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Abstract

We construct quantum commutators on module-algebras of quasi-triangular Hopf algebras. These
are quantum-group covariant and have generalized antisymmetry and Leibniz properties. If the Hopf
algebra is triangular they additionally satisfy a generalized Jacobi identity, turning the module-
algebra into a quantum-Lie algebra.
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The purpose of this short communication is to present a quantum commutator structure
which appears naturally on any module algedraf a quantum grougH. In Section 1
we write down the main properties we require from a generalized commutator on a
guantum group module-algebra, and we give its definition. In Section 2 we prove a theorem
collecting the main properties of this algebraic structure. Finally, in Section 3 we develop
an example, showing some explicit calculations for the red&tg®@, C) quantum plane.
We refer the reader to Appendix A for notation and some basic facts on quasi-triangular
Hopf-algebras.
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1. The g-commutator

Let H be a quasi-triangular Hopf algebra. Takesome H-module-algebra (a left
one, say). As usual, we will denote the actiono€ H ona € A by h > a, and the
coproduct using the Sweedler notatidvk = k1 ® hy. Being a left-module-algebra, of
courser > (ab) = (h1 > a)(h2 > b). As our main goal is to define a covariant commutator
for which some generalized Leibniz rule holds on both variables, a natural way to start is
proposing a deformation of the usual p] = ab — ba structure valid on any associative
algebra. The deformation we start with is

[a,b]xEmo(l—X)(a®b)=ab—m(x(a®b)). (1)
Herem is the product om and the linear map
X AQAH— AR A,

which replaces the standard transposition operatoeeds to be determined. Later on, we
will sometimes use the generic decomposition

x(a®b)= Za(i (b) ®e;, {e;}vector space basis 6f. (2

1

Clearly, the maps’ have to be linear in both andb.

The most basic property we require the commutators to satisfy is some adequate
generalization of the Leibniz rule, on both variables. Such a rule means that commuting
the first (say) variable to the right through a produét must be equivalent to commuting
it in two steps, first through and then through. Expressed in terms of the map which
generalizes and deforms the permutation, this would read

xo(l@m)y=m®Do(l@x)o(x®1),
xom®1=1A®m)o(x ®1)o(1® x),

where the second relation come from commuting the second vatiablene left through
a producizb.

Note now the analogy between the above conditions and the ones required on the
braiding [1],

Xvw. VW WV
of a braided monoidal category. These are
xvoweu =A@ xv.u) o (xv.w ® 1), xvew,u=(xvu®Do(ld® xwu)

and illustrate the fact that moving an elemenvafo the right throughv ® U (respectively
an element ot/ to the left throughV ® W) should produce the same result if it is done in
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one or two steps. Note th&t, W, andU are not even vector spaces in the general case, and
that our mapy acts on an algebra. However, remembering the standard result that shows
that the category off-modules of a quasi-triangular Hopf-algelffais braided (see [1],
for instance), we take here the same braiding as an Ansatz and we will show in the next
section that it satisfies the required conditions.

Concretely, we take

x(@®b)=(R2>b)® (R11>a), 3)
where
R=R1®R2
is the R-matrix of H (cf. Appendix A). Of course, a generic sum of the tyRe=

Yok R’l‘ ® R’z‘ is understood. Note that we could also use the second quasi-triangular

structureR, obtaining a magy which will differ from x unlessH is triangular. As it
is easy to see from the definition &f this second map is the inverse of the first one,

Yox=xox=1
The properties oR imply now
x@®1)=1®a, x(1l®a)=a®1
and therefore
[1,al,=[a,1], =0 VacA.
However, note that in general it will be
la,aly #0

because (¢ ® a) = (R2 > a) ® (R1 > a) is a priori different fromu ® a.

2. Propertiesof the commutator
2.1. g-Leibniz rules

As was the aim when defining the deformed commutator, we have the following lemma.
Lemma. The maf , ], has a Leibniz property on the second variable reading

la,bely, = [a, bl + ol (b)le;, cly (4)
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or, equivalently,
x(@®bc)=m®D(AR x)(x(a®b)®c). (5)
The corresponding equations for the Leibniz rule on the first variable are
[ab,cl, = [a, crl’;(c)]xe,- +alb, cly (6)
or, equivalently,
x@b®c)=1em)(x @1 (a® x(b®c)). (7)
The equivalency between, say, (4) and (5) is straightforward keeping in mind that

ol(b) ® e = x(a ® b) and the definition (1). Using the explicit notation (2), the above
properties translate into

cr; (bc) = GZZ (b)aé,/ (¢) and crajb O®ej = cr; (crl’;/ (c)) R ejejr,
respectively.
We only write down here the proof of (5), the one of (7) corresponds to a trivial alteration
of the former. Expand
x(a®bc)= (Rz > (bc)) ® (R1>a).
Considering (18), this gives
X(@®be)=(m®L(AR @ R) > (b®@c®a)=1(1@m)(RizR12> (a®b®c)).

Rewriting the action ofR1, in terms of x, and using the trivial result (1 ® m) =
me1(1R1)(r®1),we find

x(@®bc)=m®1(A®1)(r ® 1 (R13> (t[x(a ®b)] ®¢))
=m®1DA®1)(R23> (x(a®b)Xc))
=m®DIA®X)(x@®b)®c)

which is the intended result.
2.2. Covariance
We will now prove the following lemma.
Lemma. The commutatof, ], is quantum-group covariant, in the sense that

h>la,bl, =[hi>a,hat>bl,. (8)



A.O. Garcia / Journal of Algebra 275 (2004) 321-330 325

Using the definition of the commutator and the quantum group action properties,

ht>la,bly =ht> (ab— (R2> b)(R1>a))
= (h1>a)(h2>b) —m[(ARRT) > (b ®a)].

But according to (17) we see that the last term can be rewritten

m[(ARRT) > (b®a)] =mt[(A%®hR) > (a ® b)| = mt[(RAh) > (a @ b) ]
= X[Ah > (a ®b)].

Therefore

ht>la,bly=ml— x)[Ah > (a ®b)],
which coincides with (8).
2.3. g-Antisymmetry

Generalizing the classical antisymmetry of a commutator, we now have the following
lemma.

Lemma. The commutatof, ], is g-antisymmetric, this meaning
la, bl = —[05 (), ei]; = [ 1x(x (@ ® D). (9)
Note that in the RHS we have the deformed commuthidy given by the opposite
quasi-triangular structur®. The proof is simply expressing the fact thatand xy are
inverse maps:
la,bly=m(1—x)(a®b)=—m(l—X)x(@®Db).

If the quantum grouH is triangular,R = R and a same and unique commutator appears
in (9).

2.4. Conjugacy properties

Let us now analyze the conjugacy properties of the commutator with respect to a star
operation orA. Assume

*xg . H+— H
is a Hopf-star ord, and

*A:AI—>A
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is a compatible star [2] oA, in the sense that
h> (a*) =[(Sh)* >a]™. (10)

Then we can analyze the conjugacy properties of the commutator. From now on we drop
the indexes om, as there is no confusion possible.

Lemma. If R is anti-real[1], meaning
R*=R7% (11)
then
la, bl = [b*,a*]5.
Forareal R, i.e., such that
R*=1(R), (12)
the resultis
[a, b]; =[b*,a%]y.

The quantum plane example shown in Section 3 corresponds to the first possibility. The
proof goes as follows:

la, b]}y =b*a* — (R11>a)*(Ra 1> b)*.
Considering first (10), and using next tHat® S)R = R, we obtain
la, b]}, =b*a* — ((SRD)* > a*) ((SR2)* > b*) =b*a* —m[R* 1> (a* ® b")]
=m[l—to(t(R)>")]|(b*®a").
For arealR (respectively anti-real,(R*) = R (respectively= R) and the lemma follows.
2.5. Quantum Lie algebra structure and Jacobi identities
Having defined a generalized commutator with Leibniz and antisymmetry properties,
we could now inquire about the relationship between this structure and the one provided
by a quantum Lie algebra [3]. Following this reference, a quantum Lie algebra is defined

by relations

ejej — ai';'kemek = C,kjek (13)
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among vector space generatdes} of the space. The matrlxr’"" should satisfy a

Yang—Baxter equation, and the structure constat’itshave to obey Egs. (2)-(4) of [3],
corresponding to generalized Jacobi and Leibniz propertles Comparing (13) with (1), we
see that we must take

offfen @ ex=x(ei®ej) and Cliex=[ei,ejly.
Remark also that the Yang—Baxter equation (19) impliexftine following relation:
1A’ =x®DH(1®Xx)(x ®1). (14)

The proof is straightforward. Now using our (14), (5), and (7) it is straightforward algebra
to see that the conditions (3) and (4) of [3] are satisfied.

Condition (2) of [3] corresponds to the Jacobi identity of the quantum Lie algebra, and
we have not yet analyzed such a property for the commutpidys

The usual Jacobi identity can, a priori, be generalized in several possible ways.
However, in order to maintain the parallel with thelie algebras of [3], we take here
the generalization

[['7 ']Xs ']X = ['7 ['7 ']X]X + [[7 ']Xv .]X o (1® X)! (15)
which corresponds to their Eq. (2). After using the Leibniz properties, (15) translates into
1-xeDAeHl-(xeD}={1-0exeDb}{1-1Ae )}
H{1-x®DA®OHI-(x®@D}Ie 0.

Making use of the Yang—Baxter equation fp(14), we get:
0={(x®D -1 NKx®L}1-(1®x?).

Therefore, the Jacobi identity is satisfied only in the cade- 1, i.e., if H is a triangular
Hopf algebra.
All the above results can be collected in the following theorem.

Theorem 1. Let A be a left-module-algebra of a quasi-triangular Hopf algelfiga and
take[, ], the quantum commutator af defined by(1) and (3). Then[, ], is quantum-
group covariant and has generalized antisymmetry and Leibniz properties. I tie
triangular, then they additionally satisfy a generalized Jacobi identity, turning the module-
algebra into a quantum-Lie algebra.
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3. Thequantum plane example
Take the quantum plane algebtagenerated by andy such that

xy=gqyx, q€C, g#0.

On A we have the action [4] of the quantum enveloping algeHra= U, (sl(2, C))
generated by, K1, X, X_ with relations

KX1=q¢*XiK, [X+, X_]= (K - K.

(g—q7bH

Additionally one can take the complex parametéo be a root of unitg”Y = 1 for some
(odd) integeV. In such a case one can get non-trivial finite dimensional algebras by taking
the quotient of the above ones by the following ideals:

N=1, y¥=1 and k¥=1, x¥=0

Of course, nowk ~1 = K¥~1. To be concrete, we take the valive= 3, thusg® = 1. In
this case thek-matrix of U, (sl(2, C)) is given by [4],

1
R= §RKRX, (16)

where

Rk =101+ (1K +K®D+ (10 K>+ Kk*®1)
+3 (K@K’ +K*®K) +qK @K +qK?® K?,
Rx=1®1+ (¢ —q¢ Y)X_® X4+ +3¢X% ® X2.

Applying formula (3), we can calculate the following elementary:

X(x®x)=¢’x ®x, XY ®x)=qgx®Yy,
Xx®N=qgy®x+(¢>°-1)x®y, xO»=¢>®y.

The quantum plane algebra can be extended in a covariant way introducing derivative
operatorsd, andd, [6]. We refer the reader to [4] for the complete algebraic structure.
Including these derivatives, the braiding is

@ @) =gx®d, (@O =¢’x®d,  x(O:®Y)=q°y @,
X0y ®y)=(q—Dx® 0 +qgy ® 0y,
XE®0) =g ®x+(¢°—9)®y, x(®L)=¢’% ey,
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X (0x ® 3y) =6123x ® 0y, X(ay ® 0y) = (qz_ 1)ay ® 0x +q0x ®aya
X ®3)=q%,®x, x(G®=qd Oy,  x(0 @) =qdy ® i,
x(3y ®dy) Zqzay ® dy.

Using the relations between derivatives and coordinates found in [4], we can now display
a few non-trivial commutators. We have, for instance,

[x,x]y =x%— m(x(x ®x)) = (1— qz)xz,
[, X1y = dex — m(x (3 ® %)) = 1+ (¢% — ¢)xdx + (42 — 1)ydy,

[x, 8c]y = x3x — m(x(x ® 8x)) = —¢°1.

Remark. Note that one could think about using the matrix representation of the reduced
quantum plane at® = 1 as a way to define commutators. Taking the explisitBmatrices

[4.5],
1 0 0 0 1 0
x=<0 gt 0), y=<0 0 1),
0 0 g2 100
we see that our above deformed commutator has nothing to do with the commutator of
these matrices. In fagk, x] = 0 (as matrices), whereds, x], = (1 — ¢?)x2, as we saw

above. Of course, the point is that the commutator defined using these matrices does not
have the covariance property of our deformed commutator.

4. Concluding remarks

The main results of this communication are collected in Theorem 1, involving the
existence of a covariant commutator structure on any module-algebra of a quasi-triangular
Hopf algebra. This commutator turns the module-algebrainto a quantum Lie algebra in the
case that the quantum group acting on it is triangular. The fact that the deformed Jacobi
identity (15) is obeyed only for aiangular Hopf algebra seems to be independent of the
way we choose to generalize the Jacobi identity.
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Appendix A. Quasi-triangular Hopf algebras

We remember here thatquasi-triangularHopf algebraH [1] has, by definition, an
elementR € H ® H with the following properties:

A% = RARR™Y, (17)
(A® DR = Ri3Ra3, (1® A)R = Ri3R12. (18)

It follows that R satisfies the Yang—Baxter equation
R12R13R23 = R23R13R12. (19)

The algebraH automatically has a second quasi-triangular structure given by the related
element

R= r(R_l), (20)

wherer is the permutation of tensor product factors. If b&thndR coincide one says that
the Hopf algebraH is in facttriangular. Two additional basic properties of thematrix
which we need in our proofs are

E@DR=(1®eR=1, (S®SR=R.
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