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Abstract

This paper shows how rewriting logic semantics (RLS) can be used as a computational logic framework for
operational semantic definitions of programming languages. Several operational semantics styles are ad-
dressed: big-step and small-step structural operational semantics (SOS), modular SOS, reduction semantics
with evaluation contexts, and continuation-based semantics. Each of these language definitional styles can
be faithfully captured as an RLS theory, in the sense that there is a one-to-one correspondence between
computational steps in the original language definition and computational steps in the corresponding RLS
theory. A major goal of this paper is to show that RLS does not force or pre-impose any given language
definitional style, and that its flexibility and ease of use makes RLS an appealing framework for exploring
new definitional styles.

Keywords: operational semantics, rewriting logic, programming languages

1 Introduction

This paper is part of the rewriting logic semantics (RLS) project (see [25,26] and

the references there). The broad goal of the project is to develop a tool-supported

computational logic framework for modular programming language design, seman-

tics, formal analysis and implementation, based on rewriting logic [22]. Any logical

framework worth its salt should be evaluated in terms of its expressiveness and

flexibility. Therefore, a very pertinent question is: how does RLS express other

approaches to operational semantics? In particular, how well can it express various

approaches in the SOS tradition? The goal of this paper is to answer these ques-

tions. Partial answers, giving detailed comparisons with specific approaches have

appeared elsewhere. For example, [21] and [43] provide comparisons with standard
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SOS [34]; and [23] compares RLS with both standard SOS and Mosses’ modular

structural operational semantics (MSOS) [31]. However, no comprehensive compar-

ison encompassing most approaches in the SOS tradition has been given to date.

To make our ideas more concrete, in this paper we use a simple programming lan-

guage, show how it is expressed in each different definitional style, and how that

style is captured as a rewrite theory in the RLS framework. We furthermore give

correctness theorems showing the faithfulness of the RLS representation for each

style. Even though we exemplify the ideas with a simple language for concreteness’

sake, the process of representing each definitional style in RLS is completely gen-

eral and automatable, and in some cases like MSOS has already been automated [6].

The range of styles covered includes: big-step (or natural) SOS semantics; small-

step SOS semantics; MSOS semantics; context-sensitive reduction semantics; and

continuation-based semantics.

Any logical framework for operational semantics of programming languages has

to meet strong challenges. We list below some of them and sketch how they are met

in RLS; for a more thorough discussion see [38].

• Handling of SOS Definitions. As illustrated in Sections 4, 5, and 6, both big-

step and small-step SOS, and also MSOS definitions can be expressed as rewrite

theories in RLS; see also [21,43,23].

• Handling of context-sensitive reduction. In Section 7 we sketch a general method

to express in RLS semantic definitions based on evaluation contexts (e.g., [47]).

• Handling higher-order syntax. Higher-order syntax admits first-order representa-

tions, e.g., [1,2,40]. Using CINNI [40], all this can be done keeping essentially the

original higher-order syntax.

• Handling continuations. Continuations [12,35] are traditionally understood as

higher-order functions. In Section 8 we present an alternative view of continua-

tions that is intrinsically first-order.

• Handling concurrency. One of the strongest points of rewriting logic is precisely

that it is a logical framework for concurrency. Unlike standard SOS, which forces

an interleaving semantics, true concurrency is directly supported.

• Expressiveness and flexibility. RLS does not force on the user any particular

definitional style. This is illustrated in this paper by showing how quite different

definitional styles can all be faithfully and naturally captured in RLS.

• Mathematical and operational semantics. Rewriting logic has both a compu-

tational proof theory and an initial model semantics, which provides inductive

reasoning principles to prove properties. Therefore RLS programming language

definitions have both an operational rewriting semantics, and a mathematical ini-

tial model semantics.

• Performance Issues. High-performance systems supporting rewriting can be used

to directly execute RLS semantic definitions as interpreters. In Section 9 we

present encouraging experimental performance results for our example language

using various systems and different definitional styles.
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Besides the good features mentioned above, another advantage of RLS is the

availability of generic tools for: (i) syntax; (ii) execution (already mentioned); and

(iii) formal analysis. For example, languages such as ASF+SDF [41] and Maude

[7] support user-definable syntax. There is a wealth of theorem proving and model

checking tools for rewriting/equational-based specifications, which can be used di-

rectly to prove properties about language definitions. The fact that these formal

analysis tools are generic, should not fool one into thinking that they must be in-

efficient. For example, the LTL model checkers obtained for free in Maude from

the RLS definitions of Java and the JVM compare favorably in performance with

state-of-the-art Java model checkers [11].

Another advantage of RLS is what we call the “abstraction dial,” which can be

used to reach a good balance between abstraction and computational observability

in semantic definitions. The point is which computational granularity is appropriate.

A small-step semantics opts for very fine-grained computations. But this is not nec-

essarily the only or the best option for all purposes. The fact that an RLS theory’s

axioms include both equations and rewrite rules provides the useful “abstraction

dial,” because rewriting takes place modulo the equations. That is, computations

performed by equations are abstracted out and become invisible. This has many

advantages, as explained in [25]. For example, in Sections 4 and 5, we use equations

to define the semantic infrastructure (stores, etc.) of SOS definitions; in Section 7

equations are also used to hide the extraction and application of evaluation contexts,

which are “meta-level” operations, carrying no computational meaning; in Section

8, equations are also used to decompose the evaluation tasks into their correspond-

ing subtasks; finally, in Section 6, equations of associativity and commutativity are

used to achievemodularity of language definitions.

2 Rewriting Logic

Rewriting logic [22] is a computational logic that can be efficiently implemented and

that has good properties as a general and flexible logical and semantic framework,

in which a wide range of logics and models of computation can be faithfully repre-

sented [21]. In particular, for programming language semantics it provides the RLS

framework, of which we here only emphasize the operational semantics aspects.

Two key points are: (i) how rewriting logic combines equational logic and term

rewriting; and (ii) what the intuitive meaning of a rewrite theory is. A rewrite theory

is a triple R = (Σ, E,R) with Σ a signature, E a set of (conditional) Σ-equations,

and R a set of Σ-rewrite rules, with conditions involving both equations and rewrites.

That is, a rule in R can have the general form (∀X) t −→ t′ if (
∧

i ui = u′
i) ∧

(
∧

j wj −→ w′
j). Alternatively, such a rule could be displayed with an inference-

rule-like notation as
(
∧

i ui = u′
i) ∧ (

∧
j wj −→ w′

j)

t −→ t′
.

Therefore, the logic’s atomic sentences are equations and rewrite rules. Equa-

tional theories and traditional term rewriting systems then appear as special cases.

An equational theory (Σ, E) can be represented as the rewrite theory (Σ, E, ∅); and

a rewriting system (Σ, R) can be represented as the rewrite theory (Σ, ∅, R).
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Of course, if the equations of an equational theory (Σ, E) are confluent, there is

another useful representation, namely, as the rewrite theory (Σ, ∅,
−→
E ), where

−→
E are

the rewrite rules obtained by orienting the equations E as rules. This representation

is at the basis of much work in term rewriting, but by implicitly suggesting that

rewrite rules are just an efficient technique for equational reasoning it can blind us to

the fact that rewrite rules can have a more general non-equational semantics. This

is the raison d’être of rewriting logic. In rewriting logic a theory R = (Σ, E,R) ax-

iomatizes a concurrent system, whose states are elements of the algebraic data type

(Σ, E), that is, E-equivalence classes of ground Σ-terms, and whose atomic transi-

tions are specified by the rules R. The inference system of rewriting logic allows us

to derive as proofs all the concurrent computations of the system axiomatized by

R: concurrent computation and rewriting logic deduction coincide.

There are many systems that either specifically implement term rewriting effi-

ciently, so-called as rewrite engines, or support term rewriting as part of a more

complex functionality. Any of these systems can be used as an underlying platform

for execution and analysis of programming languages defined using the techniques

proposed in this paper. Without attempting to be exhaustive, we here only men-

tion (alphabetically) some engines that we are more familiar with, noting that

many functional languages and theorem provers provide support for term rewriting

as well: ASF+SDF [41], CafeOBJ [10], Elan [4], Maude [7], OBJ [16], and Stratego

[44]. Some of these engines can achieve remarkable speeds on today’s machines, in

the order of tens of millions of rewrite steps per second.

3 A Simple Imperative Language

To illustrate the various operational semantics, we have chosen a small imperative

language having arithmetic and boolean expressions with side effects (increment

expression), short-circuited boolean operations, assignment, conditional, while loop,

sequential composition, blocks and halt. Here is its syntax:
AExp ::= Var |# Int |AExp +AExp|AExp -AExp|AExp *AExp|AExp /AExp| ++ Var

BExp ::= # Bool |AExp <=AExp|AExp >=AExp|AExp ==AExp|BExp andBExp| notBExp

Stmt ::= skip |Var :=AExp|Stmt ; Stmt | ifBExp then Stmt else Stmt | whileBExp Stmt

Pgm ::= Stmt .AExp

The result of running a program is the evaluation of AExp in the state after executing

Stmt. This BNF syntax is entirely equivalent to an algebraic order-sorted signature

having one (mixfix) operation definition per production, terminals giving the name

of the operation and non-terminals the arity. For example, the production for if-

then-else can be seen as an algebraic operation if then else : BExp × Stmt ×
Stmt → Stmt. We will use the following conventions for variables throughout the

remainder of the paper: X ∈ Var, A ∈ AExp, B ∈ BExp, St ∈ Stmt, P ∈ Pgm,

I ∈ Int, T ∈ Bool = {true, false},‘ any of them primed or indexed.

The next sections will use this simple language and will present definitions in

various operational semantics styles (big step, small step SOS, MSOS, reduction

using evaluation contexts, and continuation-based), as well as the corresponding

RLS representation of each definition. We will also characterize the relation between
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the RLS representations and their corresponding definitional style counterparts,

pointing out some strengths and weaknesses for each style. The reader is referred

to [19,34,31,47] for details on the described operational semantics styles.

We assume equational definitions for basic operations on booleans and integers,

and assume that any other theory defined from here on includes them. One of

the reasons why we wrapped booleans and integers in the syntax (using “#”) is

precisely to distinguish them from the corresponding values, and thus to prevent

the “builtin” equations from reducing expressions like 3 + 5 directly in the syntax.

We wish to have full control over the computational granularity of the language,

since we aim for the same computational granularity of each different style.

Unlike in various operational semantics, which usually abstract stores as func-

tions, in rewriting logic we explicitly define the store as an abstract datatype: a

store is a set of bindings from variables to values, together with two operations on

them, one for retrieving a value, another for setting a value. Well-formed stores

correspond to partially defined functions. Having this abstraction in place, we can

regard them as functions for all practical purposes from now on. We let s � σ

denote that well-formed state s corresponds to partial function σ. We will use S to

range over variables of kind Store.

4 Big-Step Operational Semantics

Introduced as natural semantics in [19], also named relational semantics in [28],

or evaluation semantics, big-step semantics is “the most denotational” of the op-

erational semantics. One can view big-step definitions as definitions of functions

interpreting each language construct in an appropriate domain 2 .

Big step semantics can be easily represented within rewriting logic. For example,

consider the big-step rule defining the while loop:

〈B, σ〉 ⇓ 〈false, σ′〉

〈while B St, σ〉 ⇓ 〈σ′〉

〈B, σ〉 ⇓ 〈true, σ1〉, 〈St, σ1〉 ⇓ 〈σ2〉, 〈while B St, σ2〉 ⇓ 〈σ′〉

〈while B St, σ〉 ⇓ 〈σ′〉

This rule can be automatically translated into the rewrite rules:

〈while B St, S〉 → 〈S′〉 if 〈B, S〉 → 〈false, S′〉

〈while B St, S〉 → 〈S′〉 if 〈B, S〉 → 〈true, S1〉 ∧ 〈St, S1〉 → 〈S2〉 ∧ 〈while B St, S2〉 → 〈S′〉

To give a rewriting logic theory for the big-step semantics, one needs to first de-

fine the various configuration constructs, which are assumed by default in BigStep,

as corresponding operations extending the signature. Then one can define the cor-

responding rewrite theory RBigStep entirely automatically.

Due to the one-to-one correspondence between big-step rules in BigStep and

rewrite rules in RBigStep, it is easy to prove by induction on the length of derivations

the following result:

Proposition 4.1 For any p ∈ Pgm and i ∈ Int, the following are equivalent:

(i) BigStep � 〈p〉 ⇓ 〈i〉; and (ii) RBigStep � 〈p〉 →1 〈i〉.

2 However, one could also specify nondeterminstic relations in big-step semantics.
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The only apparent difference between BigStep and RBigStep is the different no-

tational conventions they use. However, as the above result shows, there is a one-

to-one correspondence also between their corresponding “computations” (or exe-

cutions, or derivations). Therefore, RBigStep actually is the big-step operational

semantics BigStep, not an “encoding” of it.

Strengths. Big-step semantics allows straightforward recursive definition. It can

be easily and efficiently interpreted in any recursive, functional or logical framework.

It is useful for defining type systems.

Weaknesses. Due to its monolithic, single-step evaluation, it is hard to debug

or trace big-step semantic definitions. If the program is wrong, no information is

given about where the failure occurred. It may be hard or impossible to model

concurrent features. It is not modular, e.g., to add side effects to expressions, one

must redefine the rules to allow expressions to evaluate to pairs (value-store). It is

inconvenient (and non-modular) to define complex control statements; consider, for

example, adding halt to the above definition – one needs to add a special “halting

signal” configuration and rules to propagate it.

5 Small-Step Operational Semantics

Introduced by Plotkin in [34], also called transition semantics or reduction seman-

tics, small-step semantics captures the notion of one computational step. One

inherent technicality involved in capturing small-step operational semantics as a

rewrite theory in a one-to-one notational and computational correspondence is that

the rewriting relation is by definition transitive, while the small-step relation is not

transitive (its transitive closure is defined a posteriori). Therefore, we need to devise

a mechanism to “inhibit” rewriting logic’s transitive and uncontrolled application

of rules. An elegant way to achieve this is to view a small step as a modifier of the

current configuration. Specifically, we consider “·” to be a modifier on the config-

uration which performs a “small-step” of computation; in other words, we assume

an operation · : Config → Config. Then, a small-step semantic rule, e.g. the one

for defining while,
·

〈while B St, σ〉 → 〈if B then (St; while B St) else skip, σ〉

is translated, again automatically, into a rewriting logic rule, e.g.,

·〈while B St, S〉 → 〈if B then (St; while B St) else skip, S〉

As for big-step semantics, the rewriting under context deduction rule for rewrit-

ing logic is again inapplicable, since all rules act at the top, on configurations.

However, in SmallStep it is not the case that all right hand sides are normal forms

(this actually gives the specificity of small-step semantics). The “·” operator intro-

duced in RSmallStep prevents the unrestricted application of transitivity, and can be

regarded as a token given to a configuration to allow it to change to the next step.

We use transitivity at the end (rules for smallstep) to obtain the transitive closure

of the small-step relation by specifically giving tokens to the configuration until it
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reaches a normal form. Again, there is a direct correspondence between SOS-style

rules and rewriting rules, leading to the following result, which can also be proved

by induction on the length of derivations:

Proposition 5.1 For any p ∈ Pgm and i ∈ Int, SmallStep � 〈p,⊥〉 →∗ 〈skip.i, σ〉
for some state σ iff RSmallStep � eval(p) → i.

Strengths. Small-step operational semantics precisely defines the notion of one

computational step. It stops at errors, pointing them out. It is easy to trace and

debug. It gives interleaving semantics for concurrency.

Weaknesses. Each small step does the same amount of computation as a big

step in finding the next redex. It does not give a “true concurrency” semantics, that

is, one has to chose a certain interleaving (no two rules can be applied at the same

time), mainly because reduction is forced to occur only at the top. It is still hard

to deal with complex control – for example, consider adding halt to this language.

One cannot simply do it as for other ordinary statements: instead, one has to add a

corner case (additional rule) to each statement to propagate the halt. Moreover, by

propagating the “halt signal” through all the statements and expressions, one fails

to capture the intended computation granularity of halt: it should just terminate

the execution in one step!

6 MSOS Semantics

MSOS [31] was introduced to deal with the non-modularity issues of SOS. The

solution proposed in MSOS involves moving the non-syntactic state components to

the labels on transitions (as provided by SOS), plus a discipline of only selecting

needed attributes from states.

A transition in MSOS is of the form P
u
−→ P ′, where P and P ′ are program ex-

pressions and u is a label describing the structure of the state both before and after

the transition. If u is missing, then the state is assumed to stay unchanged. Specifi-

cally, u is a record containing fields denoting the semantic components. Modularity

is achieved by the record comprehension notation “. . .” which indicates that more

fields could follow but that they are not of interest for this transition. Fields of a

label can fall in one of the following categories: read-only, read-write and write-only.

Read-only fields are only inspected by the rule, but not modified. Read-write fields

come in pairs, having the same field name, except that the “write” field name is

primed. They are used for transitions modifying existing state fields. Write-only

fields are used to record things not analyzable during the execution of the program,

such as the output or the trace. Their names are always primed and they have a

free monoid semantics – everything written on then is added at the end. Since the

part of the state not involved in a certain rule is hidden through the “. . .” nota-

tion, language extensions can be made modularly. Consider, e.g., adding halt to

the language. A way to achieve this is to add another read-write record field, say

halt?, along with the possible values halted(i), to signal that the program halted

with value i, and false, as the default value, along with a construct stuck to block

T.F. Şerbănuţă et al. / Electronic Notes in Theoretical Computer Science 192 (2007) 125–141 131



the execution of the program.

To represent MSOS in rewriting logic, we here follow the methodology in [23].

Using the fact that labels describe changes from their source state to their des-

tination state, one can move the labels back into the configurations. That is, a

transition P
u
−→ P ′ is modeled as a rewrite step ·〈P, upre〉 → 〈P ′, upost〉, where upre

and upost are records describing the state before and after the transition. Note again

the use of the “·” operator to emulate small steps by restricting transitivity. State

records can be specified equationally as wrapping (using a constructor “{ }”) a set

of fields built from fields as constructors, using an associative and commutative

concatenation operation “ , ”. Fields are built from state attributes; e.g., the store

can be embedded into a field by a constructor “σ : ”. Records upre and upost are

computed from u as follows. For unobservable transitions, upre = upost. Read-only

fields of u are added to both upre and upost. Read-write fields of u are translated by

putting the read part in upre and the (now unprimed) write part in upost. Notice

that the “. . .” notation gets replaced by a generic field-set variable W . For example,

the rules for assignment in MSOS style,

A
S
−→ A′

X:=A
S
−→ X:=A′

unobs{σ = σ0, σ′ = σ0[I/X], . . .}

X:=I
{σ=σ0,σ′=σ0[I/X],...}
−−−−−−−−−−−−−−−−→ skip

are translated into the following rewrite rules (R, R′ stand for records and W stands

for the remainder of a record):

·〈X:=A, R〉 → 〈X:=A′, R′〉 if ·〈A, R〉 → 〈A′, R′〉

·〈X:=I, {σ : S0, W}〉 → 〈skip, {σ : S0[X ← I],W}〉

Write-only fields i′ = v of u are translated as follows: i : L, with L a fresh new

variable, is added to upre, and i : Lv is added to upost. When dealing with observable

transitions, both state records meta-variables and . . . operations are represented in

upre by some variables, while in upost by others.

Modularity is preserved by this translation. What indeed makes MSOS defini-

tions modular is the record comprehension mechanism. A similar comprehension

mechanism is achieved in rewriting logic by using sets of fields and matching modulo

associativity and commutativity. That is, the extensibility provided by the “. . .”

record notation in MSOS is here captured by associative and commutative matching

on the W variable, which allows new fields to be added.

The relation between MSOS and RMSOS definitions assumes that MSOS defini-

tions are in a certain normal form [23] and is made precise by the following theorem,

strongly relating MSOS and modular rewriting semantics.

Theorem 6.1 [23] For each normalized MSOS definition, there is a strong bisim-

ulation between its transition system and the transition system associated to its

translation in rewriting logic.

This translation is the basis for the Maude-MSOS tool [6], which was used to

define and analyze complex language definitions.

Strengths. As it is a framework on top of any operational semantics, it inherits

the strengths of the semantics for which it is used; moreover, it adds to those
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strengths the important new feature of modularity.

Weaknesses. Control is still not explicit in MSOS, making combinations of

control-dependent features (e.g., call/cc) harder or even impossible to specify [31,

page 223].

7 Reduction Semantics with Evaluation Contexts

Introduced in [47], also called context reduction, the evaluation contexts style im-

proves over small-step definitional style in two ways: (i) it gives a more compact

semantics to context-sensitive reduction, by using parsing to find the next redex

rather than small-step rules; and (ii) it provides the possibility of also modifying

the context in which a reduction occurs, making it much easier to deal with control-

intensive features. For example, defining halt is done now using only one rule,

C[halt I] → I, preserving the desired computational granularity.

C ::= [] | 〈C, S〉

| skip.C | C.A

| X:=C | I + C | C + A
E → E′

C[E] → C[E′]

I1 + I2 → (I1 +Int I2)

〈P, σ〉[X:=I] → 〈P, σ[I/X]〉[skip]

while B St → if B then (St; while B St) else skip

C[halt I] → 〈I〉

C[skip.I] → 〈I〉

·(C[R]) → C[R′] if ·(R) → R′

·(Cfg) → c2s(C[R]) if ·(s2c(Cfg)) → C[R]

·(I1 + I2) → (I1 +Int I2)

·(〈P, S〉[X:=I]) → 〈P, S[X ← I]〉[skip]

·(while B St) → if B then (St; while B St) else skip

·(C[halt I]) → 〈I〉[[]]

eval(P ) = reduction(〈P, ∅〉)

reduction(Cfg) = reduction(·(Cfg))

reduction(〈I〉) = I

Table 1: CxtRed-like rules and their corresponding rewriting logic variants

An important part of a context reduction semantics is the definition of evaluation

contexts, which is typically done by means of a context-free grammar. A context is a

program with a “hole”, the hole being a placeholder where the next computational

step takes place. If C is such a context and E is some expression whose type fits

into the type of the hole of C, then C[E] is the program formed by replacing the

hole of C by E. The characteristic reduction step underlying context reduction is

“C[E] → C[E′] when E → E′,” capturing the fact that reductions are allowed to

take place only in appropriate evaluation contexts.

Table 1 presents a definition of selected evaluation contexts and some context

reduction semantics rules together with their representation within rewriting logic.

By making the evaluation context explicit and changeable, context reduction

is, in our view, a significant improvement over small-step SOS. In particular, one

can now define control-intensive statements like halt modularly and at the desired

level of computational granularity. Even though the definition gives one the feeling

that evaluation contexts and their instantiation come “for free”, the application of

the “rewrite in context” rule presented above can be expensive in practice. This is

because one needs either to parse/search the entire configuration to put it in the

form C[E] for some appropriate C satisfying the grammar of evaluation contexts,

or to maintain enough information in some special data-structures to perform the
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split C[E] using only local information and updates. Direct implementations of

context reduction such as PLT-Redex cannot avoid paying a significant performance

penalty, as the performance numbers in Section 9 show 3 .

Context reduction is trickier to faithfully capture as a rewrite theory, since

rewriting logic, by its locality, always applies a rule in the context, without ac-

tually having the capability of changing the given context. In order to have an

algebraic representation of contexts we extend the signature by adding a constant

[], representing the hole, for each syntactic category. The operation s2c, has an ef-

fect similar to what one achieves by parsing in context reduction, in the sense that

given a piece of syntax it yields C[R]. In our rewriting logic definition, C[R] is not

a parsing convention, but rather a constructor conveniently representing the pair

(context C, redex R). The operation c2s, is defined as a morphism on the syntax,

but we get (from the defining equations) the guarantee that it will be applied only

to “well-formed” contexts (i.e., contexts containing only one hole).

The rewrite theory RCxtRed is obtained by adding the rewrite rules in Table 1 to

the equations of s2c and c2s. The RCxtRed definition is a faithful representation of

context reduction semantics. Also, since parsing issues are abstracted away using

equations, the computational granularity is the same, yielding a one-to-one corre-

spondence between the computations performed by the context reduction semantics

rules and those performed by the rewriting rules.

Theorem 7.1 If s � σ 4 , the following hold: (i) 〈p, σ〉 parses in CxtRed as 〈c, σ〉[r]
iff RCxtRed � s2c(〈p, s〉) = 〈c, s〉[r]; (ii) RCxtRed � c2s(c[r]) = c[r/[]] for any valid

context c and appropriate redex r; (iii) CxtRed � 〈p, σ〉 → 〈p′, σ′〉 iff RCxtRed �
·(〈p, s〉) →1 〈p′, s′〉 and s′ � σ′; (iv) CxtRed � 〈p, σ〉 → 〈i〉 iff RCxtRed � ·(〈p, s〉) →1

〈i〉; (v) CxtRed � 〈p,⊥〉 →∗ 〈i〉 iff RCxtRed � eval(p) → i.

Strengths. Context reduction semantics splits small-step rules into computa-

tional rules and rules needed to find the redex (the latter are transformed into

grammar rules generating the allowable contexts). This makes definitions more

compact. It improves over small step semantics by allowing the context to be

changed by execution rules. It can deal easily with control-intensive features.

Weaknesses. It still only allows “interleaving semantics” for concurrency. Al-

though context-sensitive rewriting might seem to be easily implementable by rewrit-

ing, in fact all current implementations of context reduction work by transforming

context grammar definitions into traversal functions, thus being as (in)efficient as

the small-step implementations (one has to perform an amount of work linear in

the size of the program for each computational step).

8 A Continuation-Based Semantics

The idea of continuation-based interpreters for programming languages and their

relation to abstract machines has been well studied (see, for example, [12]). In this

3 Refocusing [9] proposed automatically generating abstract machines for overcoming this problem.
4 We let s � σ denote the fact that equationally defined state s represents the store σ.
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section we propose a rewriting logic semantics based on a structure that provides

a first-order representation of continuations; this is the only reason why we call

this structure a “continuation”; but notice that it can just as well be regarded as a

post-order representation of the abstract syntax tree of the program, so one needs

no prior knowledge of continuations [12] in order to understand this section. We

will show the equivalence of this theory to the context reduction semantics theory.

Based on the desired order of evaluation, the program is sequentialized by trans-

forming it into a list of tasks to be performed in order. This is done once and for

all at the beginning, the benefit being that at any subsequent moment in time we

know precisely where the next redex is: at the top of the tasks list.

The top level configuration is constructed by an operator “ ” putting together

the store (wrapped by a constructor store) and the continuation (wrapped by k).

Also, syntax is added for the continuation items. The continuation is defined as a

list of tasks, where the list constructor “ � ” is associative, having as identity

a constant “nothing”. We also use lists of values and continuations, each having

an associative list append constructor “ , ” with identity “.”. We use variables

K and V to denote continuations and values, respectively; also, we use Kl and

Vl for lists of continuations and values, respectively. We call the list of tasks a

continuation because it resembles the idea of continuations as higher-order functions.

However, our continuation is a pure first order flattening of the program. For

example aexp(A1 + A2) = (aexp(A1), aexp(A2)) � + precisely encodes the order

of evaluation: first A1, then A2, then sum the values. Also, stmt(while B St) =

bexp(B) � while(bexp(B), stmt(St)) says that the loop is dependent on the value

of B for its evaluation. pgm, stmt, bexp, aexp are used to flatten the program to

a continuation, taking into account the order of evaluation 5 . The most important

benefit of this transformation is that of gaining locality. Now one needs to specify

from the context only what is needed to perform the computation. This gives the

possibility of achieving “true concurrency”, since rules which do not act on the same

parts of the context can be applied in parallel. We here only discuss the sequential

variant of our continuation-based semantics, because our language is sequential. In

[36] we show how the same technique can be used, with no additional effort, to define

concurrent languages: as expected, one continuation structure is generated for each

concurrent thread or process. Then rewrite rules can apply “truly concurrently” at

the tops of continuations. Table 2 presents some rewrite rules from the continuation-

based definition of our language.

5 The effect of these functions is somehow similar to what one would obtain in a higher order world by
means of CPS transformations [46] or conversions to monadic normal form [30].
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aexp(A1 + A2) = (aexp(A1), aexp(A2)) � + k((I1, I2) � + � K) → k(I1 +Int I2 � K)

stmt(X := A) = aexp(A) � write(X)

k(I � write(X) � K) store(Store) → k(K) store(Store[X ← I])

stmt(while B St) = bexp(B) � while(bexp(B), stmt(St)) k(false � while(K1, K2) � K) → k(K)

k(true � while(K1, K2) � K) → k(K2 � K1 � while(K1, K2) � K)

stmt(halt A) = aexp(A) � halt k(I � halt � K) → k(I)

pgm(St.A) = stmt(St) � aexp(A)

〈P 〉 = result(k(pgm(P )) store(empty)) result(k(I) store(Store)) = I

using the (equationally defined) mechanism for evaluating lists of expressions:

k((V l, Ke,Kel) � K) = k(Ke � (V l,nothing, Kel) � K)

Note. Because in rewriting engines equations are also executed by rewriting, one would need to split the

rule for evaluating expressions into two rules:

k((V l, Ke,Kel) � K) = k(Ke � (V l,nothing, Kel) � K)

k(V � (V l, nothing, Kel) � K) = k((V l, V, Kel) � K)

Table 2: Rewriting logic theory RK (continuation-based definition of the language)

There exists a close connection between definitions of languages using reduction

semantics with evaluation contexts and the style promoted in this section:

Theorem 8.1 Suppose s � σ. Then: (i) If CxtRed � 〈p, σ〉 → 〈p′, σ′〉 then RK �
k(pgm(p)) store(s) →≤1 k(pgm(p′)) store(s′) and s′ � σ′, where →≤1=→0 ∪ →1;

(ii) If RK � k(pgm(p)) store(s) → k(k′) store(s′) then there exists p′ and σ′ such

that CxtRed � 〈p, σ〉 →∗ 〈p′, σ′〉, RK � k(pgm(p′)) = k(k′) and s′ � σ′;

(iii) CxtRed � 〈p,⊥〉 →∗ i iff RK � 〈p〉 → i for any p ∈ Pgm and i ∈ Int.

Strengths. No need to search for a redex anymore, since the redex is always at

the top. It is more efficient than direct implementations of evaluation contexts or

small-step SOS. Also, it greatly reduces the need for conditional rules/equations;

conditional rules/equations might involve inherently inefficient reachability analysis

to check the conditions and are harder to deal with in parallel environments. An

important “strength” specific to the rewriting logic approach is that reductions

can now apply wherever they match, in a context-insensitive way. Additionally,

continuation-based definitions in the RLS style above are very modular (particularly

due to the use of matching modulo associativity and commutativity).

Weaknesses. The program is now flattened in the continuation; several new

operations (continuation constants) need to be introduced, which “replace” the

corresponding original language constructs.

9 Experiments

RLS specifications can be turned into interpreters for the specified language. To

analyze the efficiency of this approach, we wrote the RLS definitions above in two

rewrite engines, namely ASF+SDF 1.5 (a compiler) and Maude 2.2 (a fast inter-

preter with good tool support), and in several programming languages with built-in

support for matching, namely Haskell, Ocaml and Prolog. For each definitional

style tested (except small-step SOS), we have included for comparison interpreters

in Scheme, adapting definitions from [13], chapter 3.9 (evaluation semantics) and 7.3

(continuation based semantics) and a PLT-Redex definition given as example in the

T.F. Şerbănuţă et al. / Electronic Notes in Theoretical Computer Science 192 (2007) 125–141136



installation package (for context reduction). Since RLS representation of MSOS re-

lies intensively on matching modulo associativity and commutativity, which is only

supported by Maude, we performed no experiments for it.

One tested program consists of 15 nested loops, each of 2 iterations. The other

program verifies Collatz’s conjecture up to 300. The following table gives for each

definitional style the running time of the various interpreters (first column – nested

loops; second column – Collatz). Times are expressed in seconds. A limit of 700mb

was set on memory usage; “-” found in a table cell means the memory limit was

reached; an empty cell means the combination was not attempted. For Haskell we

used the ghc compiler. For Ocaml we used the ocamlcopt compiler. For Prolog we

compiled the programs using the gprolog. For Scheme we used the PLT-Scheme

interpreter. Tests were done on a Pentium 4@2GHz with 1GB RAM, running Linux.

Language Bigstep SmallStep Reduction Continuations

ASF+SDF

Haskell

Maude

Ocaml

Prolog

Scheme

1.7 265.1

0.3 32.1

3.8 184.5

0.5 10.2

1.6 -

3.8 122.3

11.9 769.6

3.2 167.4

63.4 >1000

1.0 21.0

7.0 -

88.7 891.3

5.8 157.2

552.1 >1000

1.8 11.0

9.4 -

- -

2.5 344.7

0.6 41.1

8.4 483.9

0.5 10.9

3.0 -

5.9 323.6

Table 3: Experiments (times in seconds)

Prolog yields pretty fast interpreters. However, for backtracking reasons, it needs

to maintain the stack of all predicates tried on the current path, thus the amount

of memory grows with the number of computational steps. The style promoted

in [13] seems to also take into account efficiency. The only drawback is the fact

that it looks more like an interpreter of a big-step definition, the representational

distance to the big-step definition being much bigger than in interpreters based on

RLS. The PLT-Redex implementation of context reduction ran out of memory for

the presented inputs (for 9 nested loops it finished in 198 seconds). The rewriting

logic implementations seem to be quite efficient in terms of speed and memory us-

age, while keeping a minimal representational distance to the operational semantics

definitions. In particular, RLS definitions interpreted in Maude are comparable in

terms of efficiency with the interpreters in Scheme, while having the advantage of

being formal definitions.

10 Related Work

There is much related work on frameworks for defining programming languages.

Without trying to be exhaustive, we mention some of them.

Algebraic denotational semantics. This approach, (see [17,42] for two recent

books), is a special case of RLS, namely, the case in which the rewrite theory RL

defining language L is an equational theory. While algebraic semantics shares a

number of advantages with RLS, its main limitation is that it is not well-suited for

concurrent language definitions.

Other RLS work. RLS is a collective international project. Through the efforts

of various researchers, there is by now a substantial body of work demonstrating the

T.F. Şerbănuţă et al. / Electronic Notes in Theoretical Computer Science 192 (2007) 125–141 137



usefulness of this approach. A first snapshot of the RLS project was given in [26],

and a second in [25]. This paper can be viewed as third snapshot focusing on the

variety of definitional styles supported. A substantial body of experience in giving

programming language definitions, and using those definitions both for execution

and for analysis purposes has already been gathered; an up-to-date list of references

on RLS can be found in the companion tech report [38].

Higher-order approaches. The most classic higher-order approach is denota-

tional semantics [37]. Denotational semantics has some similarities with its first-

order algebraic cousin mentioned above, since both are based on semantic equa-

tions. Two differences are: (i) the use of first-order equations in the algebraic

case versus the higher-order ones in traditional denotational semantics; and (ii) the

kinds of models used in each case. A related class of higher-order approaches uses

higher-order functional languages or higher-order theorem provers to give opera-

tional semantics to programming languages. Without trying to be complete, we

can mention, for example, the use of Scheme in [13], the use of ML in [33], and

the use of Common LISP within the ACL2 prover in [20]. There is also a body of

work on using monads [29,45] to implement language interpreters in higher-order

functional languages; the monadic approach has better modularity characteristics

than standard SOS. A third class of higher-order approaches are based on the use

of higher-order abstract syntax (HOAS) and higher-order logical frameworks, such

as LF or λ-Prolog [32], to encode languages as logical systems. For recent work in

this direction see [27] and references there.

Other approaches. Going back to the Centaur project [5,8], logic programming

has been used as a framework for SOS definitions. Note that λ-Prolog [32] belongs

both in this category and in the higher-order one. Abstract State Machines (ASM)

[18] can encode any computation and have a rigorous semantics, so any program-

ming language can be defined as an ASM and thus implicitly be given a semantics.

Both big- and small-step ASM semantics have been investigated. The semantics of

various programming languages, including, for example, Java [39], has been given

using ASMs. The Chemical Abstract Machines [3] avoids some of the limitations

of SOS in defining concurrent programming languages and was introduced in the

same journal volume as Rewriting Logic; as shown in [22], any chemical abstract

machine definition is a rewrite logic theory. Tile logic [14] also supports definitions

of concurrent languages and has been compared to and translated into rewriting

logic [24,15].

11 Conclusions

We have tried to show how RLS can be used as a logical framework for operational

semantics definitions of programming languages. By showing how it can faithfully

capture big-step and small-step SOS, MSOS, context reduction, and continuation-

based semantics, we hope to have illustrated what might be called its ecumenical

character: flexible support for a wide range of definitional styles, without forcing

or pre-imposing any given style. We think that this flexibility makes RLS useful
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as a way of exploring new definitional styles. For highly-concurrent languages,

such as mobile languages, or for languages involving concurrency, real-time and/or

probabilities, a centralized approach forcing an interleaving semantics is unnatural.

We have, of course, refrained from putting forward any specific suggestions in this

regard. But we think that new definitional styles are worth investigating; and hope

that RLS in general, and this paper in particular, will stimulate such investigations.
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