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Abstract

We construct quantum commutators on module-algebras of quasi-triangular Hopf algebras
are quantum-group covariant and have generalized antisymmetry and Leibniz properties. If th
algebra is triangular they additionally satisfy a generalized Jacobi identity, turning the mo
algebra into a quantum-Lie algebra.
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The purpose of this short communication is to present a quantum commutator str
which appears naturally on any module algebraA of a quantum groupH . In Section 1
we write down the main properties we require from a generalized commutator
quantum group module-algebra, and we give its definition. In Section 2 we prove a th
collecting the main properties of this algebraic structure. Finally, in Section 3 we de
an example, showing some explicit calculations for the reducedSLq(2,C) quantum plane
We refer the reader to Appendix A for notation and some basic facts on quasi-tria
Hopf-algebras.

* Current address: GES/IWR, Forschungszentrum Karlsruhe, Hermann-von-Helmholtz-Platz 1,
Eggenstein-Leopoldshafen, Germany.

E-mail address:garcia@iwr.fzk.de.
0021-8693/$ – see front matter 2004 Elsevier Inc. All rights reserved.
doi:10.1016/j.jalgebra.2003.12.025



322 A.O. García / Journal of Algebra 275 (2004) 321–330

t

f
tor
tart is
e

we

equate
uting

g

on the

in
1. The q-commutator

Let H be a quasi-triangular Hopf algebra. TakeA someH -module-algebra (a lef
one, say). As usual, we will denote the action ofh ∈ H on a ∈ A by h � a, and the
coproduct using the Sweedler notation∆h = h1 ⊗ h2. Being a left-module-algebra, o
courseh� (ab)= (h1 � a)(h2 � b). As our main goal is to define a covariant commuta
for which some generalized Leibniz rule holds on both variables, a natural way to s
proposing a deformation of the usual [a, b] = ab − ba structure valid on any associativ
algebra. The deformation we start with is

[a, b]χ ≡m ◦ (1− χ)(a⊗ b)= ab−m(χ(a ⊗ b)). (1)

Herem is the product onA and the linear map

χ :A⊗A 
−→A⊗A,
which replaces the standard transposition operatorτ , needs to be determined. Later on,
will sometimes use the generic decomposition

χ(a⊗ b)=
∑
i

σ ia(b)⊗ ei, {ei} vector space basis ofV. (2)

Clearly, the mapsσ i have to be linear in botha andb.
The most basic property we require the commutators to satisfy is some ad

generalization of the Leibniz rule, on both variables. Such a rule means that comm
the first (say) variablea to the right through a productbcmust be equivalent to commutin
it in two steps, first throughb and then throughc. Expressed in terms of the mapχ , which
generalizes and deforms the permutation, this would read

χ ◦ (1⊗m)= (m⊗ 1) ◦ (1⊗ χ) ◦ (χ ⊗ 1),

χ ◦ (m⊗ 1)= (1⊗m) ◦ (χ ⊗ 1) ◦ (1⊗ χ),

where the second relation come from commuting the second variablec to the left through
a productab.

Note now the analogy between the above conditions and the ones required
braiding [1],

χV,W :V ⊗W 
−→W ⊗ V

of a braided monoidal category. These are

χV,W⊗U = (1⊗ χV,U) ◦ (χV,W ⊗ 1), χV⊗W,U = (χV,U ⊗ 1) ◦ (1⊗ χW,U )

and illustrate the fact that moving an element ofV to the right throughW⊗U (respectively
an element ofU to the left throughV ⊗W ) should produce the same result if it is done
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one or two steps. Note thatV ,W , andU are not even vector spaces in the general case
that our mapχ acts on an algebra. However, remembering the standard result that
that the category ofH -modules of a quasi-triangular Hopf-algebraH is braided (see [1]
for instance), we take here the same braiding as an Ansatz and we will show in th
section that it satisfies the required conditions.

Concretely, we take

χ(a ⊗ b)≡ (R2 � b)⊗ (R1 � a), (3)

where

R ≡R1 ⊗R2

is the R-matrix of H (cf. Appendix A). Of course, a generic sum of the typeR =∑
k R

k
1 ⊗ Rk2 is understood. Note that we could also use the second quasi-trian

structureR, obtaining a mapχ which will differ from χ unlessH is triangular. As it
is easy to see from the definition ofR, this second mapχ is the inverse of the first one,

χ ◦ χ = χ ◦ χ = 1.

The properties ofR imply now

χ(a ⊗ 1)= 1 ⊗ a, χ(1 ⊗ a)= a⊗ 1

and therefore

[1, a]χ = [a,1]χ = 0 ∀a ∈A.

However, note that in general it will be

[a, a]χ �= 0

becauseχ(a ⊗ a)= (R2 � a)⊗ (R1 � a) is a priori different froma ⊗ a.

2. Properties of the commutator

2.1. q-Leibniz rules

As was the aim when defining the deformed commutator, we have the following le

Lemma. The map[ , ]χ has a Leibniz property on the second variable reading

[a, bc]χ = [a, b]χc+ σ ia(b)[ei, c]χ (4)
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χ(a⊗ bc)= (m⊗ 1)(1⊗ χ)(χ(a ⊗ b)⊗ c). (5)

The corresponding equations for the Leibniz rule on the first variable are

[ab, c]χ = [
a,σ ib(c)

]
χ
ei + a[b, c]χ (6)

or, equivalently,

χ(ab⊗ c)= (1⊗m)(χ ⊗ 1)
(
a ⊗ χ(b⊗ c)). (7)

The equivalency between, say, (4) and (5) is straightforward keeping in mind
σ ia(b) ⊗ e = χ(a ⊗ b) and the definition (1). Using the explicit notation (2), the ab
properties translate into

σ ia(bc)= σ i
′
a (b)σ

i
ei′ (c) and σ

j
ab(c)⊗ ej = σ ia

(
σ i

′
b (c)

)⊗ eiei′ ,

respectively.
We only write down here the proof of (5), the one of (7) corresponds to a trivial alter

of the former. Expand

χ(a⊗ bc)= (
R2 � (bc)

)⊗ (R1 � a).

Considering (18), this gives

χ(a⊗ bc)= (m⊗ 1)(∆R2 ⊗R1)� (b⊗ c⊗ a)= τ (1⊗m)(R13R12 � (a ⊗ b⊗ c)).
Rewriting the action ofR12 in terms of χ , and using the trivial resultτ (1 ⊗ m) =
(m⊗ 1)(1⊗ τ )(τ ⊗ 1), we find

χ(a ⊗ bc)= (m⊗ 1)(1⊗ τ )(τ ⊗ 1)
(
R13 �

(
τ
[
χ(a ⊗ b)]⊗ c))

= (m⊗ 1)(1⊗ τ )(R23 �
(
χ(a⊗ b)⊗ c))

= (m⊗ 1)(1⊗ χ)(χ(a⊗ b)⊗ c)
which is the intended result.

2.2. Covariance

We will now prove the following lemma.

Lemma. The commutator[ , ]χ is quantum-group covariant, in the sense that

h� [a, b]χ = [h1 � a,h2 � b]χ . (8)
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Using the definition of the commutator and the quantum group action properties,

h� [a, b]χ = h�
(
ab− (R2 � b)(R1 � a)

)
= (h1 � a)(h2 � b)−m[(∆hRτ )� (b⊗ a)].

But according to (17) we see that the last term can be rewritten

m
[(
∆hRτ

)
� (b⊗ a)]=mτ [(∆ophR

)
� (a⊗ b)]=mτ [(R∆h)� (a⊗ b)]

= χ[∆h� (a ⊗ b)].
Therefore

h� [a, b]χ =m(1− χ)[∆h� (a ⊗ b)],
which coincides with (8).

2.3. q-Antisymmetry

Generalizing the classical antisymmetry of a commutator, we now have the follo
lemma.

Lemma. The commutator[ , ]χ is q-antisymmetric, this meaning

[a, b]χ = −[σ ia(b), ei]χ = −[ , ]χ
(
χ(a⊗ b)). (9)

Note that in the RHS we have the deformed commutator[ , ]χ given by the opposite
quasi-triangular structureR. The proof is simply expressing the fact thatχ andχ are
inverse maps:

[a, b]χ =m(1− χ)(a⊗ b)= −m(1− χ)χ(a⊗ b).

If the quantum groupH is triangular,R = R and a same and unique commutator appe
in (9).

2.4. Conjugacy properties

Let us now analyze the conjugacy properties of the commutator with respect to
operation onA. Assume

�H :H 
−→H

is a Hopf-star onH , and

�A :A 
−→A
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is a compatible star [2] onA, in the sense that

h�
(
a�A

)= [
(Sh)�H � a

]�A. (10)

Then we can analyze the conjugacy properties of the commutator. From now on w
the indexes on�, as there is no confusion possible.

Lemma. If R is anti-real[1], meaning

R� =R−1, (11)

then

[a, b]�χ = [b�, a�]χ .

For a realR, i.e., such that

R� = τ (R), (12)

the result is

[a, b]�χ = [b�, a�]χ .

The quantum plane example shown in Section 3 corresponds to the first possibilit
proof goes as follows:

[a, b]�χ = b�a� − (R1 � a)�(R2 � b)�.

Considering first (10), and using next that(S ⊗ S)R =R, we obtain

[a, b]�χ = b�a� − (
(SR1)

� � a�
)(
(SR2)

� � b�
)= b�a� −m[R� � (a� ⊗ b�)]

=m[1− τ ◦ (τ (R�)� ·)](b� ⊗ a�).

For a realR (respectively anti-real),τ (R�)=R (respectively=R) and the lemma follows

2.5. Quantum Lie algebra structure and Jacobi identities

Having defined a generalized commutator with Leibniz and antisymmetry prope
we could now inquire about the relationship between this structure and the one pr
by a quantum Lie algebra [3]. Following this reference, a quantum Lie algebra is de
by relations

eiej − σmkemek = Ck ek (13)
ij ij
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among vector space generators{ei} of the space. The matrixσmkij should satisfy a

Yang–Baxter equation, and the structure constantsCkij have to obey Eqs. (2)–(4) of [3
corresponding to generalized Jacobi and Leibniz properties. Comparing (13) with (
see that we must take

σmkij em ⊗ ek = χ(ei ⊗ ej ) and Ckij ek = [ei, ej ]χ .

Remark also that the Yang–Baxter equation (19) implies forχ the following relation:

(1⊗ χ)(χ ⊗ 1)(1⊗ χ)= (χ ⊗ 1)(1⊗ χ)(χ ⊗ 1). (14)

The proof is straightforward. Now using our (14), (5), and (7) it is straightforward alg
to see that the conditions (3) and (4) of [3] are satisfied.

Condition (2) of [3] corresponds to the Jacobi identity of the quantum Lie algebra
we have not yet analyzed such a property for the commutators[ , ]χ .

The usual Jacobi identity can, a priori, be generalized in several possible
However, in order to maintain the parallel with theq-Lie algebras of [3], we take her
the generalization

[[·, ·]χ , ·]χ = [·, [·, ·]χ ]χ + [[·, ·]χ , ·]χ ◦ (1⊗ χ), (15)

which corresponds to their Eq. (2). After using the Leibniz properties, (15) translates

{
1− (χ ⊗ 1)(1⊗ χ)}{1− (χ ⊗ 1)

}= {
1− (1⊗ χ)(χ ⊗ 1)

}{
1− (1⊗ χ)}

+ {
1− (χ ⊗ 1)(1⊗ χ)}{1− (χ ⊗ 1)

}
(1⊗ χ).

Making use of the Yang–Baxter equation forχ (14), we get:

0 = {
(χ ⊗ 1)− (1⊗ χ)(χ ⊗ 1)

}(
1− (

1⊗ χ2)).
Therefore, the Jacobi identity is satisfied only in the caseχ2 = 1, i.e., ifH is a triangular
Hopf algebra.

All the above results can be collected in the following theorem.

Theorem 1. Let A be a left-module-algebra of a quasi-triangular Hopf algebraH , and
take [ , ]χ the quantum commutator onA defined by(1) and (3). Then[ , ]χ is quantum-
group covariant and has generalized antisymmetry and Leibniz properties. If theH is
triangular, then they additionally satisfy a generalized Jacobi identity, turning the mo
algebra into a quantum-Lie algebra.
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3. The quantum plane example

Take the quantum plane algebraA generated byx andy such that

xy = qyx, q ∈ C, q �= 0.

On A we have the action [4] of the quantum enveloping algebraH = Uq(sl(2,C))
generated byK, K−1, X+, X− with relations

KX± = q±2X±K, [X+,X−] = 1

(q − q−1)

(
K −K−1).

Additionally one can take the complex parameterq to be a root of unit,qN = 1 for some
(odd) integerN . In such a case one can get non-trivial finite dimensional algebras by t
the quotient of the above ones by the following ideals:

xN = 1, yN = 1 and KN = 1, XN± = 0.

Of course, nowK−1 =KN−1. To be concrete, we take the valueN = 3, thusq3 = 1. In
this case theR-matrix ofUq(sl(2,C)) is given by [4],

R = 1

3
RKRX, (16)

where

RK = 1 ⊗ 1 + (1 ⊗K +K ⊗ 1)+ (
1 ⊗K2 +K2 ⊗ 1

)
+ q2(K ⊗K2 +K2 ⊗K)+ qK ⊗K + qK2 ⊗K2,

RX = 1 ⊗ 1 + (
q − q−1)X− ⊗X+ + 3qX2− ⊗X2+.

Applying formula (3), we can calculate the following elementaryχ ’s:

χ(x ⊗ x)= q2x ⊗ x, χ(y ⊗ x)= qx ⊗ y,
χ(x ⊗ y)= qy ⊗ x + (

q2 − 1
)
x ⊗ y, χ(y ⊗ y)= q2y ⊗ y.

The quantum plane algebra can be extended in a covariant way introducing der
operators∂x and∂y [6]. We refer the reader to [4] for the complete algebraic struct
Including these derivatives, the braiding is

χ(∂x ⊗ x)= qx ⊗ ∂x, χ(∂y ⊗ x)= q2x ⊗ ∂y, χ(∂x ⊗ y)= q2y ⊗ ∂x,
χ(∂y ⊗ y)= (q − 1)x ⊗ ∂x + qy ⊗ ∂y,

χ(x ⊗ ∂x)= q∂x ⊗ x + (
q2 − q)∂y ⊗ y, χ(y ⊗ ∂x)= q2∂x ⊗ y,
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χ(∂x ⊗ ∂x)= q2∂x ⊗ ∂x, χ(∂y ⊗ ∂x)= (q2 − 1)∂y ⊗ ∂x + q∂x ⊗ ∂y,
χ(x ⊗ ∂y)= q2∂y ⊗ x, χ(y ⊗ ∂y)= q∂y ⊗ y, χ(∂x ⊗ ∂y)= q∂y ⊗ ∂x,

χ(∂y ⊗ ∂y)= q2∂y ⊗ ∂y.

Using the relations between derivatives and coordinates found in [4], we can now d
a few non-trivial commutators. We have, for instance,

[x, x]χ = x2 −m(χ(x ⊗ x))= (
1− q2)x2,

[∂x, x]χ = ∂xx −m(χ(∂x ⊗ x))= 1 + (
q2 − q)x∂x + (

q2 − 1
)
y∂y,

[x, ∂x]χ = x∂x −m(χ(x ⊗ ∂x)
)= −q21.

Remark. Note that one could think about using the matrix representation of the red
quantum plane atq3 = 1 as a way to define commutators. Taking the explicit 3×3 matrices
[4,5],

x =
(1 0 0

0 q−1 0
0 0 q−2

)
, y =

(0 1 0
0 0 1
1 0 0

)
,

we see that our above deformed commutator has nothing to do with the commuta
these matrices. In fact[x,x] = 0 (as matrices), whereas[x, x]χ = (1 − q2)x2, as we saw
above. Of course, the point is that the commutator defined using these matrices d
have the covariance property of our deformed commutator.

4. Concluding remarks

The main results of this communication are collected in Theorem 1, involving
existence of a covariant commutator structure on any module-algebra of a quasi-tria
Hopf algebra. This commutator turns the module-algebra into a quantum Lie algebra
case that the quantum group acting on it is triangular. The fact that the deformed
identity (15) is obeyed only for atriangular Hopf algebra seems to be independent of
way we choose to generalize the Jacobi identity.
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Appendix A. Quasi-triangular Hopf algebras

We remember here that aquasi-triangularHopf algebraH [1] has, by definition, an
elementR ∈H ⊗H with the following properties:

∆oph=R∆hR−1, (17)

(∆⊗ 1)R =R13R23, (1⊗∆)R =R13R12. (18)

It follows thatR satisfies the Yang–Baxter equation

R12R13R23 =R23R13R12. (19)

The algebraH automatically has a second quasi-triangular structure given by the re
element

R = τ (R−1), (20)

whereτ is the permutation of tensor product factors. If bothR andR coincide one says tha
the Hopf algebraH is in fact triangular. Two additional basic properties of theR-matrix
which we need in our proofs are

(ε⊗ 1)R = (1⊗ ε)R = 1, (S ⊗ S)R =R.
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