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Abstract

We extend a recently discovered set of relations for gauge-theory amplitudes to non-gluonic matter. For
all MHV amplitudes we find that these can be made to hold for scalar/fermion/quark cases by inclusion
of a factor derived via Ward identities. For six- and seven-point amplitudes with non-gluonic matter we
explicitly confirm these relations for NMHV helicity configurations.
© 2009 Elsevier B.V. All rights reserved.

PACS: 11.15.Bt; 11.25.Db; 11.55.Bq; 12.38.Bx

1. Introduction

In recent years new efficient methods for scattering amplitude calculations have emerged.
Witten’s proposed duality between tree-level amplitudes and twistor string theory [1], became
the inspiration for a novel technique, today known as the CSW formalism [2]. This approach
uses MHV [3,4] amplitudes as building blocks for more complicated amplitudes. Shortly after a
related on-shell recursion relation was introduced (BCFW) [5,6].

Beside the mere practical calculational advantages, these techniques have lead to interesting
scientific discoveries. The BCFW recursion relations have been used to derive a set of consistency
conditions for the S-matrix for massless particles, providing non-trivial constraints on scattering
amplitudes [7,8].

A number of useful relations between color-ordered tree amplitudes have also been known
for some time. These include those directly dictated by the color-group [9,10] as well as the
Kleiss–Kuijf relations [11,12]. The latter reduce the number of independent partial n-point gluon
amplitudes to (n− 2)! In addition supersymmetry provide relations between amplitudes of equal
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helicity configuration but different particle content, known as supersymmetric Ward identities
(SWI) [13–15].

Recently new relations for color-ordered tree amplitudes have been conjectured. Based on
a kinematic identity Bern, Carrasco and Johansson [16] have presented a remarkable set of
helicity-independent relations for gluonic amplitudes, reducing the number of independent par-
tial amplitudes even further to (n − 3)!

In this paper we make a non-trivial extension of these new gluonic relations to color-ordered
tree amplitudes containing matter. We will consider amplitudes with n−2 gluons and two adjoint
fermions (gluinos), adjoint scalars or a quark–antiquark pair. The extended relations introduce a
sign-function due to Fermi statistics, and are verified for n-point MHV amplitudes and explicitly
checked in NMHV cases for six- and seven-point amplitudes.

2. Gauge-theory relations

In this section we introduce supersymmetric Ward identities and matter MHV amplitudes [17]
in terms of gluon MHV amplitudes. We also briefly review the newly discovered gluonic rela-
tions.

Our conventions and notation can be found in Appendix A.

2.1. Supersymmetry relations and MHV amplitudes

As is well known in a supersymmetric theory, particles with different helicity are related to
each other by a symmetry transformation. These transformations can be used to obtain relations
between amplitudes with different particle content, known as supersymmetric Ward identities.

The identities arise from the fact that the supercharge, Q, annihilates the vacuum. This imply
that

(1)0 = 〈0|[Q,Φ1Φ2 · · ·Φn]|0〉 =
n∑

i=1

〈0|Φ1 · · · [Q,Φi] · · ·Φn|0〉,

where Φi create helicity eigenstates of some specific particle type. To get concrete relations one
need to know the commutators between the supercharge Q and the Φi ’s.

As an example consider the N = 1 supersymmetric Yang–Mills theory. The operators that
create gluons and gluinos of helicity ± with momentum p are denoted by g±(p) and Λ±(p),
respectively. They obey the following commutator relations

[
Q(η), g+(p)

] = −Γ +(p,η)Λ̄+(p),
[
Q(η), g−(p)

] = Γ −(p,η)Λ−(p),

(2)
[
Q(η), Λ̄+(p)

] = −Γ −(p,η)g+(p),
[
Q(η),Λ−(p)

] = Γ +(p,η)g−(p),

where Q depends on a fermionic spinor parameter η. We can always choose a η so that Γ ± is
given by

(3)Γ +(p, q) = θ [qp], Γ −(p, q) = θ〈qp〉,
with q being an arbitrary massless vector and θ a Grassmann variable (which will drop out of
the calculations) [9,10].
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It turns out that the identities with MHV amplitudes are especially simple. Take for instance
the string of operators g−

1 Λ̄+
2 g−

3 g+
4 · · ·g+

n in Eq. (1), leading to the following SWI

0 = Γ −(1, q)An(Λ
−
1 , Λ̄+

2 , g−
3 , g+

4 , . . . , g+
n ) − Γ −(2, q)An(g

−
1 , g+

2 , g−
3 , g+

4 , . . . , g+
n )

(4)− Γ −(3, q)An(g
−
1 , Λ̄+

2 ,Λ−
3 , g+

4 , . . . , g+
n ),

where we omit amplitudes with two gluinos of the same helicity since these vanish due to
helicity-conservation. Note that we have an additional sign change in front of the last ampli-
tude due to the Grassmannian nature of Γ ± when moving it through Λ2. Choosing q = p3 the
last contribution vanishes, and we obtain

(5)An(Λ
−
1 , Λ̄+

2 , g−
3 , g+

4 , . . . , g+
n ) = 〈32〉

〈31〉An(g
−
1 , g+

2 , g−
3 , g+

4 , . . . , g+
n ).

The NkMHV (k � 1) relations are much more complex and do not provide similarly simple
relations like Eq. (5).

Since we focus on amplitudes with adjoint fermions or adjoint scalars, an N � 2 super-
symmetric theory would be needed to derive the relevant relations. Examples of various SWI
calculations can be found in [9,10,15,18–20]. We will denote the particle type by a subscript on
the corresponding momentum index. The subscript s denotes adjoint scalars, f (and f̄ ) adjoint
fermions, and no subscript denotes gluons. We will use the following MHV matter amplitudes,
which can be obtained by SWI calculations similar to Eq. (5) (for further details see for instance
[21,22])

(6)mn(i
−, j−

f/s, k
+
f̄ /s

) =
(

± 〈ik〉
〈ij 〉

)2−2h

An(i
−, j−), An(i

−, j−) = 〈ij 〉4∏n
r=1〈r(r + 1)〉 .

Here we omit writing the positive-helicity gluons, and inside the parenthesis we have a + when
j < k and − when k < j . An is the purely gluonic amplitude, and the (SWI) factor has h = 0 for
scalars and h = 1/2 for fermions (and h = 1 for gluons). Note that the + (−) on a scalar is to be
understood as particle (antiparticle).

Finally we will make use of an identity [18] between color-ordered tree amplitudes with
fermions in the fundamental representation (quarks) and color-ordered tree amplitudes with
fermions in the adjoint representation (gluinos). We denote a quark by the subscript q and an
antiquark by q̄

(7)mn(1q̄ ,2q,3, . . . , n) = mn(1f̄ ,2f ,3, . . . , n),

where 1q̄ = 1f̄ and 2q = 2f .

2.2. New gluonic relations

In [16] a new representation of gluonic tree amplitudes has been conjectured. This represen-
tation introduces an identity satisfied by kinematic numerator factors, analogous to the Jacobi
identity for color-factors. The kinematic identity constrain the partial amplitudes and lead to new
non-trivial relations.

The conjecture can be realized as an equation system describing the unknown numerators ni

(8){nα = nβ − nγ }, An

(
σi{1,2,3, . . . , n}) =

[∑
j

nj

(
∏

m p2
m)j

]
i

,
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where the first equation represents all the numerator identities analogous to the Jacobi identi-
ties for the corresponding color-factors, and the second is the statement that the terms in this
representation sum up to the known partial amplitudes for at least i = 1, . . . , (n − 3)! different
permutations of the external legs (the basis amplitudes). The product of p2

m’s in the denominator
describe the pole-structure of the amplitude.

It should be noted, that there is a certain amount of freedom in the solution to the above
equations. However, part of the conjecture is that any amplitude built out of the solution to
Eq. (8) will be independent of this freedom.

We will illustrate the above conjecture in the simplest case (see also the earlier work about
certain zeros in cross sections [23]). At four points the new representation implies that the full
color-dressed tree-level gluon amplitude can be written as

(9)Atree
4 = g2

(
csns

s
+ ctnt

t
+ cunu

u

)
,

where s, t and u are the usual Mandelstam variables, ci are color-factors satisfying the Jacobi
identity cu = cs − ct , and the ni are kinematic factors satisfying the corresponding identity nu =
ns − nt (Eq. (8)).

We will choose our basis amplitude to be A4(1,2,3,4), and following the second statement
in Eq. (8) we get

(10)A4(1,2,3,4) = ns

s
+ nt

t
.

In order to obtain the mentioned relation, we write A4(1,2,4,3) in this representation as well

(11)A4(1,2,4,3) = −nu

u
− ns

s
,

where the sign flip is due to the antisymmetry of color-ordered Feynman rules.
By use of the kinematic identity nu = ns − nt we get

tA4(1,2,3,4) − uA(1,2,4,3) = tns

s
+ (nt + nu) + uns

s

(12)= tns

s
+ ns + uns

s
= ns(t + s + u)

s
= 0,

hence we see that we derived the well-known identity tA4(1,2,3,4) = uA(1,2,4,3).
In general, choosing the basis as An(1,2,3, σ {4, . . . , n}) and solving the above equation sys-

tem for these (n−3)! gluon amplitudes, i.e. expressing ni in terms of these amplitudes, and using
the solution in the remaining amplitudes, one obtains new relations equivalently to the four-point
case.

It is possible to conjecture an all-n form [16] for these gluonic relations,

(13)An

(
1,2, {α},3, {β}) =

∑
{σ }∈POP({α},{β})

An

(
1,2,3, {σ }) m∏

k=4

F (3, {σ },1|k)

s2,4,...,k

,

where

(14){α} ≡ {4,5, . . . ,m − 1,m}, {β} ≡ {m + 1,m + 2, . . . , n − 1, n},
and the sum runs over “partially ordered permutations” (POP), corresponding to all permutations
of {α} ∪ {β} that maintains the order of the {β} elements. Either set can be taken as empty, but if
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{α} is empty the relation becomes trivial. The function F associated with leg k is given by

F
(
3, {σ },1|k) ≡ F

({ρ}|k) =
{ ∑n−1

l=tk
G(k, ρl) if tk−1 < tk

−∑tk
l=1 G(k, ρl) if tk−1 > tk

}

(15)+
⎧⎨
⎩

s2,4,...,k if tk−1 < tk < tk+1
−s2,4,...,k if tk−1 > tk > tk+1
0 else

⎫⎬
⎭ ,

where tk is the position of leg k in {ρ}, except for t3 and tm+1 which are always defined to be

(16)t3 ≡ t5, tm+1 ≡ 0,

and ρl is the leg at position l in {ρ}. The function G is given by

(17)G(i, j) =
{

si,j if i < j or j = 1,3
0 else

}
,

and the kinematic invariants are,

(18)si,j = (ki + kj )
2, s2,4,...,i = (k2 + k4 + · · · + ki)

2,

with all momenta massless and outgoing.
The ordering in {α} and {β} only give some of the relations, but the rest can be obtained by

permutations of 4, . . . , n.
Note that the Kleiss–Kuijf relations allow for the fixing of leg 1 and 2, and that the basis

amplitudes have been chosen to be independent under these relations. Therefore only (n − 3)!
independent partial amplitudes are left.

For purely gluonic amplitudes the four- and five-point relations, generated from Eq. (13), are
[16]

(19)A4
(
1,2, {4},3

) = A4(1,2,3,4)s14

s24
,

and

A5
(
1,2, {4},3, {5}) = A5(1,2,3,4,5)(s14 + s45) + A5(1,2,3,5,4)s14

s24
,

(20)A5
(
1,2, {4,5},3

) = −A5(1,2,3,4,5)s34s15 − A5(1,2,3,5,4)s14(s245 + s35)

s24s245
,

respectively.
In the four-point case only one relation exists. In the five-point case two more relations are

obtained by interchanging 4 and 5 in the two equations. We have kept {. . .} in the equations for
easy comparison with Eq. (13). Explicit expressions for six- and seven-point relations can be
found in Appendix B.

In the following we will refer to the above new relations as the BCJ-relations.
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3. New matter relations

Our conjecture is that Eq. (13) can be generalized to include matter, and thereby lead to new
non-trivial relations between matter amplitudes.

Let i and j denote the momentum index of the two helicity h matter particles in the partial
amplitudes mn. Our generalized formula is

mn

(
1,2, {α},3, {β})

(21)=
∑

{σ }∈POP({α},{β})

(
signσ {i, j})2h

mn

(
1,2,3, {σ }) m∏

k=4

F (3, {σ },1|k)

s2,4,...,k

,

where signσ {i, j} is a sign-function defined to give −1 when the order of the matter legs in
mn(1,2,3, {σ }) is changed compared to mn(1,2, {α},3, {β}), and +1 when the order is kept.
We have h = 0 for scalars, h = 1/2 for fermions (gluinos or quarks), and h = 1 for gluons. Note
that the quark case assume (i, j) = (1,2).

We now go into details concerning the verification of these extended relations, which are based
on the simple structure of the MHV matter amplitudes from Section 2.1 and explicit checks in
six- and seven-point NMHV cases. We stress that all the amplitudes used in the verification are
consistent with the supersymmetric Ward identities.

3.1. Four-point matter relation

For four-point amplitudes only MHV configurations are non-zero. It is evident from Eq. (6)
that Eq. (19) can be extended to all MHV matter amplitudes with two fermions or two scalars.
One simply multiplies both side of Eq. (19) with the appropriate SWI factor and get, for instance

(22)m4
(
1−
s/f ,2+

s/f̄
, {4−},3+) =

m4(1
−
s/f ,2+

s/f̄
,3+,4−)s14

s24
.

If we consider the case with fermions on leg 3 and 4 we see that one of the sides need to change
sign in order for the relation to hold, e.g. after multiplying with the same SWI factor on both
sides of Eq. (19) we rewrite the righthand side amplitude as

〈13〉
〈14〉A4(1

−,2+,3+,4−) = −
(

−〈13〉
〈14〉A4(1

−,2+,3+,4−)

)
(23)= −m4(1

−,2+,3+
f̄
,4−

f ).

Furthermore Eq. (7) imply that also quark amplitudes m4(1q̄ ,2q,3,4) satisfy the relation.

3.2. Five-point matter relations

Again only MHV (and googly-MHV) amplitudes are non-zero, and Eq. (6) allow us to write
down the analogous matter relations. The example similar to Eq. (22) is

m5
(
1−
s/f ,2+

s/f̄
, {4},3, {5}) =

m5(1
−
s/f ,2+

s/f̄
,3,4,5)(s14 + s45)

s24

+
m5(1

−
s/f ,2+

s/f̄
,3,5,4)s14

,

s24
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m5
(
1−
s/f ,2+

s/f̄
, {4,5},3

) = −
m5(1

−
s/f ,2+

s/f̄
,3,4,5)s34s15

s24s245

(24)−
m5(1

−
s/f ,2+

s/f̄
,3,5,4)s14(s245 + s35)

s24s245
.

If the fermion legs were among those that flip order in the amplitudes (i.e. if they both belong to
{3,4,5}) the same argument as in the four-point case verify the sign function in Eq. (21).

Eq. (7) implies the validity of these relations for quark amplitudes m5(1q̄ ,2q,3,4,5) as well.

3.3. n-point MHV matter case

The four- and five-point cases are just specific examples of the general MHV n-point situation.
The simple multiplication by a SWI factor and the linearity of the BCJ-relations extend Eq. (13)
directly to include scalars or fermions in the manner conjectured in Eq. (21), e.g.

mn

(
1−
s/f ,2, {α},3+

s/f̄
, {β})

(25)=
∑

{σ }∈POP({α},{β})
mn

(
1−
s/f ,2,3+

s/f̄
, {σ }) m∏

k=4

F (3, {σ },1|k)

s2,4,...,k

.

When both fermions belong to {3, . . . , n} the relations involve amplitudes flipping the order of
these legs, which is accounted for by the sign-function.

The relations are extended to MHV amplitudes with fermions in the fundamental representa-
tion by Eq. (7).

3.4. Six- and seven-point matter relations

For six-point amplitudes there are three classes of matter relations, giving a total of 18 rela-
tions obtained by permutations of leg 4, 5 and 6.

For seven-point amplitudes there are 96 matter relations. They come in four classes, each
representing 24 relations by permutating 4, 5, 6 and 7. We have generated these four classes from
Eq. (13). Explicit expression for both six- and seven-point relations can be found in Appendix B.

Until now the verification of Eq. (21) has been provided by the multiplication of an SWI
factor. The NMHV amplitudes, however, introduce more complicated expressions. We have used
the BCFW recursion relations to generate NMHV matter amplitudes for six and seven points.
When possible, we have compared with amplitudes obtained in the literature [5,20,24], and made
sure that all used amplitudes were consistent with supersymmetric Ward identities. At tree-level
the following amplitude structure appears

(26)A
gluon
n =

∑
i

Xi, mn =
∑

i

Xi (ai)
2−2h,

with mn containing a pair of helicity h matter particles, and ai is some kinematical (SWI) factor.
An example of a matter amplitude is

m6(1
+
h̄
,2+,3+,4−

h ,5−,6−) = 〈6|1 + 2|3]3 ( [34]〈16〉 )2−2h
〈12〉〈61〉[34][45]〈2|1 + 6|5]s126 〈6|1 + 2|3]
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(27)

+ 〈4|2 + 3|1]3

〈23〉〈34〉[56][61]〈2|3 + 4|5]s234

(
s234

〈4|2 + 3|1]
)2−2h

.

One needs to be careful when using general expressions like Eq. (27) since in some amplitudes
an additional term, i.e. an Xi , exists in the gluon case (h = 1), compared to the matter amplitudes.

Using our six- and seven-point NMHV amplitudes we have made explicit checks of Eq. (21),
i.e. of non-trivial matter relations like

m6
(
1−,2−, {4−

h ,5+
h̄
,6+},3+)

= −m6(1−,2−,3+,4−
h ,5+

h̄
,6+)s34(s245 + s56 + s15)s16

s24s245s2456

+ (−1)2h
m6(1−,2−,3+,6+,5+

h̄
,4−

h )s14(s245 + s35 + s56)(s2456 + s36)

s24s245s2456

+ m6(1−,2−,3+,6+,4−
h ,5+

h̄
)(s34 + s46)s15(s2456 + s36)

s24s245s2456

− (−1)2h
m6(1−,2−,3+,5+

h̄
,4−

h ,6+)(s14 + s46)s35s16

s24s245s2456

+ m6(1−,2−,3+,4−
h ,6+,5+

h̄
)s34s15(s2456 + s36)

s24s245s2456

(28)− (−1)2h
m6(1−,2−,3+,5+

h̄
,6+,4−

h )s14s35s16

s24s245s2456
,

and in all our cases we have found Eq. (21) to be satisfied. This verifies our extended relations in
a series of highly non-trivial cases.

Due to Eq. (7) they also hold for the NMHV quark case mn(1q̄ ,2q,3, . . . , n), with (at least)
n = 6 or 7.

Since the relations are satisfied for MHV amplitudes independently of the SWI factor (at least
when the order of the fermions are kept fixed), one might imagine something similarly to be true
for NMHV amplitudes, i.e. valid for a wide range of h values in the (ai)

2−2h factors. However, in
our representation of the amplitudes this was not the case. More specifically, the relations were
satisfied for only very specific values of h, namely h = 1,1/2,0,−1/2 (corresponding to gluons,
fermions, scalars and anti-fermions).

4. Conclusions

In this paper we have extended new gluonic relations to include amplitudes with matter, i.e.
amplitudes where two of the particles are a pair of either adjoint fermions, scalars or quarks. The
remaining n − 2 particles were taken to be gluons. For MHV amplitudes the extension relied on
the simple SWI structure, multiplying the usual gluon amplitudes by a factor.

For six and seven points we used the BCFW recursion relations to obtain NMHV matter
amplitudes. Using these, explicit checks of the matter relations, Eq. (21), was performed, and in
all our cases we found the relations to be satisfied.

The natural extension of the BCJ-relations suggest that the conjectures in [16] are valid in a
very general setting. An interesting generalization could be the extension to matter with flavor,
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i.e. additional conserved quantum numbers. Non-trivial modifications of the relations, due to
constraints from the conserved flavors, are expected. This could be an interesting direction for
future work.

The importance of understanding the generality of the new relations is not confined to mere
tree-level calculations. By mean of unitarity cuts loop amplitudes can be constructed from tree-
level amplitudes [25,26] (see also [27]). Considering supersymmetric theories this involve sums
over all particle types and physical states that can propagate on the cut lines. It is thus essential for
such computations to extend the newly discovered BCJ-relations to these non-gluonic relations.
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Appendix A. Conventions and notation

A.1. Gauge-theory color structure

Consider an SU(Nc) gauge theory. When all external particles are in the adjoint representa-
tion, the full color-dressed tree amplitude can be written as

(29)Atree
n = gn−2

∑
σ(2,3,...,n)

Tr
[
T a1T aσ(2) . . . T aσ(n)

]
An

(
1, σ (2), . . . , σ (n)

)
,

where An is the partial amplitudes, T ai the generators of the gauge group, and the sum runs over
all permutations of leg 2,3, . . . , n (equivalent to all non-cyclic permutations of leg 1,2, . . . , n).
We use the shorthand notation i for momentum pi and have suppressed the helicities.

Although we have used An in Eq. (29) we will in general distinguish between purely gluonic
amplitudes, An, and amplitudes containing matter particles, mn.

The gauge-group algebra implies a number of well-known relations between partial ampli-
tudes, see, for instance, [9].

Including a quark–antiquark pair, and keeping n − 2 gluons, the full color-dressed tree ampli-
tude can be decomposed as

(30)Mtree
n = gn−2

∑
σ(3,4,...,n)

(
T aσ(3)T aσ(4) · · ·T aσ(n)

)
i2

j̄1mn

(
1q̄ ,2q, σ (3), . . . , σ (n)

)
,

where i2 and j̄1 are the index of the quark and antiquark in the fundamental representation. Note
that the quark and antiquark is not part of the permutations in Eq. (30).

A.2. Spinor products

In connection with SWI and MHV amplitudes we use the spinor helicity formalism [9,10].
Actually we only use the spinor products, which will be defined here.

Let u(p) be a massless four-dimensional Dirac spinor, i.e.

(31)p · γ u(p) = 0, p2 = 0.

We always use units with h̄ = c = 1 and Minkowski space. Define the two helicity states of u(p)

by the two chiral projections

(32)u±(p) ≡ 1
(1 ± γ5)u(p),
2



426 T. Søndergaard / Nuclear Physics B 821 (2009) 417–430
and introduce the notation

(33)|p±〉 ≡ u±(p), 〈p±| ≡ u±(p),

where u±(p) ≡ u
†
±(p)γ 0. The basic spinor products are then defined as

(34)〈pq〉 ≡ 〈p−|q+〉 = u−(p)u+(q), [pq] ≡ 〈p+|q−〉 = u+(p)u−(q),

which are related by complex conjugation 〈pq〉∗ = [qp].
When working with several particles of different momenta pi , we use the shorthand notation

(35)〈pipj 〉 ≡ 〈ij 〉, [pipj ] ≡ [ij ].
Note that in Eq. (27) we use the notation

(36)〈a|b + c|d] ≡ 〈ab〉[bd] + 〈ac〉[cd].

Appendix B. BCJ-relations for six- and seven-point amplitudes

We give the explicit expressions for the six- and seven-point relations generated from Eq. (13).
The matter relations can be obtained by replacing the gluon amplitudes, An, with the matter
amplitudes, mn, and multiplying each of them with the sign-function from Eq. (21).

The three classes of BCJ-relations for gluonic six-point amplitudes are [16]

A6
(
1,2, {4},3, {5,6}) = A6(1,2,3,4,5,6)(s14 + s46 + s45)

s24

(37)+ A6(1,2,3,5,4,6)(s14 + s46)

s24
+ A6(1,2,3,5,6,4)s14

s24
,

A6
(
1,2, {4,5},3, {6})

= −A6(1,2,3,4,5,6)s34(s15 + s56)

s24s245
− A6(1,2,3,4,6,5)s34s15

s24s245

− A6(1,2,3,6,4,5)(s34 + s46)s15

s24s245
− A6(1,2,3,5,4,6)(s14 + s46)(s245 + s35)

s24s245

(38)− A6(1,2,3,5,6,4)s14(s245 + s35)

s24s245
− A6(1,2,3,6,5,4)s14(s245 + s35 + s56)

s24s245
,

A6
(
1,2, {4,5,6},3

)
= −A6(1,2,3,4,5,6)s34(s245 + s56 + s15)s16

s24s245s2456

+ A6(1,2,3,4,6,5)s34s15(s2456 + s36)

s24s245s2456

+ A6(1,2,3,6,4,5)(s34 + s46)s15(s2456 + s36)

s24s245s2456

− A6(1,2,3,5,4,6)(s14 + s46)s35s16

s24s245s2456
− A6(1,2,3,5,6,4)s14s35s16

s24s245s2456

(39)+ A6(1,2,3,6,5,4)s14(s245 + s35 + s56)(s2456 + s36)

s24s245s2456
.
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We get the following four classes of BCJ-relations for gluonic seven-point amplitudes

A7
(
1,2, {4},3, {5,6,7})

= A7(1,2,3,4,5,6,7)(s45 + s46 + s47 + s41)

s24

+ A7(1,2,3,5,4,6,7)(s46 + s47 + s41)

s24
+ A7(1,2,3,5,6,4,7)(s47 + s41)

s24

(40)+ A7(1,2,3,5,6,7,4)s41

s24
,

A7
(
1,2, {4,5},3, {6,7})

= −A7(1,2,3,4,5,6,7)s43(s56 + s57 + s51)

s24s245

− A7(1,2,3,5,4,6,7)(s46 + s47 + s41)(s53 + s245)

s24s245

− A7(1,2,3,4,6,5,7)s43(s57 + s51)

s24s245
− A7(1,2,3,4,6,7,5)s43s51

s24s245

− A7(1,2,3,6,4,7,5)(s43 + s46)s51

s24s245

− A7(1,2,3,6,7,4,5)(s43 + s46 + s47)s51

s24s245

− A7(1,2,3,6,7,5,4)s41(s53 + s56 + s57 + s245)

s24s245

− A7(1,2,3,6,5,7,4)s41(s53 + s56 + s245)

s24s245
− A7(1,2,3,5,6,7,4)s41(s53 + s245)

s24s245

− A7(1,2,3,5,6,4,7)(s47 + s41)(s53 + s245)

s24s245

− A7(1,2,3,6,4,5,7)(s43 + s46)(s57 + s51)

s24s245

(41)− A7(1,2,3,6,5,4,7)(s47 + s41)(s53 + s56 + s245)

s24s245
,

A7
(
1,2, {4,5,6},3, {7})

= −A7(1,2,3,4,5,6,7)s43(s56 + s57 + s51 + s245)(s67 + s61)

s24s245s2456

+ A7(1,2,3,6,7,5,4)s41(s53 + s56 + s57 + s245)(s63 + s2456)

s24s245s2456

− A7(1,2,3,7,4,5,6)(s43 + s47)(s56 + s51 + s245)s61

s24s245s2456

+ A7(1,2,3,6,5,4,7)(s47 + s41)(s53 + s56 + s245)(s63 + s2456)

s24s245s2456

− A7(1,2,3,5,6,4,7)(s47 + s41)s53(s67 + s61)
s24s245s2456



428 T. Søndergaard / Nuclear Physics B 821 (2009) 417–430
+ A7(1,2,3,4,6,5,7)s43(s57 + s51)(s63 + s2456)

s24s245s2456

+ A7(1,2,3,6,4,5,7)(s43 + s46)(s57 + s51)(s63 + s2456)

s24s245s2456

− A7(1,2,3,5,4,6,7)(s46 + s47 + s41)s53(s67 + s61)

s24s245s2456

− A7(1,2,3,4,5,7,6)s43(s57 + s56 + s51 + s245)s61

s24s245s2456

+ A7(1,2,3,6,5,7,4)s41(s53 + s56 + s245)(s63 + s2456)

s24s245s2456

− A7(1,2,3,4,7,5,6)s43(s56 + s51 + s245)s61

s24s245s2456

− A7(1,2,3,7,5,4,6)(s46 + s41)(s53 + s57)s61

s24s245s2456

+ A7(1,2,3,7,4,6,5)(s43 + s47)s51(s63 + s67 + s2456)

s24s245s2456

− A7(1,2,3,7,5,6,4)s41(s53 + s57)s61

s24s245s2456

+ A7(1,2,3,7,6,4,5)(s43 + s47 + s46)s51(s63 + s67 + s2456)

s24s245s2456

− A7(1,2,3,5,6,7,4)s41s53(s67 + s61)

s24s245s2456

+ A7(1,2,3,6,4,7,5)(s43 + s46)s51(s63 + s2456)

s24s245s2456

− A7(1,2,3,5,4,7,6)(s47 + s46 + s41)s53s61

s24s245s2456

+ A7(1,2,3,4,6,7,5)s43s51(s63 + s2456)

s24s245s2456

− A7(1,2,3,5,7,4,6)(s46 + s41)s53s61

s24s245s2456

+ A7(1,2,3,4,7,6,5)s43s51(s63 + s67 + s2456)

s24s245s2456

− A7(1,2,3,5,7,6,4)s41s53s61

s24s245s2456

+ A7(1,2,3,6,7,4,5)(s43 + s46 + s47)s51(s63 + s2456)

s24s245s2456

(42)+ A7(1,2,3,7,6,5,4)s41(s53 + s57 + s56 + s245)(s63 + s67 + s2456)

s24s245s2456
,

A7
(
1,2, {4,5,6,7},3

)
= −A7(1,2,3,4,5,6,7)s43(s56 + s57 + s51 + s245)(s67 + s61 + s2456)s71
s24s245s2456s24567
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− A7(1,2,3,5,4,6,7)(s46 + s47 + s41)s53(s67 + s61 + s2456)s71

s24s245s2456s24567

+ A7(1,2,3,7,5,6,4)s41(s53 + s57)s61(s73 + s24567)

s24s245s2456s24567

+ A7(1,2,3,7,5,4,6)(s46 + s41)(s53 + s57)s61(s73 + s24567)

s24s245s2456s24567

+ A7(1,2,3,6,7,5,4)s41(s53 + s56 + s57 + s245)s63s71

s24s245s2456s24567

+ A7(1,2,3,6,5,4,7)(s47 + s41)(s53 + s56 + s245)s63s71

s24s245s2456s24567

− A7(1,2,3,5,6,4,7)(s47 + s41)s53(s67 + s61 + s2456)s71

s24s245s2456s24567

+ A7(1,2,3,5,7,4,6)(s46 + s41)s53s61(s73 + s24567)

s24s245s2456s24567

− A7(1,2,3,4,7,6,5)s43s51(s63 + s67 + s2456)(s73 + s24567)

s24s245s2456s24567

+ A7(1,2,3,6,5,7,4)s41(s53 + s56 + s245)s63s71

s24s245s2456s24567

+ A7(1,2,3,4,7,5,6)s43(s56 + s51 + s245)s61(s73 + s24567)

s24s245s2456s24567

+ A7(1,2,3,5,4,7,6)(s47 + s46 + s41)s53s61(s73 + s24567)

s24s245s2456s24567

+ A7(1,2,3,4,6,7,5)s43s51s63s71

s24s245s2456s24567

+ A7(1,2,3,5,7,6,4)s41s53s61(s73 + s24567)

s24s245s2456s24567

+ A7(1,2,3,6,7,4,5)(s43 + s46 + s47)s51s63s71

s24s245s2456s24567

+ A7(1,2,3,4,6,5,7)s43(s57 + s51)s63s71

s24s245s2456s24567

+ A7(1,2,3,6,4,5,7)(s43 + s46)(s57 + s51)s63s71

s24s245s2456s24567

− A7(1,2,3,5,6,7,4)s41s53(s67 + s61 + s2456)s71

s24s245s2456s24567

+ A7(1,2,3,6,4,7,5)(s43 + s46)s51s63s71

s24s245s2456s24567

− A7(1,2,3,7,6,5,4)s41(s53 + s57 + s56 + s245)(s63 + s67 + s2456)(s73 + s24567)

s24s245s2456s24567

− A7(1,2,3,7,6,4,5)(s43 + s47 + s46)s51(s63 + s67 + s2456)(s73 + s24567)

s24s245s2456s24567

+ A7(1,2,3,7,4,5,6)(s43 + s47)(s56 + s51 + s245)s61(s73 + s24567)
s24s245s2456s24567
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− A7(1,2,3,7,4,6,5)(s43 + s47)s51(s63 + s67 + s2456)(s73 + s24567)

s24s245s2456s24567

(43)+ A7(1,2,3,4,5,7,6)s43(s57 + s56 + s51 + s245)s61(s73 + s24567)

s24s245s2456s24567
.
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