a k-braided tensor functor. In fact, the conditions (1)–(5) is almost same as the definition of
braided tensor functor but the only difference is that they do not require that µC and ∆C , ιC and
ϵC are inverse to each other. With this fact in mind, we define weaker notions of tensor functors
and transformations.

Definition 4.28. Let C and D be k-tensor categories.

(1) A k-linear functor F : C → D is called a k-Frobenius functor if it is endowed with k-linear
transformations

µF : F(•)⊗ F(•)→ F(• ⊗ •), ∆F : F(• ⊗ •)→ F(•)⊗ F(•),

ιF : 1D → F(1C), ϵF : F(1C)→ 1D

which are associative, unital, coassociative and counital (see Definition 2.12 (1)), and satisfies
the compatibility conditions in Proposition 4.26 (6), i.e.

∆F (U ⊗ V,W ) ◦ µF (U, V ⊗W ) = (µF (U, V )⊗ idW ) ◦ (idU ⊗∆F (V,W )),

∆F (U, V ⊗W ) ◦ µF (U ⊗ V,W ) = (idU ⊗ µF (V,W )) ◦ (∆F (U, V )⊗ idW ).

The scalar ϵF ◦ ιF ∈ EndC(1C) ≃ k is called the dimension of F and denoted by dim F .
(2) A k-Frobenius functor F is called separable if µF is a retraction and ∆F is a section,

i.e. µF (U, V ) ◦∆F (U, V ) = idU⊗V .
(3) A k-Frobenius transformation η : F → G between two Frobenius functors is a k-linear

transformation such that both the diagrams in Definition 2.12 (2) and their dual commute.

Definition 4.29. Let C and D be k-braided tensor categories.

(1) A k-braided Frobenius functor F : C → D is a k-Frobenius functor such that µF and ∆F
commute with braidings. See Definition 2.13 (3).

(2) A k-braided Frobenius functor F is called quadratic if it satisfies the quadratic relation

σD(F(U ), F(V ))− σ−1
D (F(U ), F(V ))

= ∆F (V,U ) ◦ (σC(U, V )− σ−1
C (U, V )) ◦ µF (U, V ).

(3) A k-braided Frobenius transformation is just a k-Frobenius transformation between two
k-braided Frobenius functors.
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Thus Proposition 4.26 just says that ⟨•⟩t : C → St (C) is a k-braided Frobenius functor which
is separable, quadratic, and of dimension t . Obviously an usual k-braided tensor functor is also
but of dimension 1. Note that k-braided Frobenius functors are closed under composition and the
properties listed above are preserved. In addition, dim(G ◦ F) = dim F dim G.

Remark 4.30. Frobenius functors, usually called Frobenius monoidal functors, were introduced
and studied by Szlachányi [19,20], Day and Pastro [4]. Notice that McCurdy and Street [17]
require a stronger relation

σD(F(U ), F(V )) = ∆F (V,U ) ◦ σC(U, V ) ◦ µF (U, V ).

in their definition of the term “braided” on separable Frobenius functors than ours.

Now we state the universal property of St (C). That is, St (C) is the smallest category which
has generators and satisfies relations as in Proposition 4.26. Let us denote by HomB

k (C,D)
(resp. HomBF

k (C,D)) the category of k-braided tensor (resp. Frobenius) functors and transfor-
mations.

Theorem 4.31. Let C,D be k-braided tensor categories and assume that D is pseudo-abelian.

(1) The natural functor

HomB
k (St (C),D)

◦⟨•⟩t
−−→ HomBF

k (C,D)

is fully faithful.
(2) For F ∈ HomBF

k (C,D), there exists F̃ ∈ HomB
k (St (C),D) such that F ≃ F̃ ◦ ⟨•⟩t as

k-braided Frobenius functors if and only if F is separable, quadratic, and of dimension t.

Proof. (1) Let F̃, G̃ : St (C) → D be k-braided tensor functors and put F := F̃ ◦ ⟨•⟩t , G :=
G̃ ◦ ⟨•⟩t . We have to show that the map between the sets of transformations

HomHomB
k (St (C),D)(F̃, G̃)→ HomHomBF

k (C,D)(F,G)

η̃ → η

defined by η(U ) = η̃(⟨U ⟩t ) is bijective.
By the definition of k-tensor transformation, the map η̃(⟨U1⟩t ⊗ · · · ⊗ ⟨Um⟩t ) is determined

by each η̃(⟨Ui ⟩t ) = η(Ui ). Thus this map is injective. Conversely, for each k-braided Frobenius
transformation η : F → G, we can define η̃ : F̃ → G̃ at each objects in St (C) as above. We can
show easily that η̃ commute with all the morphisms in St (C); so η̃ is actually a transformation
whose restriction is equal to η. Thus this map is also surjective.

(2) The “only if” part is obvious, so we prove the “if” part. Let us take a k-braided Frobenius
functor F : C → D which is separable, quadratic and of dimension t . First we define F̃ for
objects ⟨U1⟩t ⊗ · · · ⊗ ⟨Um⟩t by

F̃(⟨U1⟩t ⊗ · · · ⊗ ⟨Um⟩t ) := F(U1)⊗ · · · ⊗ F(Um).

The map for morphisms is determined by F̃(µC) := µF , F̃(ιC) := ιF etc.; since all morphisms
in St (C) are generated by them. By taking its pseudo-abelian envelope, we can extend its domain
to the whole objects in St (C).

To prove its well-definedness, we have to show that a linear combination of diagrams which
represents a zero morphism in St (C) is also zero in D. Here we also use diagrams to denote
morphisms in D which are came from C via F . By Proposition 4.24 it suffices to show that every
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diagram can be transformed into a linear combination of diagrams of standard form using the
relations listed in Proposition 4.26 only. First we state the next lemma.

Lemma 4.32. If two strings in left-hand sides below are connected,

66
66

66
66

66

��
��
�

�����

= σC

rrr
rLLL

L

rrrr
LLLL

,

��
��

��
��

��66
66

6

66666

= σ−1
C

rrr
rLLL

L

rrrr
LLLL

.

Proof. It suffices to prove the first equation. By the assumption we can find a loop connecting the
two strings. The shape of the loop looks like either of the diagrams below depending on whether
the loop contains the other side of the crossing or not:

We prove the equation by the induction on sizes of loops. So we may assume that the loop has
no short circuits and other self-crossings. To prove the equation we can reverse crossings in the
loop freely since the right-hand side of the relation (8) makes smaller loops. So we can remove
all unconnected strings from the diagram. In addition, the crossing in the loop of second type
above can be moved to the outside of the loop since the strings in the other side of the crossing
are not connected to the loop:

Thus we may assume that the loop is of first type.
If there is a string in the loop, by the assumptions the string is connected to the loop at only

one point. If this string has a crossing with the loop, by the hypothesis of the induction we can
apply the lemma to this crossing and we get a smaller loop. Otherwise we can flip it to the outside
using (5):

−→

σC
.

Thus we may assume that there is no strings in the loop. We can remove extra parts on the loop
by using (2), (3) and (6). So it suffices to prove the equation in two special cases below:

????���

,
??

??
?

����
.

The proof is easy and we left it to the reader. �
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Let us continue the proof of the theorem. First take an arbitrary connected diagram. Using
this lemma, we can remove all crossings from the diagram and we get a planar diagram. If the
diagram has extra ιC ’s and ϵC ’s we can put them together to other strings using the lemma and
the relation (4). By removing all bubbles using (6), we get a tree diagram which has no extra
endpoints. If the diagram represents a morphism 1St (C) → 1St (C), we can transform it into a
scalar by (9). Otherwise we can move all µC ’s to the top of the diagram and ∆C ’s to the bottom;
then we obtain a diagram of standard form.

Next we prove this for any diagram which has more than two connected components by the
induction on the number of them. For such a diagram, first we reverse some crossings using (8)
so that the connected components are totally ordered from the back of the paper to the front.
Because the number of the connected components of right-hand side of (8) is less than that of
left-hand side, we can apply the hypothesis of the induction to the difference between them. Then
we can transform each connected component to standard form in the manner described above.
Reversing some crossings again, we get a diagram of standard form. �

Remark 4.33. Let C be a k-tensor category and consider the subcategory T Lt (C) of St (C)whose
objects are generated by ⟨U1⟩t⊗· · ·⊗⟨Um⟩t for all U1, . . . ,Um ∈ C and morphisms between them
are k-linear combinations of “non-crossing” diagrams, i.e. composites of ⟨ϕ⟩t , µC , ιC , ∆C and
ϵC . This k-tensor category is a “C-colored” version of so-called Temperley–Lieb category [7] and
satisfies the same universality as in Theorem 4.31 with respect to separable k-Frobenius functors
of dimension t . The important difference between St and T Lt is that we can naturally apply T Lt
to any k-linear bicategories, in other words, k-tensor categories with several 0-cells.

5. Classification of indecomposable objects

In this section we assume that k is a field of characteristic zero. The purpose of this section is
to explain the structure of our category St (C).

5.1. For Deligne’s category

Let us denote Deligne’s category St (Rep(k)) by Dt . We review here the result of Comes and
Ostrik [3] which describes the complete classification of indecomposable objects in Dt .

For m ∈ N, we use the same symbol m to denote the family of objects (1k)
m
i=1 which contains

the trivial representation 1k by multiplicity m so that we can write an object in Dt as ⟨m⟩t .
Let us denote by Et,m the k-algebra EndDt (⟨m⟩t ). It is the direct sum of ⟨⟨Hr (m;m)⟩⟩t for all
recollements r ∈ R(m,m) and each Hr (m;m) is one-dimensional.

Lemma 5.1. Let m ∈ N and put A := ⟨⟨Hm(m;m)⟩⟩t , I := ⟨⟨H>m(m;m)⟩⟩t . Then

(1) Et,m = A ⊕ I as a k-module,
(2) A is a k-subalgebra of Et,m isomorphic to k[Sm],
(3) I is a two-sided ideal of Et,m .

Thus Et,m/I ≃ k[Sm] as a k-algebra.

Proof. (1) and (2) are obvious. (3) follows from Corollary 4.20. �

We recall here some facts about representations of symmetric groups in characteristic zero.
For details, see e.g. [8]. A Young diagram λ = (λ1, λ2, . . .) is a non-increasing sequence of
natural numbers such that all but finitely many entries are zero. We call |λ| :=


i λi the size
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of λ and denote by ∅ = (0, 0, . . .) the unique Young diagram of size zero. We denote by P
the set of all Young diagrams and by Pm the set of those with size m. There is a one to one
correspondence

Pm
1:1
←→{irreducible representations of Sm}

and we denote by Sλ the irreducible representation of Sm corresponding to λ ∈ Pm .
For each λ ∈ Pm , the k[Sm]-module Sλ can be regarded as an Et,m-module via the map

Et,m � k[Sm]. Its projective cover P(Sλ) is isomorphic to Et,m-module of the form Et,met,λ
where et,λ ∈ Et,m is some primitive idempotent. Then its image L t,λ := et,λ⟨m⟩t ∈ Dt is
indecomposable and well-defined up to isomorphism.

Remark 5.2. In [3], L t,λ is defined as a direct summand of ⟨1⟩⊗m
t , not ⟨m⟩t .

For a Krull–Schmidt k-linear category C, we denote by I (C) the set of isomorphism classes
of indecomposable objects in C. For U, V ∈ I (C), we say U and V are in the same block if there
exists a chain of indecomposable objects U = U0,U1, . . . ,Um = V ∈ I (C) such that either
HomC(Ui−1,Ui ) or HomC(Ui ,Ui−1) is non-zero for each i = 1, . . . ,m. We also use the term
block to refer each pseudo-abelian full subcategory of C generated by all indecomposable objects
in a same block. A block is called trivial if it is equivalent to Rep(k). Note that such a category
is equivalent to the direct sum of all its blocks.

Theorem 5.3 (Deligne [5], Comes–Ostrik [3]).

(1) λ → L t,λ gives a bijection P 1:1
−→ I (Dt ).

(2) If t ∉ N then all blocks in Dt are trivial.
(3) For d ∈ N, non-trivial blocks in Dd are parameterized by Young diagrams of size d. For

λ ∈ Pd , let us define λ( j)
= (λ

( j)
1 , λ

( j)
2 , . . .) ∈ P by

λ
( j)
i =


λi + 1, if 1 ≤ i ≤ j,
λi+1, otherwise.

Then Ld,λ(0) , Ld,λ(1) , . . . generate a block in Dd and all non-trivial blocks are obtained by
this construction. Morphisms between them are spanned by

Ld,λ(0)

id

�� α0 // Ld,λ(1)

id

��

γ1

GG

α1 //
β0

oo Ld,λ(2)

id

��

γ2

GG

α2 //
β1

oo · · ·
β2

oo

where βnαn = αn−1βn−1 = γn for n ≥ 1 and other non-trivial composites are zero. The
canonical functor Dd → Rep(k[Sd ]) sends Ld,λ(0) to Sλ for each λ ∈ Pm and the other
indecomposable objects to the zero object.

5.2. Direct sum of categories

Let C be a pseudo-abelian k-linear category with unit. Assume that C admits a direct sum
decomposition C ≃


x∈X Cx with index set X (e.g. by blocks). There is a unique Cx which

contains the unit object 1C so let us denote its index by x = 0 and put X ′ := X \ {0}.
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Recall that we have two kinds of ∗-product

St1(C)�Wd2(C)→ St1+d2(C), Wd1(C)�Wd2(C)→ Wd1+d2(C)
⟨UI ⟩t1 ∗ [WK ]d2 := ⟨UI ⊔WK ⟩t1+d2 , [VJ ]d1 ∗ [WK ]d2 := [VJ ⊔WK ]d1+d2

defined for objects which satisfy #J = d1 and #K = d2. By definition, as pseudo-abelian k-linear
category, St (C) is generated by objects of the form ⟨UI ⟩t where for each i ∈ I its component
Ui is in some Cxi . For such a family we write Ix := {i ∈ I | xi = x} and denote by UIx the
subfamily of UI indexed by Ix . Then we can write

⟨UI ⟩t ≃ ⟨UI0⟩t0 ∗


x∈X ′
[UIx ]dx

using the ∗-product. Here dx := #Ix , t0 := t −


x∈X ′ dx and


denotes the ∗-product of finite
terms for x ∈ X ′ with Ix ≠ ∅.

Let UI and VJ be families of objects of such form. By the assumptions HomC(1C,W ) ≃

0 ≃ HomC(W,1C) for all W ∈ Cx when x ≠ 0. So in the direct sum

HomSt (C)(⟨UI ⟩t , ⟨VJ ⟩t ) ≃


r∈R(I,J )

Hr (UI ; VJ )

we only need recollements r ∈ R(I, J ) all whose components (i, j) ∈ r satisfy one of the
conditions below:i, j ≠ ∅ and xi = x j ,

i = ∅ and x j = 0,
j = ∅ and xi = 0.

Thus HomSt (C)(⟨UI ⟩t , ⟨VJ ⟩t ) = 0 unless #Ix = #Jx for all x ∈ X ′. Otherwise

HomSt (C)(⟨UI ⟩t , ⟨VJ ⟩t ) ≃ H(UI0; VJ0)⊗

x∈X ′

H ′(UIx ; VJx )

where for each UI ′ = (U1, . . . ,Ud) and VJ ′ = (V1, . . . , Vd),

H ′(UI ′; VJ ′) :=


g∈Sd

HomC(U1, Vg(1))⊗ · · · ⊗ HomC(Ud , Vg(d))

which is isomorphic to HomWd (C)([UI ′ ]d , [VJ ′ ]d). The same arguments also hold for Wd(C)
and we have following equivalences of k-linear category.

Proposition 5.4. Let C be a k-linear category which admits a decomposition C ≃


x∈X Cx .
Then the ∗-product induces a category equivalence

dx∈N
d=


x∈X

dx


�

x∈X
Wdx (Cx )


∼
−→ Wd(C).

In addition, assume that C has the unit 1C ∈ C0. Put X ′ := X \ {0}. Then we have another
equivalence

t0∈k,dx∈N
t=t0+


x∈X ′

dx


St0(C0)� �

x∈X ′
Wdx (Cx )


∼
−→ St (C)

also induced by ∗-product.
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For example, let us consider the case when C is a hom-finite pseudo-abelian k-linear category
whose unit object 1C ∈ C has no extension, i.e. is in a trivial block Rep(k) ⊂ C. So there is a
pseudo-abelian full subcategory C′ ⊂ C such that C ≃ Rep(k)⊕C′. By applying the proposition,
we have

St (C) ≃

d∈N


Dt−d�Wd(C′)


.

Let us take indecomposable objects L ∈ Dt−d and U ∈ Wd(C′) respectively and consider
L ∗ U ∈ St (C). By Theorem 5.3, EndDt−d (L) is isomorphic to either k or k[γ ]/(γ 2). Thus its
endomorphism ring

EndSt (C)(L ∗U ) ≃ EndDt−d (L)⊗ EndWd (C′)(U )

is still local and L ∗ U is also an indecomposable object. By Theorem 2.6, all indecomposable
objects in St (C) is of this form and each block in St (C) is therefore equivalent to a tensor product
of two blocks in Dt−d and Wd(C′) respectively.

5.3. For semisimple category

A hom-finite pseudo-abelian k-linear category C is called semisimple if every non-zero
morphism between indecomposable objects in C is an isomorphism, or equivalently, if the
endomorphism ring of each object in C is a finite dimensional semisimple k-algebra. We state a
simple criterion for semisimplicity of St (C).

Proposition 5.5. Let C be a hom-finite pseudo-abelian k-linear category with unit. Then St (C)
is semisimple if and only if t ∉ N and C is semisimple.

Proof. If t ∈ N, St (C) contains a non-semisimple full subcategory Dt so St (C) itself is not
semisimple. If C is not semisimple, there are indecomposable objects U1,U2 ∈ I (C) and non-
zero morphism ϕ : U1 → U2 which is not invertible. For i = 1, 2, we have a k-algebra homomor-
phism EndSt (C)(⟨Ui ⟩t ) � EndC(Ui ). By taking its projective cover, we obtain an idempotent
ei ∈ EndSt (C)(⟨Ui ⟩t ) such that its image ei ⟨Ui ⟩t is indecomposable and e2⟨ϕ⟩t e1 : e1⟨U1⟩t →

e2⟨U2⟩t is not zero or invertible. Thus St (C) is not semisimple either in this case.
Conversely assume that t ∉ N and C is semisimple. Then C ≃ Rep(k)⊕C′ for some semisim-

ple full subcategory C′ ⊂ C. Since semisimplicity of k-algebra is preserved under tensor products
and wreath products in characteristic zero, we have that St (C) is also semisimple by Proposi-
tion 5.4 and Theorem 5.3 (2). �

Now assume that C is semisimple and all blocks are trivial, i.e., every indecomposable object
U ∈ I (C) satisfies EndC(U ) ≃ k. We give a complete description of the k-linear category St (C)
for this case parallel to Theorem 5.3.

Let P C be the set

P C
:= {λ : I (C)→ P | λ(U ) = ∅ for all but finitely many U }.

For each λ ∈ P C , we write |λ| :=


U |λ(U )| and |λ|′ :=


U≠1C
|λ(U )|. For each d ∈ N, put

P C
d := {λ ∈ P C

| |λ| = d}.
Take an idempotent fλ ∈ k[Sd ] for each λ ∈ Pd which satisfies Sλ ≃ k[Sd ] fλ. For U ∈

I (C), since EndWd (C)(U∗d) ≃ k[Sd ], we can define the object U�λ
∈ I (Wd(C)) by U�λ

:=

fλU∗d . Let
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L t,λ := L t−|λ|′,λ(1C) ∗


U≠1C

U�λ(U )
∈ St (C)

for λ ∈ P C and

Sλ := Sλ(1C) ∗


U≠1C

U�λ(U )
∈ Wd(C)

for λ ∈ P C
d . Applying Proposition 5.4 to the block decomposition of C, we have L t,λ (resp. Sλ)

is indecomposable and all indecomposable objects in St (C) (resp. Wd(C)) are of such form. We
can now extend Theorem 5.3, the result of Comes and Ostrik.

Theorem 5.6. (1) λ → L t,λ gives a bijection P C 1:1
−→ I (St (C)).

(2) If t ∉ N then all blocks in St (C) are trivial.
(3) For d ∈ N, non-trivial blocks in Sd(C) are parameterize by P C

d . The non-trivial block corre-
sponding to λ ∈ P C

d is generated by indecomposable objects Ld,λ(0) , Ld,λ(1) , . . . . Here λ(0),
λ(1), . . . ∈ P C is given by

λ( j)(U ) :=


λ(1C)

( j), if U = 1C,
λ(U ), otherwise.

This block is equivalent to a non-trivial block in Dd which is described in Theorem 5.3(3).
The canonical functor Sd(C) → Wd(C) sends Ld,λ(0) to Sλ and the other indecomposable
objects to the zero object.
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Appendix. Tensor categories with additional structures

There are various kinds of additional structures on tensor categories which are introduced
in many literature (e.g. see [18]) and used in various fields of mathematics, physics and even
computer science. It is straightforward to show that these structures are compatible with standard
operations on categories: taking an envelope, a tensor product or a category of invariants under
group action. In this appendix we introduce that our 2-functor St also respects many of them.

A.1. Duals

Definition A.1. Let C be a tensor category. A left dual of an object U ∈ C is an object U∗ ∈ C
along with morphisms evU : U∗⊗U → 1C and coevU : 1C → U⊗U∗ such that the composites

U
coevU⊗idU // U ⊗U∗ ⊗U

idU⊗evU // U ,

U∗
idU∗⊗coevU // U∗ ⊗U ⊗U∗

evU⊗idU∗ // U∗

are both identities. Such triple (U∗, evU , coevU ) is unique up to unique isomorphism when
it exists. For a morphism ϕ : U → V between objects which have left duals, its left dual
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ϕ∗ : V ∗→ U∗ is defined as the composite

V ∗
idV∗⊗coevU
−−−−−−−→ V ∗ ⊗U ⊗U∗

idV∗⊗ϕ⊗idU∗
−−−−−−−−→ V ∗ ⊗ V ⊗U∗

evV⊗idU∗
−−−−−−→ U∗.

The right dual ∗U is defined similarly with the reversed tensor product so ∗(U∗) ≃ U ≃
(∗U )∗. The tensor category C is called rigid (or autonomous) if every its object has both left and
right duals.

By definition 1∗C ≃ 1C and there is a functorial isomorphism (U ⊗ V )∗ ≃ V ∗ ⊗ U∗ when
they exist. In addition, if σC is a braiding in C, σC(U, V )∗ = σC(U∗, V ∗) via the isomorphism.
So a rigid (braided) tensor category C is (braided) tensor equivalent to its opposite category C op

via the functor U → U∗ if we define the suitable structure on C op.
Note that the left dual U∗ of U need not to be isomorphic to its right dual ∗U . In a rigid tensor

category every tensor transformation •∗ → ∗
• is automatically invertible and such a functorial

isomorphism is called a pivot.

Example A.2. When A is a Hopf algebra over k, the k-tensor category Rep(A) is rigid. For
U ∈ Rep(A), its left dual U∗ and right dual ∗U are both defined as an Aop-module Homk(U, k)
and A acts on them via the antipode γA : A → Aop and its inverse γ−1

A respectively. Note that
Mod(A) is not rigid since we cannot define a suitable map 1A → U ⊗ U∗ for an arbitrary
U ∈ Mod(A).

If U ∈ C has a left dual U∗, ⟨U ⟩t ∈ St (C) also has a left dual ⟨U∗⟩t . The equipped morphisms
are the composites

⟨U∗⟩t ⊗ ⟨U ⟩t
µC(U∗,U )
−−−−−−→ ⟨U∗ ⊗U ⟩t

⟨evU ⟩t
−−−→ ⟨1C⟩t

ϵC
−→ 1St (C),

1St (C)
ιC
−→ ⟨1C⟩t

⟨coevU ⟩t
−−−−−→ ⟨U ⊗U∗⟩t

∆C(U,U∗)
−−−−−−→ ⟨U ⟩t ⊗ ⟨U

∗
⟩t

illustrated as

•
U∗

•
U

evU

�?

,

•

U
•

U∗

coevU

�?

.

Conversely, suppose that ⟨U ⟩t has a left dual ⟨U ⟩∗t . The equation id⟨U ⟩∗t = (ev⟨U ⟩t ⊗ id⟨U ⟩∗t )◦
(id⟨U ⟩∗t ⊗ coev⟨U ⟩t ) implies that id⟨U ⟩∗t factors through some ⟨V ⟩t so ⟨U ⟩∗t is isomorphic to the
image of an idempotent f : ⟨V ⟩t → ⟨V ⟩t . Now f can be decomposed as

f = ⟨e⟩t +


i

⟨ϕi ⟩t ⊗ ⟨ψi ⟩t

by e : V → V and ϕi : V → 1C , ψi : 1C → V . Then e is also idempotent and its image eV is a
left dual of U . The same holds for right duals and thus St (C) is rigid if and only if C is rigid.

A.2. Traces

Definition A.3. A (right) trace on a k-tensor category C is a family {TrX }X∈C of k-linear
transformations TrX : HomC(• ⊗ X, • ⊗ X)→ HomC(•, •) which satisfies

(1) TrX (ϕ ◦ (idU ⊗ ψ)) = TrY ((idV ⊗ ψ) ◦ ϕ) for each ϕ : U ⊗ Y → V ⊗ X and ψ : X → Y ,
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(2) TrX (ϕ ⊗ ψ) = ϕ ⊗ TrX (ψ),
(3) Tr1C (ϕ) = ϕ and TrX⊗Y (ϕ) = TrX (TrY (ϕ)).

We remark that if the category is rigid there is a one to one correspondence between traces and

pivots. For a given trace we can define a pivot pC(U ) := TrU (U∗⊗U
evU
−−→ 1C

coev∗U
−−−−→

∗U⊗U ).
Conversely, each pivot pC : •∗→∗ • induces a trace defined by

TrX (ϕ) := (U
idU⊗coevX
−−−−−−→ U ⊗ X ⊗ X∗

ϕ⊗pC(X)
−−−−−→ V ⊗ X ⊗∗ X

idV⊗ev∗X
−−−−−−→ V )

for ϕ : U ⊗ X → V ⊗ X .
For each trace on C there is a unique trace on St (C) which satisfies

⟨TrX (ϕ)⟩t

= Tr⟨X⟩t (⟨U ⟩t ⊗ ⟨X⟩t
µC(U,X)
−−−−−→ ⟨U ⊗ X⟩t

⟨ϕ⟩t
−−→ ⟨V ⊗ X⟩t

∆C(V,X)
−−−−−→ ⟨V ⟩t ⊗ ⟨X⟩t )

for every ϕ : U ⊗ X → V ⊗ X . To construct this trace it suffices to define transformations Tr⟨X⟩t
for each X ∈ C. First let f → f̄ be an idempotent endomorphism on HomSt (C)(A ⊗ ⟨X⟩t , B ⊗
⟨X⟩t ) defined by

f̄ := (A ⊗ ⟨X⟩t
id A⊗∆C(X,1C)
−−−−−−−−−→ A ⊗ ⟨X⟩t ⊗ ⟨1C⟩t

f⊗id⟨1C ⟩t
−−−−−−→ B ⊗ ⟨X⟩t ⊗ ⟨1C⟩t

id B⊗µC(X,1C)
−−−−−−−−−→ B ⊗ ⟨X⟩t ).

By the axioms of trace it must satisfy Tr⟨X⟩t ( f̄ ) = Tr⟨X⟩t ( f ). Now let UI and VJ be families of
objects in C. The image of •̄ on HomSt (C)(⟨UI ⟩t ⊗ ⟨X⟩t , ⟨VJ ⟩t ⊗ ⟨X⟩t ) is the direct sum

i∈I⊔{∅}
j∈J⊔{∅}

⟨H(UI\{i}; VJ\{ j})⊗ HomC(Ui ⊗ X, V j ⊗ X)⟩t .

For Φ ∈ Hr (UI\{i}; VJ\{ j}) and ψ : Ui ⊗ X → V j ⊗ X , the trace of ⟨Φ ⊗ ψ⟩t is defined by and
must be

Tr⟨X⟩t (⟨Φ ⊗ ψ⟩t ) :=

(t − #r)TrX (ψ) · ⟨Φ⟩t , if i = j = ∅,
⟨Φ ⊗ TrX (ψ)⟩t , otherwise.

Then these transformations satisfy the axioms of trace. It is easy to prove that every trace on
St (C) is obtained by this construction. Note that in a braided tensor category the trace we defined
satisfies the equation Tr⟨X⟩t (τC(X, X)) = ⟨TrX (σC(X, X))⟩t .

A.3. Twists

Definition A.4. A twist on a braided tensor category C is a functorial isomorphism θC(U ) : U →
U such that θC(1C) = id1C and θC(U ⊗ V ) = σC(V,U ) ◦ (θC(V ) ⊗ θC(U )) ◦ σC(U, V ). A
balanced tensor category is a braided tensor category equipped with a twist. It is called a ribbon
category (or a tortile category) if it is rigid and satisfies θC(U∗) = θC(U )∗.

For example, each trace in C induces a twist θC(U ) := TrU (σC(U,U )). When C is rigid, this
trace can be recovered from the pivot

U∗
idU∗⊗coev∗U
−−−−−−−−→ U∗ ⊗ ∗U ⊗U

σ−1
C (U∗,∗U )⊗θC(U )
−−−−−−−−−−−−→

∗U ⊗U∗ ⊗U
id∗U⊗evU
−−−−−−→

∗U

so pivots, traces and twists are the same things in a rigid braided tensor category.
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Similarly as traces, twists on a braided tensor category C and those on St (C) are in one to one
correspondence via the 2-functor St for transformations with unit. In particular, St also sends
a balanced tensor category to a balanced tensor category and a ribbon category to a ribbon
category. One of the most interesting application of tensor category theory is that a ribbon
category induces an oriented link invariant such as (a constant multiple of) the Jones polynomial
or the HOMFLY-PT polynomial. Now let J and Jt be link invariants induced by ribbon categories
C and St (C) respectively. One can prove that the new invariant Jt only depends on J ; for example,
Jt (a knot) = t · J (a knot) and Jt (a Hopf link) = (t2

−t)· J (a Hopf link)+t · J (two trivial knots).
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[19] K. Szlachányi, Finite quantum groupoids and inclusions of finite type, in: Mathematical Physics in Mathematics

and Physics (Siena, 2000), in: Fields Inst. Commun., vol. 30, Amer. Math. Soc., Providence, RI, 2001, pp. 393–407.
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