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Abstract

The response of four dimensional quantum field theories to a Weyl rescaling of the metric in the presence
of local couplings and which involve a, the coefficient of the Euler density in the energy momentum tensor
trace on curved space, is reconsidered. Previous consistency conditions for the anomalous terms, which
implicitly define a metric G on the space of couplings and give rise to gradient flow like equations for a,
are derived taking into account the role of lower dimension operators. The results for infinitesimal Weyl
rescaling are integrated to finite rescalings 2% to a form which involves running couplings gs and which
interpolates between IR and UV fixed points. The results are also restricted to flat space where they give
rise to broken conformal Ward identities.

Expressions for the three loop Yukawa S-functions for a general scalar/fermion theory are obtained and
the three loop contribution to the metric G for this theory is also calculated. These results are used to check
the gradient flow equations to higher order than previously. It is shown that these are only valid when
B — B, a modified B-function, and that the equations provide strong constraints on the detailed form of
the three loop Yukawa B-function. ' = 1 supersymmetric Wess—Zumino theories are also considered as a
special case. It is shown that the metric for the complex couplings in such theories may be restricted to a
hermitian form.
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1. Introduction

The paradigm shift in our understanding of quantum field theories due to Wilson in the 1970s
led to the view that quantum field theories are not isolated objects but may be regarded as points
on a manifold, with coordinates given by the couplings {g’}, where there is a natural flow un-
der changes of the cut-off scale realising the renormalisation group. The perturbative RG flow
equations are just first order equations determined by the S-functions 8! (g), which are vector
fields on the space of couplings. Even in this context the global topology of such flows has been
less certain, the simplest scenario arises when the flows link fixed points in the UV short dis-
tance limit to other fixed points in the large distance IR limit. At the fixed points the quantum
field theory is scale invariant and moreover is naturally expected to become a conformal field
theory. However more complicated behaviours under RG flow, such as limit cycles or the flow
becoming chaotic, are also feasible. As was first suggested by Cardy [ 1], there may be additional
constraints for unitary quantum field theories in four dimensions due to the existence of a func-
tion a(g) which has monotonic behaviour under RG flow, or, more minimally, @ may be defined
at fixed points so that ayy — ajr > 0. These two scenarios are here described as the strong and
weak a-theorems, such a distinction was made in [2]. If valid, a strong a-theorem constrains the
RG flow without assuming any UV completion although it requires the RG flow to be described
by linear equations involving B-functions.

The proposal of Cardy was for a four dimensional generalisation of the Zamolodchikov
c-theorem, [3]. This constrains the structure of two dimensional quantum field theories and has
a simple elegant proof depending just on the properties of the two point correlation function of
the energy tensor. The crucial positivity constraint arises from unitarity conditions applied to the
two point function. No such approach works in four dimensions [4,5] but it was soon clear that
only a, which is determined by the topological term in the trace of the energy momentum tensor
on curved space, is a viable candidate for a monotonic flow between fixed points. The energy
momentum tensor two point function in conformal theories is determined by c, the coefficient of
the square of the Weyl tensor in the energy momentum tensor trace on curved space.

Much more recently Komargodski and Schwimmer [6] have described a proof of the four
dimensional weak a-theorem which has been further analysed in [7] with possible extensions
to higher dimensions discussed in [8]. This rests on coupling the theory to a dilaton and con-
structing an effective low energy field theory for the dilaton. The essential positivity requirement
depends on positivity conditions arising from unitarity for the four dilaton scattering amplitude.
The starting point of the discussion in [6] is the response of a conformal theory to a Weyl rescal-
ing of the flat metric. The resulting expression determines the couplings of the dilaton introduced
as a compensator for the local anomalous terms which arise under a Weyl rescaling and which
have a coefficient proportional to a. The basic argument of Komargodski and Schwimmer is that
coupling to a dilaton ensures a matching of these anomalies between the UV and IR fixed points.

However the results of [6] and also [7] do not immediately extend away from conformal fixed
points. There is also no obvious connection with a perturbative version of the strong a-theorem
for four dimensional renormalisable quantum field theories. This was based on an analysis in
terms of dimensional regularisation [9] and also from Wess—Zumino consistency conditions for
the response of the theory on curved background to a Weyl rescaling of the metric [10]. Instead
of a dilaton as in [6] the usual linear RG equations describing the response to a variation in the
RG scale u were extended to a local infinitesimal Weyl rescaling o (x) by allowing the couplings
also to be local g’ (x), with an arbitrary dependence on x. Local RG equations for variations of
o (x) reduce to the conventional linear differential constraints for o and g’ constant but contain
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additional local contributions depending on the derivatives of g/, as well as the curvature. The
consistency conditions arise from the abelian nature of the group of Weyl scale transformations.
Such an approach has also been extended to six dimensions in [11] and three in [12].

In this paper we revisit some of the results in [10], with an hopefully improved notation
(although we apologise for alphabetical profligacy) and extensions. The essential result is that
there is a scalar function of the couplings A(g) such that

dgA(g) =dg' Trs(9)B” (9). (1.1)

where at a fixed point 8/ (g,) =0, }—tg(g*) = a. The symmetric part of 77 ; defies a natural metric
Gy so that under RG flow

BlajA=Gripl 87, (1.2)
Away from fixed points A(g) is arbitrary up to
A(g) = A®) +g15(9)B" (9B (9. (1.3)

while correspondingly

Gry— Gry+Lpgrs, Lpgrs=p kg +31B%gxs +3,8%gik. (1.4)

It is then sufficient in order to demonstrate the strong version of the a-theorem that G;; +Lggry
is positive definite just for some particular g; ;.

In two dimensions positivity of the metric, up to the freedom in (1.4), flows from showing [10]
that Gy; + Lgg;, for suitable g; 7, becomes the Zamolodchikov metric determined by the two
point function Gy (142x%)zam = (x2)%(O; (x)O;(0)), for {O;} scalar operators dual to {g’} [3].
Variation of x2 in G jzam is equivalent to (1.4). However the original analysis demonstrates (1.2)
and does not directly imply (1.1), see also [13].

In four dimensions G is related to (O;T,,,O}), although the precise connection is not fully
clear and positivity, except at weak coupling when G can be calculated or at a conformal fixed
point, is however not apparent from a perturbative series expansion.

The consistency conditions such as (1.1), obtained previously in [10] and discussed further
in this work, are derived by considering the response to infinitesimal Weyl rescalings of the
metric. We also consider the response of the theory to finite Weyl rescalings of the metric y,,, —
e Yuv- The result is also expressed in terms of running couplings g(I, together with additional
contributions also depending explicitly on o, involving derivatives up to O(c#), and containing
Gy and related functions as well as derivatives of the couplings. For four dimensional theories
the final expression is quite involved but it extends the result at a fixed point used as a starting
point for the introduction of a dilaton field in [6] and [7].

For four dimensional theories the local RG equations, from which (1.1) is derived, are essen-
tially equivalent to expressing the energy momentum tensor trace in terms of a basis of scalar
operators as well as contributions involving the curvature, defining ¢ and a, but also scalars
formed from derivatives of g/. However even on flat space with constant g/ there may be deriva-
tive terms so that

" Ty = 1 (O + 9, I (1.5)

Here J!' is a current associated with an element v of the Lie algebra of the symmetry group Gg
of the kinetic terms of the theory. Such terms may arise at three loops in perturbative calculations
for scalar fermion theories [14,15]. A fixed point 8/ (gs) = 0 would apparently give rise to scale
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but not conformally invariant theories if there is no redefinition of 7, which removes 9, JE.
However the B-functions have an arbitrariness related to the freedom to make transformations
under Gk at the expense of a redefinition of the couplings. This freedom cancels in (1.5) so that
it can be rewritten as

"', = B (g)O;, (1.6)

where

B(g)=p"(g) — (vg)', (1.7)

so that if the couplings are not all invariant under Gg there may be a difference between
B! and B!. If this possibility arises (1.1) holds for 8/ — B! and hence the potential strong
a-theorem discussed here applies to the RG flow generated by B’, and its vanishing, B (g4) =0,
at a fixed point defines a CFT. The transformation from (1.5) to (1.6), in terms of the modified
B-functions as in (1.7), assumes there are no anomalies in 9, JY. This should be the case in parity
conserving theories when J/ is a vector current.

The existence of A(g) satisfying (1.1) also requires integrability conditions which constrain
the form of B-functions. This was explored in [9] and is investigated further in this paper, see
also [16]. The conditions require relations between the coefficients appearing in B-functions at
different loop orders and which correspond to graphs of very different topologies.

As an application of the results obtained and for the analysis of the integrability constraints
on S-functions we consider here a model renormalisable scalar fermion theory with Yukawa and
quartic scalar couplings. Previously [9] the various quantities appearing in the consistency condi-
tions were calculated to lowest perturbative order for general theories including gauge fields. To
go beyond this requires three loop calculations. For complex scalars coupled to Weyl fermions
imposing a U (1) symmetry ensures that the number of graphs necessary is O(10) rather than
0O(100), or more, for a completely general scalar/fermion theory. We obtain results for three
loop anomalous dimensions and Yukawa S-functions without calculating more than a couple of
graphs by reducing this theory to one describing the standard model top/Higgs coupling, recently
obtained by Chetyrkin and Zoller [17], and also a general A" = 1 supersymmetric scalar fermion
theory when the relevant results have been known for some time [18]. The consistency condi-
tions obtained here allow calculations for 77, initially defined in terms of a curved background,
to be reduced to flat space calculations and we determine the three loop contributions depending
on the Yukawa couplings in the specific model theory for which the three loop B-functions were
obtained. The result requires extracting the local divergences for two three-loop vacuum dia-
grams. The results can be checked by reducing to supersymmetry as a special case when much
simpler superspace methods are possible. As usual we use dimensional regularisation which may
be problematic at higher loop orders. These issues are discussed in [17], but in the absence of
gauge fields here such problems appear to be irrelevant to the order considered here.

We consider in detail the application of these results to N' = 1 Wess—Zumino supersymmetric
theories, extending the discussion in [19]. For such theories the space of couplings is naturally a
complex manifold since they may be extended to chiral or anti-chiral superfields. We show that
three loop calculations demonstrate that the metric is hermitian to this order. Furthermore, when
redefinitions as in (1.4) are extended to the supersymmetric case the assumption of a hermitian
metric is preserved. There is no all orders proof of hermiticity in the context of this paper, al-
though for superconformal theories related results have been obtained by Papadodimas [20] and
Asnin [21]. The results for the metric can also be expressed in Kihler form if allowance is made
for potential redefinitions of the couplings.
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Although this paper is quite lengthy each section is substantially independent. In Section 2 we
rederive the local RG equations and associated integrability conditions which follow by consider-
ing the response to infinitesimal Weyl rescalings of the metric in theories in which the couplings
are allowed to be local. In Section 3 the infinitesimal transformations are integrated to obtain
the change in the vacuum energy functional W under finite rescalings. The results depend on
running couplings g/ and provide an interpolation between UV and IR fixed points. In Section 4
we restrict the equations to flat space and broken conformal symmetry. This context is sufficient
to allow the metric G, which is initially defined for curved space backgrounds, to be recovered
just from flat space calculations.

The scalar fermion theory used as an illustration is introduced in Section 5 and the various
B-functions and anomalous dimensions listed. In particular three loop results for the Yukawa
B-functions and also the anomalous dimensions for this theory are obtained, primarily using
previous calculations and also the restriction to the supersymmetric case. In Section 6 we analyse
the RG equations for this theory. It is shown how they impose non-trivial consistency conditions
on the coefficients which are present in the general expansions for the 8-functions and associated
anomalous dimensions. In particular it is shown that at three loop order it is necessary to take
account of (1.7) for (1.1) to be valid. The result for v at this order is in agreement with the detailed
three loop calculations of Fortin et al. [15] for scalar fermion theories. In Section 7 we restrict
to supersymmetric theories and demonstrate the consistency of a hermitian metric. The results
are compared with expressions when a-maximisation is extended away from superconformal
fixed points by introducing Lagrange multipliers and also the possibility of a Kéhler form for
the metric is discussed. Sections 8 and 9 describe how the metric and related quantities can
be determined by flat space calculations using dimensional regularisation. Section 8 discusses
the general formalism for renormalisable theories with local couplings and sets up the required
RG equations. Section 9 applies these methods to the scalar/fermion theory and determines the
additional necessary field-independent counterterms to three loops. These determine the metric
and, specialised to the supersymmetric case, show that it is hermitian to this order.

There are four appendices containing further calculational details. Appendix A analyses how
particular contributions to the anomalous dimensions in supersymmetric theories which are pro-
portional to transcendental numbers can be extended to determine the related contributions to the
metric and also a. Appendix B contains further details on the derivation of local RG equations
in the context of dimensional regularisation. The RG equations are extended to allow for spe-
cial conformal transformations as well as the usual variations of scale. The methods used here
to obtain the three loop counterterms for Yukawa theories with dimensional regularisation are
described in Appendix C and are also extended to four loops for scalar theories in Appendix D.

2. Local RG equations and integrability conditions

As was demonstrated in [10], and more recently in [6], non-trivial constraints on the RG flow
in quantum field theories can be obtained by considering the response to infinitesimal local Weyl
rescalings of the metric of the form

86 Vv =20 Y0, 2.1

when the theory is extended to an arbitrary curved space background. Conformally invariant
theories are invariant under such rescalings up to local conformal anomalies induced by the
non-vanishing of the energy momentum tensor on curved space. Equations for the response to
such Weyl rescalings for quantum field theories not at conformal fixed points may be obtained
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if the couplings are extended to arbitrary local functions and at the same time as (2.1) there
is a flow in the space of local couplings. The resulting equations are then an extension of the
standard linear equations which determine the RG flow in terms of the usual S-functions and
are realised by restricting to constant o as well as constant couplings. Choosing couplings {g’},
which are coordinates for a manifold M, the local RG equations obtained in [10] by assuming
the quantum field theories are extended to arbitrary g’ (x) as well as Yuv(x) are then generated
in four dimensions by the functional differential operator

1) 1)

Ay = f d*xo <2y,w +p! —) (2.2)
5)/# g

where the B-functions, which are contravariant vectors on My, have in general a linear contri-

bution

B'(g) =—(d— Apg" +0(g?). (2.3)

In (2.3), in the present context, the spatial dimension d =4 and Aj is the scale dimension of the
operator Oy, which is dual to gI , at the critical point when all gJ — 0. Initially we restrict for
simplicity to just marginal operators with A; = 4, as for renormalisable theories when g’ = 0 is
the free theory.

Acting on the vacuum energy functional W[y, g'1, Ay gives zero up to a residual local
contribution, depending just on y,,,, g! and their derivatives at x, so that

1 1
Ag16n2W=—/d4x«/—a< CF+4AG+7ZBR2+E“”G113u818ugJ
1
+ ER(Elvzgl + Fryotg'a,87) - X)

1
—2/d4x«/—y8M0<E”“”W18vg1 + gRHlal‘g[ —i—Y”)

f d*x /=y Vo ( RD + Z) (2.4)
where the curvature terms, apart from the Ricci scalar R, are
F=CH°"Cpyop, G= %ewgpe“ﬁy‘sR”"aﬁR"pyg,
EM = RM — %y””R, 2.5)

so that G is the Euler density and E*" is the Einstein tensor. With the normalisations in (2.4)

1 /1
Ctree = E(gnS +nw +4nv),

1 11
Afree = ns + —nwy + 62n 2.6
free = 90 ( N ) w V) (2.6)
for ng real scalars, ny Weyl fermions and ny vectors. The remaining terms in (2.4), X, Y*, Z,
are independent of the curvature and involve just the local couplings g/ and their derivatives.
X, YH, Z therefore remain on restriction to flat space and can be decomposed in the form
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1 1

X(g) = EAIJVZgIVZgJ + Bk Viglarg’ 9,85 + ECIJKLa'ug[augjaugKang,

Y (g) =S50 ' Vg + Ty x0"g" 0" g7 8,8,

Z(g)=UV?¢! + vy 0tg"9,87. 2.7
Clearly, G[j, F]j, F[J, V]j are symmetric while B]j[( = B[(JK), T[JK = T[(JK) and C[JKL =
Cusnkry = Cryasy- The notation in (2.4) and (2.7) is an adaptation of that in [10], with
suitable modifications to ensure later simplifications. Gy, Ay, Sy; are covariant tensors under
a redefinition of the couplings g/ — h'(g) while E;, Wy, H;, U; are vectors. Since V2g! —

dyhIv2g’ +3;9xh! 8% g7 3,8%, the transformation of By, k, Crjk 1 under such a change in
the couplings contains additional inhomogeneous terms. If A is invertible X may be written as

1 14
X= EAunglngJ + ECIJKLaﬂglaugjaugKanga (2.8)

where D?g/ is defined by
L
D¢l =V  + B! jxd"¢79,8%, Bk =(A"Y" Bk, (2.9)

with B! ;¢ acting as a connection on M. In (2.8) CrsxL=CrsxL — BM By k1 which then
also transforms as a tensor under redefinitions of the couplings.
Defining the energy momentum tensor and local operators Oy by

1)
= —V =y ()(T (x)),

2———W —FW=—y- O , 2.10
Sy (x) Sgl(x) )/()C)( [(X)> ( )
the result (2.4) then encodes the standard form for the trace anomaly
1 1 1
2(. v _pl _ _ - _ 2_ - 2
167 (Y (Tyw) — B ((91))|3g:0 =CF 4AG 723R 6DV R. .11)

The crucial consistency conditions arise from the fact that the group of local Weyl transfor-
mations is abelian so that

[As, Ap]=0. (2.12)
Using, under Weyl rescalings of the metric as in (2.1),

8, F=—40F,  8,G=—40G +8E"'V,V,0,  §,R=—20R—6V%0,

8o EM = —do EMY —2(VIVY -y V)0, 8, V? = —20V?429,0V*, (2.13)
then the curvature-dependent terms arising from imposing (2.12) give the integrability condition

A=GriB — Lswy, (2.14)
and relations which determine the R-dependent terms

B=E|B" — LD, (2.15)
and

Er= —App’ —LpUy,

Fry= Gy — BgpsBX — Uk ;8,85 — LgViy,
Hi= SyB’ -0, U=Ur+a8’U;+ Vi B, (2.16)
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together with the condition
Er=E;+8;pE;+ F1 8’ =LpHy. (2.17)

Further relations which constrain W;, G, are

W =—Sun, (2.18)
defining

S10=S15+3,8%Sik + Tk BX. (2.19)
and

Grj—LpSiy=Ar;=A1+385Aks+ By BX, (2.20)
and also a consistency relation involving the derivative of G;; which can be simplified to

r'9 g —LyTijk =Bk = Bryk + 318 Bk + CrLix B*, (2.21)
for

©) 1
"k = 5(3JG1K +3kGry — 091G k), (2.22)

the Christoffel connection formed from G ;. From (2.19) and (2.20) we may obtain
r'QyBX+Gry+0,85Gix — LgS1y=A1 +9,85A1x + Bryx p¥. (2.23)
In the above relations Lg is the Lie derivative determined by B! so that
LeWr =9, Wi+ 88/ Wy, LgD=p"d;D, (2.24)
with obvious extensions for LgS; 7, Lg V], analogous to Lggyy in (1.4) and we also define
LTk =LpTrix + S11.dy dax BL. (2.25)

The constraint (2.17) follows by combining (2.16) with (2.20). The Lie derivative preserves ten-
sorial properties under redefinitions of the couplings g’ — nl (2). U I, E I, 51 T, A ;7 are also
tensors. The relation for F;; in (2.16) and also (2.21) are not manifestly invariant under such
redefinitions but covariance can be verified by combining different identities. The result for Fj;
is thus equivalent to

Gry=(F1;—0uEy) + (Bkis — F(A)KIJ),BK +Lg(Vig —0uUy — Ary), (2.26)

where the three terms each transform as a tensor. (2.20) determines G, which is later used as a
metric on M, in terms of flat space results. It may be recast as

1 1
Gry=Ar — EﬁKDKAIJ + Ly (S(”) + §A11>, (2.27)
where
DxApj=0kxAr; — Bjkr — Biky. (2.28)
The essential variation and RG equations (1.1) and (1.2) follow directly from (2.14) for

A=A+ WiB!,  Tiy=Gr +aW;—d;Wy. (2.29)
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The coefficients in (2.4) have an intrinsic arbitrariness induced by adding to W local terms of
the same form as in (2.4) for o a constant. This freedom gives an equivalence

Wy~ W —da+grp’,

Hy~Hj+e + 318 es+ frup’,

Sty ~ Sty +g1s—ary — 9 B%ask — bk BX,

Ty ~Trjk + F,(f)K —bryk — 1B bryk —crLsk B,

D~D—b+epl,

Ur~Us—er—apB’,

Vig~Vis+81s — frs — b B~,

Fry~Fry+Lgfrs+09;8%ex,

Brjk ~ Brsx + Lgbrsx + 3,0k prarr,

Crixr~Crikr +Lgeryxr + 313 8Mbyr + dxd.8Mbumi s, (2.30)

as well as

(A,B,C,E;,Gyj,A1))~(A,B,C,E,Gy, A1)+ Lg(a,b,c,eq,gry,a15).  (2.31)
With the definition (2.19) then from (2.30)

Siy~ 81—y (gJ]KﬂK) +g1+ %Eﬁglj
— (8 +31B%) (87 + 0,8 )akr — 2bank B — 200" bk BX. (2.32)
As a consequence of (2.30) we may set, if 8] + 8,8 is invertible,
Sun=Tyjk=D=U;=V;;=0. (2.33)

To describe the RG flow of four dimensional quantum field theories it is necessary to take into
account contributions to the basic equations corresponding to relevant operators, in addition to
just the marginal operators with couplings {g’}. These may induce modifications of the consis-
tency conditions obtained above for the RG flow. We first consider vector operators. A general
analysis may be obtained by extending the global symmetry group of the kinetic terms Gg to a
local symmetry by introducing background gauge fields a, (x) € g, the Lie algebra correspond-
ing to G, and extending all derivatives to covariant derivatives D, = 9, + a,,. The symmetry
extends to the full quantum field theory if, for any w € g, the couplings g/ and ay, transform as

8ug' (x) = —(wg)' (x) = —w} (x)g” (x),
80, (x) = Dyw(x) = 3,0 (x) + [a,(x), w(x)]. (2.34)

where w! ; belongs to the appropriate representation of gx acting on the couplings {g’}. Un-
der such variations 8,87 (g) = @’ ;8”7 (g). The corresponding covariant derivative acting on the
couplings is then

Dug' =0,¢" +(a,0). (aug) =aj g’ (2.35)
with the curvature as usual

Suv = 0pay — dvay +lay, ayl. (2.36)
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The generator of local Gk transformations as in (2.34) is then

5 8
Aw :/d4x <Duw~ v (a)g)la(?), [Aw, Aol = Ap.o]. (2.37)

The introduction of background gauge fields a,,, so that now we take W[y, gl ,ay], allows
(2.10) to be extended to define local vector currents by
)
day (x)

For this paper we assume manifest background gauge invariance so that

W=—/—y@H ), J"egk. (2.38)

AL,W =0, (2.39)

although in general there can be anomalies which involve e-tensor contributions. If present there
would be additional consistency conditions. If (2.39) holds then from the definition (2.38) the
current J# satisfies the conservation equation

w- Dy(J*) = —(0g) (O1), wegk. (2.40)

Under Weyl rescalings of the metric there are additional contributions to the functional differ-
ential operator in (2.2) involving a, given by

8
Ao.a :/d4x(0,01D#g1 — duov)- S 01(g),v(g) € gk, (2.41)
"

with - denoting an invariant scalar product on gg. Assuming (2.38) then (2.41) implies (1.5). We
assume that manifest covariance under Gk is maintained so that, for all w € gg,

[Aw, Acl =[Aw, Aa,a] =0, (2.42)
which implies
(@) 38" = (B!, (W) 301 +pjo’ 1 =10, p1], (0g)9;v=[w,v], (243)

In this case (2.41) can be equivalently expressed as

- ) -
Ao g = / d*x(0p1Dyg’ = Dyu(ov)) - S Pi=ert v, (2.44)
m

since, using (2.43),
Dyv =d,v+lay, vl=dvD,g’. (2.45)

For general quantum theories it is also necessary to consider the extra contributions arising
from operators {Oys} with canonical dimension two. The associated couplings {M} are mass
terms belonging to the dual space Vjs. The vacuum self energy now extends to a functional
Wlyuv, gl ,dy, M. The action of gauge transformations in (2.34) now extends also to 6, M (x) =
M(x)wpy (x) — oy (x)M(x) for wyr, wy belonging to appropriate representations of gx . There
is also a corresponding additional term in A, in (2.37) which requires that (2.40) is extended to

- Dy(J*) = () (O1) — (Mwy — duM) - (Oy). (2.46)

for ﬁW = —/=y(Opm) and - also denoting the natural scalar product on Vy; x V};.
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As for g’ local RG equations require extension to arbitrary M (x) € Vjy. In (2.4) describing
the response to Weyl rescalings of the metric, besides A, 4, it is necessary also to include the
additional term

4 1 2.1 w1 J
Aoy=— | d'x|o (2—J/M)M+€R7]+81D g +eyD"g'Dyg (2.47)

1)
20,00, D*g! + Vo1 ) —,
+ 20,001 D"g" + 01’) SM

where 1, 87,€7y =€51,01, 7 € Vyy and yar 0 Viy — V. (2.42) is extended to [A,,, Ag, ] =0.
The requirement that

[Ag +Ava+ Do m, A +Dgr g + Aot ] =0, (2.48)
imposes further consistency conditions which follow by using
(Ao +Do.0)Dyug’ = 3,0 B" +0Dyg’ (9B" +(519)") +o(wDug)',
(Ao 4+ Apa)D?g' =V20 B! +28,0D,8"' W, + oD g’ D,g® 2,k!
+o(-2D%" + D%’ (3;B" + (5,9)) + (vD%)"), (2.49)
with B! the modified B-function defined in (1.7), §; as in (2.44), and
vl =8, +9;B" + %(@g)’,

Q" =3,0k B+ 0upK)9) +2(6) k) (2.50)

The Lie derivative defined by (2.24) is also extended to ensure that it transforms covariantly
under G rotations so that LgW; — Lp ;W where

Ly sWi=LWi+(518) Wy (2.51)
With these results, and £,,;v = 0, the condition (2.48) requires
p1B =0, (2.52)
and
n=381B" —(Ly —ym). (2.53)

which determines 1, and

'8, +€yB = (EB,ﬁ —vm)Or. (2.54)

The property (2.52) ensures that the extended Lie derivative commutes with contraction with B!
so thatin (2.51) B L 5W; = L(B! W/). Furthermore, we then, with the definitions in (2.50),
obtain

[Lp;. 17 =21k’ BX. (2.55)

The functional differential operators in (2.41) and (2.47) are essentially arbitrary up to vari-
ations arising from purely local contributions which automatically maintain the consistency
conditions (2.52) and (2.53). Such variations can be generated by
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B(A(r + A(r,a + AO’,M) = [D, AU + Aa,a + A(I,M]a
5(AJ + Aa,a + AO’,M)W = D(Ao + Ao,a + AG,M)Ws (256)

for any local functional differential operator D. Choosing

1)
D= / dxrDug -2 ri(g) € ok, (2.57)
day,
gives

~ J ~ ~ J J _ 1
dpr=(r1g)" pj — (p1g)"ry+ @rry —05r)B”, Sv=r;B",
8B'=—B'(r;9)',  88,=(r19)'8s,  801=(r19)70y,
Sery=(r1g)%exs + (rye)Xerx + Burng)*sx +28xr()* 1) (2.58)

From this it follows that S(Z B,501) = (r1 2)’ L B,307. In a similar fashion we may obtain
Sn=(Ls—ymh, St=—h+d;B, 80;=w"d;+e;B’,
881 =(Lpp—ym)dr,  Sery=Lps—ymers +21,5dk, (2.59)

for h,dj, e;; € V. In consequence we may set 7 = 0.
The essential equation (2.4) is modified so that

(As + Aa,a + A(7,M)1677:2VV

1 1
= —fd“x«/—_ya(—CF +7AG+ 531%2 +E"™GryDug' Dyg’

1
+ ER(E,D2g[ + F1yD"*g'Dyg’ +1-M)— X>

1
— 2/ d*x/ =y o <E’“’W1Dvg1 + ERHID“gI + Y“), (2.60)

where for simplicity the part involving V2o is dropped since the relevant terms can be set to
zero by adding local contributions to W. In (2.60) I € V}; and X, Y now have additional terms
involving f and M,

1
X(g,a, M) = EA,JDZg’DZgJ + Bk D*¢' D¢’ D, g¥
1
+ ECIJKLDﬂgIDMgJDUgKDng

1 1
+Zflw'ﬁf‘fuv‘l’EM'ﬂM'M‘l‘fMU‘PIJDMngvgJ
+Jr-MD*¢! + K;;-MD*g'D,g”,
Y*(g,a,M)=S;;D"g"' D*¢’ + T1;x D"*¢' D'¢’ D, g
+f"™.Q;Dyg" +L;-MD"g", (2.61)

for Pry=—Py;, Qregk,J1,Kiy=Ky;, Ly € Vy;.

The presence of the additional terms in (2.61), together with the extension Ay, — Ay + Ay o+
Aq, m leads to modifications of the previous consistency conditions together with some further
necessary relations. In general 8/ — B!, assuming G -covariance as in (2.43) with additionally
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(@9)%0xG1) +GrjoX 1+ Gra®; =0, (2.62)

etc., but there are further required changes. To avoid too much complication we focus on the
results related to the variation of A. The basic equation (2.14) becomes

9A=GrB' —Lp;W;. (2.63)
Taking into account

Ao fuv =0 ([0, fun] + (Fuv®)' B + @16y — 3,61 Dug’ Dug”)

+ 8u6ﬁ1Dvgl - 31)0‘,5[Dug1, (2.64)
then instead of (2.18), with now S;; = ;X S;x + Ty, x BX,
- 1.
W =—=Sun+5hu-Qn+Lu-0n. (2.65)

There are also extra relations from terms involving f},, which give, for any o € gg,
(09)' W) =—w-Q/B’, (2.662)
~ . 1 _
(@) Gry==w-Lp;01 = (@) ps- Qi+ PryB = S0 Br-pr. (2.66b)

In (2.66b) the second term on the right hand side may be naturally absorbed in a extension of
Lp ; [22]. From (2.66a)

(p18)! Wy =—pr-QsB’, (2.67)
so that the essential result (2.63) can still be rewritten in the succinct form (1.1)
3;A=T;;B’, (2.68)
where A, Ty are now defined, using (2.52), by an extension of (2.29) to
A=A+ W;B!, Ty =Gy +200Wn+201- Qi) (2.69)
Furthermore, from (2.66b), in conjunction with (2.66a),
(@8)'GrjB’ =—w-B'91(QsB’) — (w) p1- 0B’
= (@) (B'9; Wi+ (p18)" Wy) + (wB")W;
= () Ly 5W1, (2.70)

which ensures that (2.63) implies (wg)!d;A = 0.
The consistency conditions also generate additional relations for the terms in (2.60), (2.61)
containing M which take the form.

I+J;Bl =0, (2.71)
and

Jr +ZB,;3LI +Lr-ym=06r-Bu, Ji=%'J;+Ki B’ . (2.72)
The relation (2.20), determining G, now becomes

Gry=Ar+ EB,ﬁSIJ —Jy-6r—L;-8;, Apg=¥%Ag;+BsxBX, (2.73)
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which gives rise to a modification of (2.27),
1,
Gryj=A1;— 5((,0(18)1(/\1)1( + BKDKAIJ)

~ 1
+£B,,5<S(IJ)+§AIJ>_J(I'QJ)_L(I'SJ), 2.74)
with the definition of Dg A unchanged from (2.28). Also (2.21) becomes

r'9x =w*Brx + Crosx BE + 255581 + ZB,ﬁTI]K
+@roy —0upr) - Ok)y — Py - Pxyr —Kyg 01 — Ly -€jk. (2.75)

The equivalence relations (2.30), (2.31) also extend to the more general case with additional
terms stemming from the presence of a,,, M. In particular the essential equation (2.68) is arbi-
trary up to the equivalence relations given by

A~A+g BB, Grg~Gyy +Z,B,ngJ =Gyy +ZB,5811,
Wi~Wi+guB'. w0 Qr~0-0/—gwg)’, wegk. (2.76)

There are also extra relations arising from local contributions to W involving f},, such as

Q1 ~ Q1+ priB’, w-Ply=w-Pj+ow- EB,;BPIJ + () bk - p1J,

Crrik ~Crrik +©@Lps —3upL) - prky+ 0105 — 3 p1) * PLK),

Tryk ~Trjk — Py - PIK)» prj=—piI € 9K. 2.77)
This gives in (2.69) Ty; ~ Try + 2/ - psix BX so that Ty ;B is invariant. From local terms
containing M

Jr~Jr +ZB,,5jl +jr-ym, Li~Li—¥"jy,

Er~Er+jr-n, Apg~Arpr—2jg-dn, Brjxk~Brjx — jr-€ik,

Sty ~S1y+jr-61, jreVy. (2.78)

For consistency with omitting V2o terms in (2.60) it is necessary to impose j; B! =0.
3. Integration of Weyl scaling

The consistency conditions obtained in the previous section are obtained as integrability con-
ditions for the response to local Weyl rescalings of the metric. Here we describe how results for
the vacuum energy functional W[y, g!1 for finite rescalings of the metric can be obtained.

For simplicity we focus initially on two dimensional quantum field theories. With the func-
tional differential operator A, given by the corresponding form to (2.2) in two dimensions the
basic equation (2.4) becomes

A2 W = /dzx«/—y(o(CR —Gydtgla,8”") — 20,0 W4 g"), (3.1)

for C(g), G1s(g), Wi(g) depending on the couplings g’. The consistency conditions flowing
from (2.12) are just [10]

C =GB’ — Lpwr, (3.2)

which is essentially identical to the four dimensional result given in (2.14).
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To integrate (3.1) we define gcl, by

d
ng, =Blg), gb=4g', (3.3)

where such running couplings depending on o (x) were discussed in [14]. With this definition
(3.1) directly implies, for arbitrary §o (x),

802 W[e* Yy, gL ]
- /dzx«/—y(SG(C(ga)(R —2V%0) = G1y(85)3" 8l dugl)
— 23,0 Wi(g5)d"gl), (3.4)

where on the right hand side the dependence on o is explicit. To integrate this we first define
C(o) by

d . .
35 € @) =C(80) C0)=0, (3.5
o

and then (3.4), using (3.2) with the condition G;; = Gy, gives
8 <2nW[e2"yw, g - / & x /=y (CO)R+ (Clgo) — Wz(ga)ﬂl(go))3“03u6)>

= —/dzx«/—VSGGu(ga)é“gééMgé

—2v/d2x«/_—y(8H80W1(gg)+303M0E5W1(gg))éug(1,, (3.6)
where we define
a I _ 1 1
08y = 0u8s — B (85)0u0. (3.7)
Noting that
800,85 = 80078 (85)0,85» (3.8)

does not involve 9,60 and defining G 17 (o) by the solution to the differential equation

d . . .
—G17(0)+ 018" (85)Gk () + 3185 (85)G 1k (0) = G1(80),

do

Gry(0)=0, (3.9
then we may finally obtain

20 (W[ Y. g0 ] = Wy 8']) = / dx/=yW, (3.10)
where

W=C()R+C(g,)0"00,0 — Grs(0)d"gld gl —2Wi(gs)0" gl 0,0, (3.11)

forC=C+W;p’.
The differential equations (3.5) and (3.9) may be formally solved as an expansion in o, noting
that f(g,) =exp(cLg) f(g), in the form
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C(o) = (exp(oLp) —1)L5'C(e),  Grs(0)=(exp0Lp) —1)L5'Grs(0),  (3.12)

which gives rise to results corresponding to those in [22]. The behaviour for large o is less
apparent in this expression.

The result (3.10) with (3.11) provides an interpolation of the anomalous contributions to the
self energy functional W between UV fixed points as ¢ — oo and IR fixed points as ¢ — —o0
assuming g/ is on a RG trajectory linking to fixed points satisfying 87 (g.) = 0. If this holds
then asymptotically C(o) ~ C(g)o and if the fixed point is a surface My, in the space of
couplings, corresponding to exactly marginal operators, then on M, 9;C(g+«) =0 since then
3187 (84) = 0.

It is also of interest to rewrite (3.10) to determine the response to just a Weyl rescaling of the
metric which can be achieved by letting y,, — e Yuv- Apart from anomalous terms arising
from W the Weyl rescaling is realised by introducing the running couplings g. since (3.10) and
(3.11) give

Zn(W[efzay,w, g =Wy, gl]) =/d2x«/—yW/, W =20"09,C —W. (3.13)

To complete this result it 1s necessary to determine 8 C.In general C(o), determmed by (3.5),
depends also the initial g’. It is convenient to let g/ — g!, C = C(0, g») and then dﬂ = 336 +

,3 (85)9;. Hence 9, C= agCauo + 81C8Mg0 =C(go)0yu0o + 81C3Mg0. From (3.5), (3.9) with
(3.2) we may obtain

d 2 . J
E(BIC(U) — G110 (85) + Wi(gs))

+ 0,85 (80)(0k C(0) — Gk (0)B” (85) + Wk (85)) =0. (3.14)
This has the solution, with the necessary boundary conditions at o =0,
01C(0) = G1s (@B (85) + Wi(g0) = Wi(0) (3.15)
so long as
d . . .
d—0W1(0)+31ﬂJ(ga)WJ(0)=0, Wi (0) = Wi (g). (3.16)

It is easy to check that W;(0)d, 8. = W;(8)d.8", Wi(0)B! (85) = Wi(g)B (g). With these
results (3.15) gives, since 3, = 9,0 & + 3,81 9;.

9, C(0) = C(85)0,0 — W1 (80)0u8h + G17(0)3u80 B + Wi(2)dug”. (3.17)
Subject to (3.17), (3.10) and (3.11) then entails in (3.13)

W =—C©)R+ C(g)d*0d, 0 +Gry(0)d*gld, el +2Wi(g)d"g'd,0, (3.18)
where the result has been simplified by using

o
C(8) —C() =G1,(0)B" (85)B” (80) = / dt Gry(g)B" (g)B’ (21). (3.19)
0

This follows from B79;C = G ;8’7 which may be integrated, with the definition (3.9), to give

(3.19). Assuming G, (g")B'(g")B7(¢") > 0 for all g'! € (g!, gl) then from (3.19) C(g,) <
C’(g) for o < 0.
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A similar analysis may be extended to four dimensions starting from (2.4). For simplicity
we impose D = Uy = Vy; =0, as in (2.33), although Sy, T7jx are not restricted initially. The
integrability conditions (2.15) and (2.16) then become

B=E;p, Ej=—-Ap B, F1y =Gy — Bk B¥, Hy=S187. (3.20)
(2.13) extends to finite Weyl rescalings of the metric to give in four dimensions

Fy=e%F,

Gy =¢Y(G+8E"'V,V,o

— 4V (3"0d,0) + 8V (3,0 V3a) + 8VH(8,00"0d,0)),

EM =740 (EMY —2(VIVY — y‘“’Vz)a +20403"0 +y"d 0 d0),

Ry =e¢ (R —6V%0 — 63"0d,0), V2Z=e (V2420 0d,). (3.21)
It is also important in this case to extend (3.7) defining

Agy =V2g, — B (85)V20 —20;B"(85)0" 850,0 + B’ (85)31 8" (85)9" 000, (3.22)
such that, analogous to (3.8),

3 AgU—SO'BJﬁ (gO')Ago' +508]8K,3 (go)aﬂgg ;,ng, (3.23)

and for g — n!, Agl — d;h! Ag! +d,0kn'9"gld,8K.
Using (2.4) it follows that the local anomalous response to Weyl rescaling can be written as

851612 W[e* yun, gl ] = f d*x /=y A, (3.24)

where A is determined by (2.4) in conjunction with (3.21). Even with (2.33) the general form is
lengthy. Only the final expression is of possible interest but we include below some intermediate
steps in case of any desire to verify the calculational details. For the curvature dependent terms,
using (2.14), (2.17) as well as B = E; B/,

Acurvature
=80 (C(g(,)F +A(g)G — iE,(g(r)ﬂ (85)R* — E“”Glj(g(,)éugééugi)
+ E"85 ((A(go) — Wi(go)B' (86))8,0 000 — 2W1 (850,84 000)
- éRag (Hi(80)(20" gl du0 + B (g5)3"09,0))
— R3O (E1(80) Mgl + Fiy (803" 84381 (3.25)
There are also contributions which remain on flat space and are independent of 3 g,
Ap =684 (A(gg) (Vzg + %SMOBMG)SVGBVG)
+ 8091 A(go) (VgL + 20" gL 8,0 (Vo +8Y00,0))
+ 800185 A(gs)0" gl 0, gl — SU[,ﬁA(gn)(Vza + %a”aauo)a”aavo

+28,809;A(g,)d" gl 8" d,0. (3.26)
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The remaining contributions in (3.24) are also curvature-independent but involve dg, in a
non-trivial fashion. From the R-dependent terms

1 o
Appy =80 (E, (gg)<Agé + E/3’(gf,)(v2a + 8"08M0)> + Fr7(g0)0"gl0,g)

+ LgH; (g(,)(2é“g£ .0 + ﬁl(gg)al‘oaua)> (Vza + 8”081,0)
+28,80 Hy (0) (3" gl + B (85)8"0 ) (VZ0 + 8" 0 d,0). (3.27)

For the terms involving Wy, including those arising from A using (2.14) in (3.26),

Aw = =84 (WI(gJ)(Agéa”oava + 25”“gé 00 (Vzo + 8”081,0))

3 3 3
+ 3y Wi(80)9" 850u85 9 08y + Wy (ga)ﬁ’(ga)<2vza + 58“0%0)8”031)6
+ 20 Wyi(80)3" gL B (858,08 0 dy0

+Lg W](gg)(25”g(l, + ﬂl(gg)a"a)aﬂaavaava>

_ _ _ 1-
— 4auaaa[le]<gg><a”géa“g,{ + B (35)0" 00" 8] + Ea“géﬂﬂga)a“a)avo.
(3.28)

In a similar fashion the corresponding contributions containing Gy, including contributions
from Fyy in (3.27) and from (3.26) with (2.14) may be written, noting that B(I,BKGJ)K +
TunkBX =35L4G1y, as

_ _ 1- _
A =—68, (G”(g,,)(a“géavggauaava — Eaﬂgéaugg3”08v0>

1
- ZGu(gaﬁ’(g(,)ﬁ’(ga)a“aaﬂoa“oava)

—80(G1s(g0) (A8 + B! (5) (V20 +8"03,0)) + Tk (80)0" 825,85
x (20"gld,0 + B (g5)3"0d,0)

1
- 50§(G11(ga) + 3,85 (80)G 1k (86) + TP 11k (8:)B” (85))

x (20" gl 3,0 + B (85)3"09,0) (20" g dvo + B! (85)3 0 d,0). (3.29)

For the corresponding result containing S;;, T7yx we include also the terms arising from Hj in
(3.27) and from d;; W, in (3.28). Using (2.18) we obtain, with Sy, given by (2.19),

As=—5, ((smgg)Agi +T1K(80)" 859,85 ) (20" 85000 + B! (85)8"09,0)

1- _ _
+ Esu(ga(za“géauo + B (85)08" 03,0)(20"g) dvo + ﬂ’(gaa"aava))

+380(LpS1s(85)(A8) + B (80)(VZ0 + 840 8,0)) + L T1rk (80)8" 8] 8,8X)
x (20" gl 3,0 + B (85)" 09 0)
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1 - _
+ 805/:,35”(570)(28“&[,3“0 + B (g5)3"58,0)
x (20"g7dv0 + B’ (86)3"0d,0). (3.30)

The expressions (3.29) and (3.30) combine so that we may use (2.20) and (2.21) and also (2.23)
so that the remaining terms, with the results in (3.27) applying (3.20), become

1 o
Aapc =0 (EAIAgo)Ag!, Ag) + Bryk (850" 2] 088 (3.31)
1 i
+ 5 C1K1(80)9" 850485 0" 85 D25 )
With these results it is then possible to extend (3.10) to four dimensions in the form
167%(W[e* Vv, gL] — W[yun. g']) =/d4x«/—yW, (3.32)

with W a local function expressible as sum of contributions Wp, Wh, W3. The curva-
ture-dependent terms are contained in

=C(0)F — %A(U)G

- 1
+ A(ga)<E’“’8Mc78Uo + VZGB”UGMG + 58“0%08”08”0)

9 1
—Gypy(o) (EW +V”v6R>auga 8 —2Wi(go) EM 9,8l 8y, (3.33)

where é(a), A(o) are defined analogously to (3.5) and élj(o) is again given by (3.9). (3.33)
is an evident extension of the two dimensional result in (3.11) with y#¥ — E*V_ The additional
terms involving G, W, after some simplification, are given by

1
W, = —ZGIJ(ga)(%Mg(’TaMa — ﬂl(gc)allo.aua)(zaug({ava . ,Bj(gg)a"aavg)
+ GIJ(ga)a’LgU p,gJBVJZ)Vo’

(W1<gg)v2 + W, (gs)0"gl0,870)0 0 dy0
—2W;(g0)d" gl 8,0 (Vo + 8 0d,0). (3.34)

The remaining contributions to ¥V imposing, by a choice of a;y in (2.32),

S (g) =0, (3.35)

then reduce to
1
W = —(S”(gg)(vzg({ + 20" gl 9,0 + <8R — V0 — 8“03M6>ﬂ1(g0))
+ Tryk(80)3" gl 0,85 ) (20"gldvo — B! (g5)3 08y )
1.
+ 2A1]<a)AggAga + Bk (0)Aglatgla gk

1. _
+ ZCIJKL(a)a“gU 9,870 gk, gL (3.36)
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In (3.36) R-dependent terms have been absorbed in a redefinition of Ag,,

N 1
Ago =gy + B (85) R, (3.37)
which satisfies the corresponding equation to (3.23).

In (3.36) A]](U) is defined similarly to é” (o) in (3.9) while é]]]( (o) is determined by

d . o .
EBIJK(G) +818%(80)BLyk (0) + 3785 (80) BrLk (0)
+ 0k B (85)B11L(0) + 0,0k B*(85)ArL(0) = B1ik (85). Bryx(0)=0,  (3.38)
with a corresponding equation for C 17k L(0). Just as in (3.12) there is a formal solution

Bk (o) = (exp(a Lg) — 1)551(3111((8) - 318KﬂL(g)£ElA1L(8))

+ (exp(oLp) — I)CEI(818K,8L(g))£/§1A1L(g). (3.39)
By obtaining analogous equations to (3.14) the relations (2.20) and (2.21) imply

G1y(0) = S17(80) + S1s(0) = V1% (85) Ak s (0) + By1k (0)BX (g0).

Fryk(0) = Tik(8o) + Trsk (0) =¥ (5)BLik (@) + CrLik (0)B" (80). (3.40)
with Sy, 77k defined similarly to W; in (3.16) and for ¥; 7 (¢) = 8] 4987 (g). I'1sk satisfies
(3.38) with Byjx — Ik, Bryxk — I'9;x and A — Gz and as a consequence

Ik = F(G)IJK, (3.41)

with F(é) defined in terms of é” asin (2.22). As a consequence of (3.35) we have from (3.40)

o 1 o o
Gry(0)+5LpGry(0) = U X (go)W  (80) Ak L (0)
+ ¥ (g0)BLik (0)BX (g0) + W1 (80) BLik (0)BX (g0)
+ Crrix (@)% (85)B% (80)- (3.42)
Applying (3.40) in (3.34) we may use
(SIJ(U)A&; + TIJK(O)éﬂgééugf)évg([; = (SIJ(g)vng + TIJK(g)aﬂgjaugK)avgl,
S17(0)dvgl B! (g0) = S1(2)3vg! B7 (9), (3.43)

and similarly for éugg — pl(gs). By applying % to (3.9) so that it becomes a homogeneous
equation, we may obtain

LsGri(0)d glduel =Gri(g0)d"glduel — Gri(9)d g 8,8”, (3.44)
and also, as in (3.19),
A(go) — A(g) = G 17 (0) B (85)B” (g0). (3.45)

Starting from (3.32), with (3.33), (3.34), (3.36), and letting y,, — e 2 Yuv then, similarly to
(3.13),

16712(W[e72‘7y,w, ' =Wy gl]) =/d4x«/—yW’, (3.46)
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For an IR fixed point so that gé — gi as 0 — —oo then, assuming W{y,,, gé] — Wiy, gi]
smoothly, YW’ determines the dependence on ¢ in the neighbourhood of the fixed point.

To determine W we use (3.21) for 0 — —o and the corresponding equation to (3.17) and
discard total derivatives as appropriate. Writing W' = W} + W, 4+ Wj the result, using (3.40),
(3.42), (3.43), (3.44), (3.45), is

o 1.
Wi=—C)F + 7 A0)G

. 1
+ A(g) (E’“’Buoavo — V208”08MU + 58”0%08”0&,0)

. 1
+Gry(0) (Ef” + y“”8R> 3u850v8) +2Wi(g)EM 0,8 90, (3.47)
and
1
W = —ZG”(g)(ZB"g]aﬂa + B (8)3"09,0)(20"g” dyo + B’ (8)8"5d,0)
1 w1 Jqv
+§G11(g)8 g 0,870 00,0
— (Wi V2! + W, (g)8"g" 3,87 )0 08,0
—2W;(9)d" g 8,0 (V2o — 8" 0dy0), (3.48)
and

1
W = (S”(g) <v2gf —20"g’ 9,0 + <6R +Vio — 8“oauo>ﬂ’(g)>

+ Tm(g)a“g’aug")(za”g’auo + ()3 0d,0)

1. 1 1
— —Au(a)(vzgé + gRﬂ’(ga)> <V2g§ + gRﬁ’<ga>)

N

o 1
— B”K(a><v2g§ + gRﬂ’(go))a“gi gk

1.
- EC”KL(o)aﬂgé%gja"gfavg{;. (3.49)

Wi, W3, Wj may also be obtained from Wi, W, Wj by letting g, — g and then 0 — —o. The
contributions involving G 17, as well as AI T, B 17K > C 17k L depend on the RG trajectory linking
g and g, for variations arising from (2.30), (2.31) the associated freedom becomes a difference
of contributions from the end points of the RG flow.

These expressions simplify if we assume that the x-dependence in g, arises only from o,
so that in solving (3.3) g/ is a constant. In this case we may take 3,g. = B’ (g5)d,0, Vgl +
LRB!(80) =B (o)t R+ Wy (85)B7 (85)8 08,0 for iR = LR+ V20 — 30 3,0 and then

o 1.
W' =—-C(o)F + ZA(U)G

. 1
+ A(g(,)<E’”8M08U0 — V26" d,0 + Eaﬂaaﬂaa”aaua>
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1 1 J " %
_ZGIJ(gG)ﬂ (85)B" (85)0 Uauaa 00,0

1.
+ < RS11(20)B" (80)B” (80)9" 000

2
- %(éR) 1108 (6)B (80). (3.50)
Of course at a fixed point with a vanishing beta function this coincides with the result used in [7]
for o0 — t and a similar expression was obtained in [22].

Although lengthy, and tedious to obtain, the extended result (3.46), with (3.47), (3.48), (3.49),
is still relatively simple and potentially allows for the analysis of dilaton couplings away from
conformal fixed points.' Setting the curvature terms to zero and o — 7 (3.47) becomes part of
the Lagrangian determining couplings of scalar fields O; to the dilaton 7 in the dilaton effective
action. The results used in [6] and [7] depend also on imposing additional boundary conditions
whose generalisation is less apparent.

4. Broken conformal symmetry

The results obtained in Section 2 depend on extending the quantum field theory to a curved
space background. In this section we show how a subset of the consistency relation equations
can be defined by restricting to flat space and considering broken conformal symmetry. These are

U If anl B terms are set to zero in (2.4) and the various conditions for integrability are implemented along with (2.33)
then (2.4) becomes

1 1 1
Ao l672W :/-d4xa/fya (CF - 7AG+ Gy <D2g1’D2gJ - 2<E/” + ERJ/“U)BMgIBVgJ)

1
2

—2/d4X«/—y8M0(E“VW18ng —B[IWJ]E)”gIVZg )

+ éIJKLauglaugjangang)

where ng’ is defined as in (2.9) with A;; — Gy, Bjjx — F(G)”K and we must also impose d; A = 0. This may
be integrated straightforwardly to give 16712(W[62” Vvl — Wiyw] = f d4x«/—yW1:p where

1 1 1
Wep = a(CF - 7AG+5Guy (nglngj - 2<E’” + gRy‘w>3Mg13,,g])
1A
+ ECIJKLBMglaugjang 3ng>
1
+ A<E’“’8M08UJ +V2eohod,o + 58”08M08U08v6>
1
—Gyy (8“g18vgji)uaava - Ea“g’augfa”aava>
LV ¢ 1 nw g2, J

—2W E" 8,8 dyo + 201 W97 g Vg o

—2Wyatg! 3,0 (V20 +8V0dva) — (Wi V2! +a; W0t e 9,87 )8 000
This result is relevant at a fixed point when { ¢!} are the couplings for exactly marginal operators and so parameterise the
moduli space. The terms proportional to G can be expressed in terms of the Riegert operator, a conformally covariant
4th order differential operator acting on dimensionless scalars. On the moduli space A is constant, whereas C may vary,

and we expect, since (a)g)l W; =0, Wy =9y f for some scalar f, and so by virtue of the freedom in (2.30) we may then
set Wy =0.
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derived by considering diffeomorphisms, as well as Weyl rescalings. Their intersection defines
the conformal group.

In general quantum field theories on curved space, within appropriate regularisation schemes,
are invariant under diffeomorphisms. This may be expressed, for arbitrary smooth v#(x), as

8 8
4 1 _
/d x(ﬁvy,u,m—i-v”aug @)W—O, (41)
where
LyVuw = Vv, + Vyuy,. 4.2)
Conformal Killing vectors satisfy
Vv + Vyu, =20, v, 4.3)

and for any such conformal Killing vector acting on W we may take from (4.1) and (2.2)
8
Ag, = A, :/d4x(—v“8Mgl +ovﬁ’)8—,. 4.4)
8
Defining the commutator of two diffeomorphisms by
[v, V] = v 90" " — v d,v", 4.5)
(4.3) implies
V49,0 — V' H3,0, = opy.y)- (4.6)
It is then easy to verify that, from the definition (4.4),
[Ay, Ayl = A[v,v/]- 4.7

On flat space the solutions of (4.3), for V,, — 9, yuv —> 0y, are of course the usual confor-
mal Killing vectors

VM (x) = a* + ot yx” 4+ AxP + bPx? — 2x by xt, oy (x) = A — 2x"by, 4.8)

for wyy = —wy,. Combining (4.1) with (2.4) gives a condition on the flat space vacuum energy
functional W[g’ 1 which reduces, since 820, = 0, to

Ay 1672W = / d*x(0u X — 20,0,YH), (4.9)

for X(g),Y*(g) given by (2.7), albeit V> — 92, In YH, since S, dtgld’g’ =
San(@(@*g'a,g7) — %aﬂ(a“g’augl)) and 8,0,0, = 0, the symmetric part of S;; may be
dropped. (4.9) expresses broken conformal symmetry,” valid so long as the couplings are local
functions of x.

Linear conditions on correlation functions for the operators Oy, which reduce to standard RG
equations for v*(x) = Ax* and g/ constant, can be obtained from

1) 1)
|:Av, W} = —v“(x)aﬂgg— — crv(x)(délj + 81/3](g(x))) (4.10)

1) 8g7 (x)’

2 Broken conformal Ward identities were first discussed at the same time as the usual RG equations [23] but in [24]
‘appear to be useless’. For other approaches see [25].
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with d = 4 here again. With the definition (2.10) then

1672 (Ay(Or) + 40, (Of) + 031 B7(O) + v#8,(0))) = Ay, @.11)
for
Ay = _55_, d*x(0p X — 20,0, YH). (4.12)
g

To impose (4.7) making use of (4.6) we note that
Ay / d*x (o X — 20,0, Y") — Ay / d*x(0u X — 28,0, YH)

:/d“x(a[v,,,/]x—23Ma[v,vqY“)+/d4x(2k,LK“ + 40,0, L"),
K = 000,00 — 000y, Ly = 8,0y 8y0y — 8,0,,0y =8B by, (4.13)
for
K" = (A +3BXAsk + By BX + LpS15)0" g 8%’
+ (Bryk + 3B Bryk + Crook BY + S109,9k B= + LaTryk )" g 8V g” 8,8"
L* = —(Spgy — du B Snk + Tunx BX)a"g" 8" g”. 4.14)

Hence (4.7) is satisfied, assuming (4.9), if the terms involving K#* and L*V in (4.13) vanish. As
oy is just linear in x the conditions in this case do not require either K* or L*" to be zero. For
the term involving [,,,, since this is a constant, it is necessary and sufficient only that L*” is a
total derivative so that we require

L™ =3 (wag"), (4.15)

for some W;, which is then equivalent to the result (2.18) for o;; W) and hence W/ is determined
in terms of Sy, Ty sk up to the freedom W; ~ Wy — 9;a. For the term containing &, in (4.13)
then since

dwkyy =0, (4.16)

it is sufficient to require
1
K" =0,(G10"g'9"¢") = 50"(G1s9"g"0ug”),  Gry =G, (4.17)

choosing the relative coefficients to match the form of K# in (4.14). Combining (4.14) and (4.17)
is equivalent to (2.20) and (2.21) with the definition (2.22).

Although restricting to broken conformal symmetry on flat space does not directly deter-
mine A, which plays the role of a c-function, the relations defining W; and G/ are sufficient to
reconstruct the critical result (2.14). Using (2.20) and (2.21)

a1 (G BY)
G
=0uB" Gk — Ik B*
= 3[1,3KAJ]K — B[IJ]K,BK + 8[1,3](5/351]1( - S[1L31]3K,3L,3K - CﬂT[IJ]KﬂK
=G — Ay — La(Sua + Tk B5) + 0y BX LaSnk — Surdnox BL B
=Lg@uWyp=0uLgWy, (4.18)
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using (2.18) and G;51 = Ary; = 0. (4.18) is the necessary condition for the integrability of
(2.14) so that A may be calculated in terms of the flat space quantities Ay, Brjk, Sy, Tr7x up
to a g-independent constant.

Ifin (4.14)

ASry =817, ATpjx = F,(,)K, 4.19)
then
1
AKM =Lpgr 9" g 8%g’ + (31(5/3811 - 5315;381K>3“813"813ugK
AL™ =y (gnxBX)0"g"0"g”, (4.20)
and it is easy to see that this implies

AGry=Lggr;, AWr=grB’, (4.21)

in accord with (2.30) and (2.31).
At a fixed point, assuming

a,ﬁf| - =—(4—A,)5,’, (4.22)

then with (2.10) the identity (4.9) requires, by considering and then restricting to

sg! (X) Sg’ )
constant couplings,

(V" ) pux + A0y (X) + 1" () 3y + Aoy (M) O1() O ()

1 4
= TA[]B (O’U(X)8 (x— y)) (4.23)
There is a potential term involving S;; but this cancels for S;; = —S§;;. The conformal identity
(4.23) has a solution only for A; = Ay = A when
Cry 1 Ay 2
@ @ = 329284 (x —
(0100 (») G DE ety ey
1 C 1
=— () 17 (4.24)
A—4 64(A —3)2(A —2)2(A = 1) ((x — y)?)A-3
Aryg 1
28722 (x —y)? )’
For this to be well defined for x &~ y we must have (272)2C;; =24A;1; + O(A —4).

With the definition (2.11) and restricting to flat space then (T#") satisfies
au(T™)+3"g'(Or) =0, (4.25a)
1672 (0, (TH) — B1(O1)) = X 4208, YH, (4.25b)

and also, with A, as in (4.4), a corresponding broken conformal identity
1672 (A(TH") + 60, (TH) + L,(TH)) = A*,
Lo[TH) = 0P 3, (THY) — 3, 0" (TP") — 30" (), (4.26)

where
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A =2

/d4xa/—y(0X — 280,0Y°‘)

Vv
+ %(n’”a2 —3"9") (0 (Erd’g" + Fr,0¢" dug”) + 20400 Hi9%g")

Y —=>Npv,0—>0y

+D"P(0,G11058" 8p87 + 2050, W1dpg'), (4.27)
with DH*V°P defined so that
DIP fop =02 1 4+ 007 0P fop — 20005 fV7 + (340" — "V 0*)0P fop,  (4.28)

for any fo, = foo-
The form for A*Y in (4.26) is constrained by (4.25a), (4.25b) in conjunction with (4.11).

Using 0, (Ly + 60,)TH = (Ly + 60,)0, TH*" + 3" 0y05,T°° we may obtain from (4.25a)
A" +9"¢! Ap = 9V0, (X +28,YH), (4.29)
and from 7, (Ly + 60,)TH” = (v°9, + 40y) 0,y THY from (4.25b)

M A — BT Ap = (Ay + 4oy + 079, ) (X +28,Y"). (4.30)
(4.30) constrains the additional derivative terms in (4.27) as it reduces to
3 (ou(Er8%g" + Fry9"g"d,8”) +28,00H 9" g")
—2(n"v 9% — 89" (00 G198  dvg” +20,0,W;dug")
=—0%(0y(Ars0%g" B’ + Bk170"g" 0,87 BX) — 20,00 81,0" ¢ B7)
+ 83, (3you 1110 g" 8V g7
+2(3u00 + (3,00)) ((Ars + LpS1)0" g" g’
+ (Bryk + LpTrsk + 9,0k B S11)0" "9 g 9,8%). (4.31)
for S;;, A7y, Bryk asin (2.19), (2.20), (2.21). Since
(n""8% = 9"8") (0uG 10,8 008" +20,00Wrdng)

1
= EBZ(GUGIJangIﬁMgJ) +43M(8VUU3[1W1]3Mg13VgJ)

— (003 +2(3,00)) (G s g 3%g” + I\ T) " g8V g’ 9,8%), (4.32)

(4.31) reduces to the consistency relations (2.16), (2.18), (2.20) and (2.21). Hence the broken
conformal identity (4.26), with (4.27) may be used to define G;;, W; and also E;, Fr;, Hj just
in terms of correlation functions involving the energy momentum tensor on flat space.

The relations (4.25a), (4.25b) and (4.26) which are expressed in terms of local couplings can
be translated into equivalent constraints on various correlation functions involving the energy
momentum tensor and with g/ constant. We describe here the simplest results for the three point
function (T""(x)O;(y)Ok (2)) in the conformal limit assuming (4.22) with Ay = Ag = A.In
this case we can drop contributions arising from Hy, S;y, W;. Suppressing the argument x the
conformal Ward identity becomes

1672(Ly + 605 + V" (1) 3y + Aoy (y) + v (2)uz + Aoy ()T O () Ok (2))
=ATL (. 2), (4.33)
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with
Al (. 2)
= Ak (2048,3" (0,0%8.) + 20 (0,978,) 3”8
—*(9°8,8, (048%8;) + 87 (04978,) 3,8, + 0,828,075;))
1
+ g(nl“a2 —0"9") 0y (4 — M)Ak (8%8,8; + 8,0%5;) +2G 1k 978,3,5;) )
+2G 1k D*P (046 8y p)82), (4.34)

for §, = 84(x —-y),6, = 64(x — z) and where we have let £; — —A”,BJ, Fr; — Gyy. Corre-
sponding to (4.25a), (4.25b) we have

u(TH 01 (1) Ok (2)) = 8"8,{0; (N Ok (2)) = 3"6.{O () Ok (2)) =0,
1672 (0T O () Ok (2))
+ (A = 98,{0;(NOk @) + (A = D5:(0;()Ok (1)) = Ay 978,075 (4.35)

It is again somewhat non-trivial to check consistency of (4.33) and (4.35), the necessary condition
reduces to

Gjxk =(A—=3)Ak, (4.36)

which is equivalent to (2.20) in the conformal limit.
5. Beta functions for scalar fermion theory

We consider as an example for the application of the general consistency relations a general
scalar fermion field theory involving ny, n, two component chiral spinor fermion fields v, x, of

opposite chirality, and ny complex scalars ¢;, i =1, ..., ny, with a Lagrangian of the form
L=—0¢"-0¢i —Yio -0y — xid - 0x — xm($)y —ym(@)x — V(. ¢), (5.1)
where ¢-a5-a = —a?1, tr, (0-a&-b) = —2a-b with - in this context denoting contraction of

Lorentz indices. In (5.1) we assume
m@) =y'¢i+u,  m@ =6+,
7 _l kI Tig 27 72
Vg, )= 4?»11 @' ¢’ dxdr +O(p° ., pd°). (5.2)

The Yukawa coupling y' is a n, x ny matrix and y; = (y')'. Also (x;;*)* = A/ Forn, =ny,
(5.1) can be re-expressed in terms of four component Dirac fermions. The Lagrangian (5.1) has
aU(1) x U(1) symmetry for the dimension four interactions under

v — ey, x— ey, i — T, (5.3)

This is sufficient to significantly reduce the number of Feynman diagrams at each loop order.
The B-functions associated with the couplings y, A in £ can be expressed as

By =B+ vy + Y v+ v
Bv =By + V' di + &' vpi’ V., (5.4)

for
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vi=—v, Vi=—V. (5.5)

In addition

i\
pri=(5))" 66
In giving results for B and related functions it is convenient to rescale
A — 1672, y = 4wy, yi —> 4wy, 5.7
thereby removing factors of 1/16772 which arise at each loop order. The anomalous dimension
matrices at one and two loops are given by

1 b1 1
O=2v5 v =gm =), (5.8)

16% )

and

1 .. .. 3 TR
v =gy Iy 5 = (e 5y,

8
) | 3 S
vy = —g Iy Iy = (i)
Vo it = ik " = 2 ((5"50y") + (5" 3;5")). (5.9)

The B-functions are then given by (5.4) with [26]
BV = 0, B =2y 5y 5" = 20y iy,
B = —V” V'S — 2tr(mmmm),

1

-3 Vet V0, VI =20 (5iy?) (VIR VR + ViAW)

+2tr(y iy i) Vig + 2t (Gemym) vV

2
,3()

+2(tr(y* Jemmmin) + tr(x y* mmimm) + 2 te(y* mmymm)), (5.10)
where arb’ =a b + a; bt and Vs, Vst are defined by obvious extensions of (5.5). In conse-
quence 5 Ly vrs = =V Vi +V/V‘

Two spec1al cases are of particular interest. Assuming n, =r,ny =rn,ng =n we require
. - — I — - 1 —. 2
m@W=yp¥',  Im@)=5vid,  V$.¢)=rd%)", (5.11)

and there is then a manifest U (n) symmetry (for the scalar couplings the symmetry extends to
0 (2n)), with yx, x singlets, and the couplings reduce to just A, y, y. In the above formulae

Mt a(oF8h +818%),  ViE oIl Sy = vl (5.12)
The anomalous dimensions are no longer matrices and from the above we get

1 1
1 = = Zny D5
yl[/()_iyy’ Vx(l)_znyy’ 7/¢() Ty,
1 1
2 5 =——(6r+ y
yw( )= (6r +n)(Fy), Yx @ = 8(6" Dn(3y)?,

=(n+ 1)( A2 — —r(yy) ) (5.13)
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with r arising from the trace due to additional fermion degrees of freedom. Furthermore, from
(5.10)

BV =0, AP =2(Gy?— n+ Diyh)y,
BV =200+ 4% — 4r(5y)?,

B2 — _4(5n +11)2% — 4(n + HA25y + 8rA(y)? + 4(n + 3)r(5y)*, (5.14)
where now
By =By + vy + vy +v8)y,  Br=Pr+4dypr. (5.15)

Combining (5.14) and (5.13) for n = 2 reproduces standard model results in [17].3
The other special case corresponds to A” = 1 supersymmetry. This is achieved by letting
ny =ng = nc and imposing

iov=yTCc, x-oy=-C'97, (5.16)

with T =:C_ ,'Cé C'=—67, and then rescaling v, 1/_f to achieve a canonical kinetic term.
¢i, Wi and @', ' form n¢ chiral supermultiplets and a general renormalisable N/ = 1 supersym-
metric Lagrangian is achieved by letting

V(. ¢)=u' (@it (§),

mY (@) =uI(¢) =m!' (),  mij($) =it j(§) =mi (),

Yk = ik = y @k Yijkzﬁi,jkzy(ijk)’ )\ijkIZYiijmkl. (5.17)
(5.16) is compatible with (5.3) if t = —6 so that U(1) x U(1) — U(1)r corresponding to

the usual R-symmetry. Standard supersymmetry results based on superspace ensure that the
B-functions are determined in terms of the anomalous dimension

ﬁ;jk: YRyt 4 yitky 4 yiilyk Byijk = v Vijk + v Vi + v Yiji. (5.18)
Hence with the definitions (5.4)
Br=0,  Bv(¢.d)=2u' @)y iij($) (5.19)

The results for anomalous dimensions and beta functions for (5.1) with (5.17) reduce to the
supersymmetric form so long as the coefficient of all traces, which each correspond to a fermion
loop, have an additional coefficient % This reflects the restriction (5.16). Then we have

ol =yel =il yii=7 (5.20)

With the modification of the trace coefficients the results (5.8) and (5.9) are compatible with
(5.20) for

, 1 - ] ] 1- _ ,
vVl =2l @ =Ky (5.21)

3 Assuming (5.12) the detailed relation with the results of [17] at each loop order £ is given by ﬁil)l,,:z =

(4 (4 (4 (4
4pl O ama =288

©) — 0 ® ) — ., ©
A |A—>%)\,g5:0’ By k—)%k,gS:O’ Yy ln=2 = "2.L |)»—>%)L,gS:O’ Yy =2 = Y2,R ‘A—)%L,gx:O

{4 -
and ydﬁ )In:2 :ny(l)l)\a%)h 25=0 where y =y =y, and r =dR.
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The results in (5.13) and (5.14) also correspond to a single field supersymmetric theory forn =1,
r=%ifA=1yy.

At three-loop order the general expressions for the anomalous dimensions are restricted to
correspond to one particle irreducible graphs and have the form for the fermions

v =ay 3y ey i + by 5y 5eyd vi + ey 550 iy
+dy 5 jhim ™+ ey iy Fini M
+ £ (v 5k 5) + e (v 56y 5:)) ' 5
+ gt (v 5)y Ty 5y + he(y 5:)y* 55 5
+itr(y! ) e (Y4 5:) '3,
vy = agiy 3y 5y’ + b3y 5y 5yt + vy iy 5k
+dy ;v him ha™ + ey 5y aiM
+ £ (e (3 5 5) + e (5 5o 51)) 5y
+ g tr(y 3) 35 5y + (37 5:) ey 5 v
+itr(y/3e) (¥ 5) ;5" (5.22)
and for the scalar field
YD 1 = 0 (™ APy 40 P
+ 5 (k™ Ao+ 22 " ™) e (3 51
+ (e (555 5™ ) e A+ A e (5 y Sy )
+d (e (35 5y 51y") + (e y* 51y 5;57))
+ & (e (55 51y 5 y') + (v 3y 5;5))
+ (' ny') + ¢ u(Gey' 3y 57)
+ 1 (tr(3, 5 51y7) + e (3iy*5;57)) e (v ). (5.23)

The individual contributions in (5.22) and (5.23) are all hermitian except for those involving the

coefficient ¢ where the two terms are hermitian conjugates. Furthermore, the expressions are

constrained by y, <> yy and y¢(3)ji — y¢(3),~j for y! < i, )»Ukl — A everywhere.

Restricting to the U (n) case given by (5.12)

yf) =n(a+nb+c+rn+1)f+r(g+h) +r2i)(§Y)3
+ o+ 1)(2d2%5y + er(5y)?).
Vf) = (n*a+nb+c+rn+ ) f +rn(g+h) +r%)GFy)’}
+(n+ 1)(2d2 %5y + er(3y)?),
v, =20+ 1)(20 + a3 + 36325y + re'u(Gy)?)
+r((n* + 1)d' +2n€' +nf + ' +r(n+ DE)(57)’. (524)
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Comparing with [17] for n =2 we may obtain

5 7 3
=2, 2bte=—42¢03),
a 3 +c 8-|—2{()
i=-2 =f=1 th=2 =2 (5.25)
“Tx 5T 87T Ty ‘

and

1 5 5
'= T bl: ) /__7
T 16 “Ta

25

W=2,  5d'44¢ +2f g =~ +300). (5.26)

The graphs associated with a’, b, ¢’ were calculated in [14], the numerical values given are
consistent with (5.26) if an additional factor of 2 for fermion loops is supplied due to the absence
of a symmetry factor here.

In the supersymmetric case given by (5.17) there are four independent terms [18] so that

YO =Y (AT (Y V)" 4+ CY"™ (YY), ¥ gy ) Y™
+ Y (BYY) (YY), + DYFPS YT Y 0 V) Y™ (5.27)
From (5.22) and (5.23)

1 1 1
A=a+-i=d +d, B=-g=-('+f),
a+4z a + 28 2( + ')
1 1 1
C:b+d+f+§h:b/+e/+§h/, D:c+e:2a/+c/+ig/. (5.28)
According to [18]
A= ! B= ! c=1 D—3 3) (5.29)
4 8 - =3t '
This resolves the freedom present in (5.25) by requiring in addition
b—l = l—i-3 3) _ ! h—9 (5.30)
e T e=mp T 16 ‘

with two additional linear constraints on the coefficients also satisfied. If the results for
a',b',c’,h in (5.26) are used in (5.28) with (5.29) then
3 , 5 , 1
6 ‘T T
With these values 5d’ + 4¢’ + 2 f’ + g’ is compatible with (5.26) providing a further check.
In a similar fashion we may write

d =

g'=-2+3¢03). (5.31)

B = ayd 5y 21" ™ + BY Y (Mg o A K™ 2™
+y (e (v 3m)y" 51" + e (3 5m) 3 ™) A+ S (Fy™) v Iy A"
+ eV Ty 5"+ V5" I AT+ ("5 Y Iy A+ Y Ty 55" Ak
+ 0 Sy Fuy haa™
+ L(yjflyifkyl + ylikylizyj) tr(yk)_’j) + K(yjikyl + ylikyj) tr()_’jyk)_’lyi)
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+ (T 5y sy + Yy ey 55"

+ V(ykﬁzyji;’yiﬁkyl + ykilyii;'yjikyl)

+ 075y 5 I+ Iy 5y ey’ (5.32)
This reduces to

By = (n+ D) (2a + (n +3)B)A*Fyy + (n + D2y + 8ra(Gy)’y
+ (n+ D((n+ De+2n+¢)rGy)?y
+ 20+ 1+ De)rGy)Py + (n+ D +v +0)(5y)°y. (5.33)
Comparing with [17]

15
200+ 58 =8, 2y +6 =5, 36~|—2n+§=7,
2+ 3k = -2, u+v—+6=-—6. (5.34)

In the supersymmetric case then By 3 =0 requires

1 1 1 1 1
=85 +2v=0, = = =0, -+ -k+6=0. 5.35
a—i—z +2v 2y+e+21+u ,B—i-n—i-zg“—i-zk—i- (5.35)

Each term in (5.32) corresponds to a particular Feynman graph. By calculating the relevant inte-
grals corresponding to individual graphs we found

1
= -, = :1’ 8:3, = -, = :2, 536
a=3 B=y €=3 n=¢ (5.36)

which are consistent with the first three relations in (5.34). In [14] those graphs corresponding
to a, B, v, 8, €, n were also calculated, the numbers quoted for each graph appear to be in accord
with the coefficients in (5.36) up to factors of 2 which are a consequence of the different symme-
try factors for the theory considered here. By using (5.34) and also (5.35) with (5.36) it is easy
to obtain

1 3
:—1’ :0, = -, - -, 6:—4, 537
L K Jz 5 v 3 (5.37)
so that the three-loop Yukawa beta function for the theory described the Lagrangian (5.1) is fully
determined.

6. Gradient flow properties

Based on the results for the scalar fermion S-functions we explore at low loop order the con-
straints arising from the flow equation (1.1). Here we initially neglect the distinction between
the standard perturbative B-function and the modified B-function given by (1.7). If Tj; = Gy
is symmetric and Gy is positive definite then (1.1) defines a gradient flow. For purely scalar
theories a gradient flow was postulated and investigated by Wallace and Zia [27], who showed
how G; may be found by diagrammatic arguments to quite high loop order. In general an anti-
symmetric part in 77y is necessary to ensure (1.1) remains valid under the equivalence relations
(2.76) which correspond to the freedom in (1.3) and (1.4).

We assume here the lowest order results found in [9] determining G ;. Applied to the theory
defined by (5.1), so that g/ = {y, 3;, 1;;*'}, then at two-loop order
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79dg'd'g! = GVdg!d'g! = %(tr(dyid/y,-) +tr(dgid'y')), 6.1)

fordg! = {dy’, dy;, dr;;*}, d'g! = {d'y, d'y;, d'A;;*!}. With the one-loop result for B;, given by
(5.4) and (5.8)

- 1 o N | I
A = = (w5 5iy7) + (57 5))) + ¢ Gy w(555)- 6.2
At the next order the three-loop contribution to 77; must be of the general form
Tl(i)dgld/gj _ Z_deijkld/kklij
+ (@ (r(dyid'y' 5, y7) + tr(dFiy’ 3,d'y"))
+ B(tr(dyid 'y 5;") + tr(dy;y'y;d'y7))
+ 7 (tr(d5iy d'5;y7) + ur(d5iy ' 5;57))
+ 8 tr(dy;d'y’) r(;y") + Ate(dy;y!) w(3;dy")
+ e tr(dy;y’ ) tr(d'y;y') + conjugate), (6.3)
where the first term was calculated in [9]. The remaining terms correspond to three-loop vacuum

diagrams, with one and two fermion loops, with two vertices selected. The result is also required

to be invariant under conjugation when y <> y. Although this is not imposed the expression (6.3)
is symmetric under dg’ <> d’g’ so that at this order T1(3) = Gﬁ.

The real coefficients «, 8, y, 8, 17, € in (6.3) have not been determined hitherto. Without ex-
plicit determination the integrability conditions necessary for (1.1) provide constraints on these

coefficients and also on the B-functions themselves, as was also demonstrated to two-loop or-
der in [9]. The dependence of A® on A is determined in terms of ,Bil) and then this fixes the
A-dependent terms in ﬂﬁz). Using the results for ﬁil)

)(Ll)ijkl — )\ijmn)\mnkl + 4)\m(in(k)¥j)nl)m + 2tr(y(iym))\'j)mkl + 2)¥ijm(k tr(&myl))
—8u(5iy“y))"), (6.4)
and ,8;2) from (5.9) and (5.10) in (1.1), with (6.1) and (6.3), requires the three integrability con-

ditionson &, B, 7,6,1, €

1
L 6.5
6 =TT (6.5)

Subject to these conditions

_ _ _ 1 _ _
2B+7)=4a+-=2a+8+

. 1 . iny
A(4) = 7—2()Ll'jkl)uklmnkmn” + 4)\ijkl)hkmm)\lnjm)

1 o o
+ E)\ijkl (3" ) hem — g)tijkl tw(3y' y1y7)

2 L 1 L . L _
+ §tr(yiy’yky’yjy") t o (55,57 5yt + te(y' 537555 50))

1 . _ . _ . 1 . B .
- g(tr(y’yiykyj) +te(5iy 550)) Ty’ ) — I tr(5iy) (3 y°) tr(Fey’)

+2atr(p ;). (6.6)
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Precise results for G?} can be obtained in terms of flat space calculations by applying (2.74),
noting that Dk A is zero at three loops. This gives, with the aid of results from Section 9,

13 5

_:——, _:——, _:O,

=3 P 7

N o 67
T3 "TTw TTE ‘

These of course satisfy (6.5). The freedom associated with (2.76) corresponding to letting A—
A+z tr(ﬁ’y Byi) is realised at this order by

1 o o .
(x~ot+§Z, B~B+z, 8~d6+z, n~n+2z (6.8)

under which (6.5) is invariant. In this case we have correspondingly

1 , . . . . .
Wildg! ~ Wildg! +d2z(w(5iyI 5y + u (' 5y 5) + 20 (i) w(5). 69)

Higher order results become more involved. At the next order the metric for the purely scalar
couplings has the general form
4
G\)dg!dg

I, = G (i ™ A ™ dhig ™ + 4™ A0 dA V), (6.10)

where G is essentially arbitrary due to the freedom in (1.4) but has been calculated in a minimal
subtraction scheme below. The A-terms do not generate any consistency conditions, in accord
with [27], giving

- 1 .. 1 . . , )
A(S) |)\ — %)&ijkl)hklmn)"mnpq)"pql] _ E)“ijkl ()hklmn)"mplq)”nq]p + }"kmjn)\nplq)\lqmp)

1 - 1 ..
+1Gﬁ§ VKBV (6.11)

With the results for S-functions in the previous section we may extend these results to include
mixed scalar Yukawa contributions for the theory defined by (5.1). There is then an additional
four loop contribution so that instead of (6.10)

4)

GWdgdg” |, = G (hij™ dhmn ddgg + 40 " d2j ™ drg ™)

+ Hdr M (5™ ) dhm' (6.12)

s

In addition we assume
4 _ ) _ ) _ _ .
T;J)dgld/g] ixy = Ad)»,'jkl)»kllm tr(ymd'y’) + Bdkijkl tr(yd'y™ ) Am"
+ Cdai M tr(vey' 5id'y7), (6.13)

with a corresponding result for Tl(i)dgld’gj 5. In terms of (6.12) and (6.13), using the one and
two loop B-functions from the previous section,

~ 2 B o
AR 5= 3 (" 51 S y)

_ 1 . . . .
+ <C + g)ki/‘l (" 5 5157 + (Y Sy Ty’ 1))
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_ 2 B L . B .
+ (C + §>kij"l (tr(Fey™) te(Fmy 5197 ) + e (Gey 519™) (7))
1 P
+ gkijmnkmnkl tr()’kyl }’ly'/)

1 1 . . .
+-(A+B- g)liklmklmk’ (e (' yuy") + (35" 3ny"))

2
< >)\iklm)klmkj tr()_’jyn)tr()_’nyi)
1

= 5 (™ a4 2™ ™) 1 (505 ) (50

1 .
12(x,,mnxmnpq)\qu + AR Ap” Ang ) tr ()"

+- Gﬂ(” KB 5 (6.14)

There is one integrability constraint which is used to eliminate H,

=2G !
- 2

(6.15)

The result (6.14) may be used to constrain A contributions to ﬁf) by considering dyfi(s). For

generality we must include further possible A-dependent terms in T[(‘}) for which the relevant
contributions are

(4)dg1d/ I i = A tr(d5; ™) Ao ¥ d Aia 7+ B tr(dFiey™ Y ai M d hp
+ C'te(dyi y* 59" )d hid (6.16)
and
Tl(}‘)dgld/gj |)7y = l_)tr(dyid’yj)kjmkl)»klmi
+ E (tr(d5id'y* 3, y') + tr(d5 5,4 y") ) as
T/ dg'd'g’ |55 = Fue(dyiy*d'y;y ). (6.17)
If T,(j) is symmetric then A’ = A, B =B, C' =C.

At this order it is necessary to take into account the potential necessity of modifying the
perturbative B-function as in (1.7). For the theory defined by (5.1)

U=—UT={U¢ij,U1/,,UX}, (6.18)
and (vg)! is obtained by using, for any v € gg,

Wy = v,y —yivy —ylugil, (Ui = vy di — Fivg 4+ ve V),
R = A+ Ui = ai Mg, = A, (6.19)

At three loops all contributions to y¢(3) j’, )/;3), yf) in (5.22), (5.23) are separately hermitian

except the terms involving ¢’ in (5.23). Hence there is a unique three loop possibility

v i = u(tr(5 Y 5™ " = 2 (5ey ")) (6.20)
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Applying (1.1) for d; A® given by (6.14) requires combining (6.16) with 8\ and (6.17) with
ﬁl), ,B)(-,l). Using also (6.1) in conjunction with the A-dependent contributions to the three-loop
Yukawa beta functions given by (5.32), (5.22), (5.23) and (6.3) for y = 0, combined with the

corresponding two loop results determined by (5.10) and (5.9), then to O(})

112 6.21)

377_3@‘_3’ .
and

! 28 2‘+1E 1+1(E+F) é+1

—e — = —Z —_ = —€ —_ = -,

3 2 372 3

L, , _ S| - -,

§(c+u)—2fl—SB=§8+C+F=—28+C

1, I | -2
=§(c—u)—2€—8A=§y+C+E=C+§—8G. (6.22)

To O(A2)

1 _ _

§ﬂ+2C’=—16G,

! +16/ 4G

—a+-C'=-—4G,

6 2 6

1 1,-, - 1 -

b+ -(A'+B)=——+0G,

6 +2( +B) ot

2d+1_—1‘+D—A+B !

3T P TR TR g’

1 I N

-+B +D=-8+&)+A =A+B— —+0G, (6.23)

4 4 12
and to O(13)

1a’+A/+1§’=—i+26 (6.24)

3 12 ' ’

The coefficient of G is arbitrary as expected since (6.21), (6.23), (6.24) are invariant under
G—>G+¢ A —>A+& B —>B+& C —C -8t (6.25)
as this corresponds to the freedom A— A+ %%ﬂxi j ki ,3,\/(1’7 . Furthermore,
(B 82)) + (B2 BL.)
= =24 (0 (T " 50y 3197) 4+ 0 (3" Sy Ty 51)
+ (5" w(Fmy 5iy?) + Gy 5" w(Iny’))

’)Lyi

1 . . . .
g hi " han ) ((5,5 5ay") + (555" 5uy') + 260(355") e(5ay')), (6.26)

so that letting A—> A+ ztr(ﬂ;,B;i) corresponds in (6.14) to

A+B—>A+B+ -z, C—C-2z. (6.27)

| =
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The consistency constraints (6.21), (6.23), (6.24) are then invariant if, along with (6.8), at the
same time

Fod+ls  BoE-li bbb+l
47 47 4"
E — E -2z, F— F—2z. (6.28)

The conditions (6.23), (6.24) entail various constraint equations for the coefficients appear-
ing in the general expressions for the three-loop Yukawa S-function and associated anomalous
dimensions. Together with (6.21) the full list is

1
n=¢=2, 20 — B =2, S+y—2e—-B=2, a’—b/:Z,
2 — B4y —2e—16d =6. (6.29)
Reassuringly these relations are in accord with the results (5.25), (5.26) and (5.36). In addition

1 5
u= 2)/ e 8d—4. (6.30)
This demonstrates that the RG equations such as (1.1) hold only for the modified B-function
determined by a non-zero v as in (6.20). The coefficient appears to be exactly in accord with that
determined by Fortin et al. [15] by explicit three loop calculation for a general scalar fermion
theory.* It is interesting to note that u = ¢’. There are also constraints on the three-loop metric
given by (6.3) with y =0

| 1
20— 8 =—(—2e+8)=—,
o 6( ) 3

_ 1 5
= —(B42e+2)=—
B l2(,3+ e+2) o

Z,B_—E—f]:—(e—c’—éla/):O, (6.31)

which are equivalent to (6.5), and so (6.31) provides an additional confirmatory check on the
three loop results obtained in Section 5.
From (6.23), (6.24)

. 1 - 1
A+B=a— —, C=—-4a— - 6.32

tE=a g “"% (6.32)
so that A® |ryy is determined in (6.14) up to the freedom of choice for G and that corresponding

to (6.27). We also have A’ + B’ =2G — 11—6, C'=-8G — % so there is the potentiality of a

symmetric T,(j) if we take @ = 2G but this need not be true in general renormalisation schemes
(with dimensional regularisation @ = —77—2, G=— %).

(3)

4 They considered couplings to real scalars and there was also a purely Yukawa contribution to v ¢3 which is absent in

the model discussed here.
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7. Supersymmetry

For supersymmetric theories with just A/ = 1 supersymmetry there are further constraints
which simplify many details significantly. The results obtained in [9] were restricted to super-
symmetric field theories previously in [19]. Here the analysis is extended to a general N = 1
Wess—Zumino supersymmetric scalar fermion theory, which may be obtained from (5.1) by im-
posing (5.16), (5.17), to a higher order. Such a theory can of course be rewritten in terms of n¢
chiral and corresponding conjugate anti-chiral superfields. The local couplings may also be ex-
tended so that Y/* | ¥; jx for this theory are also chiral, anti-chiral superfields. Divergences which
arise in a perturbative expansion are cancelled by counterterms which are integrals of local poly-
nomials in the fields and couplings of dimension two over full N' = 1 superspace. This restriction
crucially ensures that 8-functions for Y ijk y, jk are determined in terms of just the anomalous
dimension matrix y as in (5.18) but further conditions on the functions which are present in local
RG equations also arise. The various RG functions are further constrained by assuming manifest
U (nc) symmetry.

The formalism of Section 2 can be adapted to this case by taking

g =Y Vi), () =(— x)7* (w*V)ijr), i egline,C), (7.1
where

¥ ) =Y oy + Y w4+ Y

(w*l?)ijkEwil?zjk+wjlﬁ1k+wkll7ijz- (7.2)

With this notation the result for the Yukawa supersymmetric S-functions (5.18) becomes’

By =Y xvy, Y:y*?. (7.3)

To avoid explicit indices where possible we also define, in this section and Appendix A, a scalar
product o on Yukawa couplings so that for instance ¥ o ¥ = YUKy, ;.

Besides the S-functions other expressions appearing in the equations of Section 2 are deter-
mined in terms of the anomalous dimension matrix y. Based on a superspace framework Fortin
et al. [28] showed that p; to all orders is given by (a related result is given in Appendix C of [29])

(p1()dg"),! = —dyyi! +dpyi, (7.4)

fordy =dY ody,dy = dY o 0y . In a similar fashion to the; derivation of (7.4) we may also obtain
in (2.47) results which are determined just in terms of y;/,

(81()dg"), /=0, (ers(g)dg’dg”),! =2dyd, v/, (1.5)
The result (7.4) implies p;(g)g! = 0 which in turn ensures that in the supersymmetric case

v=0. (7.6)

5 More generally we may have By =Y *xy, By =y * Y. This form is preserved under transformations yik
Y GGyl Gk = YUK, ¥ — Gilé_,'"ék'f Yimn = Y{,‘k for G € Gl(nc, C). In this case B}, = Y’*y/: B = 7/ Y
with y’ =G~ lyG+G71G,7' =GyG~! + GG! for G = (By o dy + By 0 85)G and similarly for G. For U (nc)
transformations G = G 1. Requiring then G + %(y — 7)G =0 ensures y’ = 7’ so the general case can be reduced to
y =y by virtue of U (nc) symmetry.
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Thus there is no modification of the S-function as in (1.7). The necessary constraint (2.52) on p;
applied to (7.4) requires

By o dyyi! = By o dyyi’. (7.7)
This is a special case of the identity, for any w;/,
(@xY)ody — (¥ xw) 0 dy)y’ = lw, 17, (7.8)

taking w — y. The result (7.8) was obtained in [301° and is a consequence of yij (Y, )_’) trans-
forming as a (1, 1) tensor under U (n¢) with w = —® € u(nc), the associated Lie algebra.
In the supersymmetric theory (1.1) is assumed to now take the form

-1
dyA:E(dYoTo,By—}—,ByoKodY), KT =—K,

- 1 - _ _ _ _ _
d,—,A:E(,ByoTodY+dYoKoﬁ);), KT =—K, (7.9)
so that
~ 1 _
(By 0 dy + By 0d7)A =By oG o By, G=5T+T). (7.10)

By U (nc) invariance (By o dy — By o 8)7)1& = 0 so for consistency we should require By o T o
By = By oT o By. T, K may be determined by perturbative calculations but from the perspective
of just analysing the integrability conditions flowing from (7.9) and using known results for
B-functions, as is considered mainly in this section, there is an ambiguity such that 7', K satisfy
the equivalence relations

T~T+T,K~K+K  ifdVoT oBy+ByroK od¥ =0. (7.11)
The result (2.69) constrains the form of K and T — 7. Writing

Widg! = %(dY oW+ WodY), Qdg! = %(dY 00— QodY)eume), (7.12)
then

dYoKody=dYodyW —tr(d'Y o Qdyy) —d'Y < dY,

dY o %(T —T)odY =dyW odY +tr(dyy Q o dY) — conjugate. (7.13)
The relation (2.66a) requires

3(YW)—=3(WY)=QopBy—BroQ, (7.14)
defining (Y W), (WY) € gl(nc, C) by

(Y xw) o W =3tr(WY)w), Wo(wxY)=3u(YW)w), weglne C). (7.15)

If W odY corresponds to a £-loop vacuum graph then (¥ W) may be represented by an associated
(¢ — 1)-loop graph with two external lines. For any Q’, Q' such that

Q' opy=proQ (7.16)

6 See Eq. (A.7).
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then Q ~ Q+ Q’, Q0 ~ O + Q' since (7.13) ensures that the corresponding 7', K' satisfy (7.11).
Up to this equivalence (7.14) determines Q, Q in terms of W, W.
The RG flow equations (7.9) are invariant under

AA=Pyogofs+(Byody +pByodp)a, g=4g, (7.17)

when

dYoAKodY=2dYogo(dyy*Y)+dYodygopy —dY < dY,
dY o AT odY =2dy((Y xy)0g) odY +2dY o go (dyy *¥)
+dY o (By ody + By 0dp)godY —dY odygo By — Py odygodY.
(7.18)
For AK, AT given by the conjugate equations to (7.18) then AG = %(AT + AT) is therefore

dY o AG odY =dY o (By o0 dy + By 0 d7)g odY
+ (Y xy)ogodY +dY ogo(y*dY)
+2(Y xdyy)ogodY +2dY o go (dyy x ¥). (7.19)
(7.18) and (7.19) correspond exactly to the freedom in (2.76) assuming (7.4) and demonstrate
that it is consistent to require that G defines a hermitian metric for supersymmetric theories.
Corresponding to this freedom there are associated variations in Wy, Qy given by
AW odY = By o g odY —2d;a,
dY o AW =dY o g o By — 2dya,
AQodY =—-3(godYY)+ ByopodY,
dY o AQ =—3(YdY o g) +dY o po By, (7.20)

with (g 0dYY), (YdY og) defined similarly to (7.15) and dY o p odY € gl(nc, C). These results
ensure that (7.13) is compatible with (7.18), variations in Q, Q arising frozn p satisfy (7.16). We
may also verify the invariance of (7.14), so long as (Y * w) o dya = (w * Y) o 0ya.
There is also freedom corresponding essentially to a choice of scheme. For this we consider
variations
SA=—(Y xh)odyA=—(h*Y)od;A, (7.21)
for arbitrary h;/ (Y, Y). We assume that there is a corresponding variation in y of the form

8By =Y x4y, By =8y *Y, (7.22)
for
dy =Byodyh— (Y *xh)odyy. (7.23)

This expression for § may be rewritten in various equivalent forms using (7.8) for w — h or for
w— y,y — h.In consequence 8y =8y if ¥ = h, y™ =y and also if & corresponds to a 1PI
graph then so does §y as well. Assuming (7.21) and (7.22), (7.23) the essential equations (7.9)
are invariant if
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d'Yo8KodY =—dYo((Y*h)odyK)odY
—d/Y(Y*h)oKodY—d/YoKody(Y*h),

dY 08T odY =—dY o ((Y xh) 0 dyT) odY
—dy(Y*h)oT odY —dY oT odjh Y. (7.24)

since then 2dySA =dY o T 0887 + 8By o K odY +dY 08T o By + By 08K odY.

The basic equations (7.9) may be verified using perturbative results. For convenience we adopt
a notation where the one and two loop contributions to the anomalous dimension y in (5.21) are
given by y = 1(¥Y), y@ = —1(YYYY). Restricting the metric (6.1) to the supersymmetric
case gives

@ ap - L sl 5
dY o TW odyY = ng odY = 3 tr((dYdy)), (7.25)
and in general
dY o T odY =atr((dYdY)(YY)) + btr((dYY)(YdY)), (7.26)

where we note that tr(()?l Y2)73 Yy)) = tr((fl Y4)(173 Y»)). To this order K, K=0and T =T =0G.
For integrability we require

1
2a—b=—-, 7.27
a > (7.27)

which accords with the constraints for supersymmetric theories described in [19].7 If we let

dY 0 g® odY =zdY odY, (7.28)
then (7.18) gives at this order AK =0 and AT is determined by

Aa =3z, Ab =6z, (7.29)

under which (7.27) is invariant. Integration of (1.1) subject to (7.27) then gives

A® = %tr(()_’Y)z),

- 1 _ 1
A® = i w((7Y)?) + ga,Bl(/l) 0B, (7.30)
Reducing the results in (6.3) requires a = ﬁ + 20 + %5, b=2B+ %ﬁ and hence from (6.7)
5 3
a=—§, bZ—Z, (731)

which of course satisfy (7.27).
This discussion can be extended to the next order using as input the form of the three-loop y
given by (5.27). It is convenient to summarise this in the form

y® = Aya + Byp + Cyc + Dyp, (7.32)

where the coefficients A, B, C, D are given in (5.29). However there is potential scheme depen-
dence since if in (7.23) we take h = v(YY YY) and By — ,8;1), y — ¥ then

7 In terms of the parameters in [19] @ =2a, B =2b, y =0.
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1
SA =v, 63:51). (7.33)

From (5.29) it is evident that we may use this freedom to set A = B = 0 but C is scheme-in-
dependent. At this order there are three relevant connected 1PI vacuum graphs with different
topologies and to determine 7™ it is necessary to choose for each graph one Y vertex and one
Y vertex in inequivalent ways. The number of possible terms multiply but this procedure gives
the general expression

dY o TW o dY = a tr((dYdY)(YYYY)) + ar tr(dY Y)(Y Y YdY))
+a3tr((dYY)(YAYYY)) + ag tr((YY)(dY Y YdY))
+astr((YdY)(dYYYY))
+ by tr((dYdY)(YY)?) + by tr((dY Y)(YAY)(YY))
+ b3 tr((dYY)(YY)(YdY))
+ cdYgdY P Y1y, Y, Y (7.34)
In this case tr((Y1Y2)(Y3Y4Y5Ys)) = tr((YsY4)(Y3Y2Y1Ys)). At four loops there may also be con-
tributions to K in (7.9) so that, following a similar prescription as for 7® but choosing two ¥
vertices and antisymmetrising, there are two possible terms
dY o KWodY =etr((Yd'Y)(YYYdY)) + ftu((Yd'Y)(YdY)(YY))
— (Y < dY). (7.35)

At this order T and T are also no longer necessarily equal since

dY o T® od¥Y =dY o T® o dY| (7.36)

ar<>as’

It is easy to see that, by virtue of (7.20), we may take Q(z), Ww® — 0. At the next order there
may be non-trivial Q, W. If we allow only contributions corresponding to connected diagrams
then it is sufficient to assume

dY o W =5 tr((YY)(YYYdY)), dY 0 0¥ = —4o(YYYAY), (7.37)

where the coefficients are related by imposing (7.14). In this case (7.13) agrees with (7.34) and
(7.35)if ap = as, e = —4o, f =0.

At five loops A® is determined in terms of the five connected vacuum diagrams for this
theory at this order. The relevant contributions can be written in the general form

249 = X (Y Y)2(YYYY)) + Xatr(YY Y Y)?) + X3 tr((Y V) y5)
+ X4 (YY) + Xstr((Y V) yp), (7.38)

where yp, yp are explicitly defined by (5.27). Using (7.9) for dy A® we may then obtain, for
arbitrary values for A, B, C, D in (7.32),

1 1 1
X1=§(az+e)+a4+b1=§a5+b2+f—§a
1 1 1
=ja—e)+b—f-sb=c(atas—e)+ A,

1 1
X2=§(a1+a2+e—a)=§(a3—b+C),
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1 1
X3=rzas= 8(05 —e+2B),

2
1 1
Xe=gbi+by+b3), Xs=-c=D. (7.39)

For each term in (6.11) integrability conditions arise whenever the number of inequivalent Y
vertices in the associated graph is greater than one. The equations (7.39) are invariant under
ap— ap + W, a;—a; —[L—v, as — as +v,

e—>e+v, f— f+o,

1 1 1 1
b1—>b1+§,lL, bz—)bz—iv—a), b3—>b3—§u+§v+a), (7.40)

which correspond to variations satisfying (7.11) for one loop By, By. The freedom in (7.40)
in part can be realised by changes in Q, Q satisfying (7.16). As a consequence, even setting
K® = 0, A® does not determine T®.
If we take
dY 0g® od¥ = xtr((dYdY)(YY)) + y tr((dYY)(YdY)), (7.41)
then (7.18), with one loop results for y, generates

Aay =2x, Aay =x + 3y, Aaz =4y,
Aag =2x, Aas=3x+y,
Ab] = 2x, Abz = 2X + y, Ab3 = 3y,

1
Ae=—-3x+y, Af:—i(x—y), (7.42)

sothat AX|1 =3x+2y, AX, =2y, AX3=x,AXs = %(x + y). Corresponding to (7.28), along
with (7.29), we have in addition

Aa; = Aapy = Aas = Ae = —3z, Aaz = —6z, (7.43)
which entails AX| = —3z, AX, = —6z. There is one invariant under (7.42) and (7.43)
2X1— Xo —4X3 —4Xy = lA—B— lC:—l,
2 4 4
imposing the numerical results in (5.29). The freedom in (7.42) may be used to set d'Y o K™ o
dy =0.

The results for T in (7.25), (7.26) and (7.34) determine the metric G at each order. It is of
interest to consider whether this is Kéhler so that

(7.44)

dY o G o dY = dydj F. (7.45)

It is possible to construct F so long as the freedom due to variations as in (7.18) and (7.24), or
equivalently (7.23), are allowed for. From (7.25), (7.26)

1 - 1 _
F® = 3 tr((YY)), F® = -1 tr((YY)?), (7.46)
if we use (7.29) to set

=b=——. 7.47
a 3 (7.47)
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At the next order the general expression has the form

S 1o - 2

FOY =au((YY)(YYYY)) + gbtr((w)3) + §Dtr(yD), (7.48)
and then (7.34) and (7.45) require

a1 =a3=2a, as=d, ar =24+ X,

as =24 — A, bi=by=bs=b (7.49)

for arbitrary A since G depends only on a; + as. Imposing the conditions in (7.39) is possible
only by choosing a scheme with A= B =0, C =1 and then a, b as well as e, f are determined
so that

R 1
a=b=1 e=-l1-k [=_+3k (7.50)

giving X1 =3, X2 =17, X3 =13, X4=3.

For A/ = 1 supersymmetric theories there is, at critical points with vanishing B-functions,
an exact expression for a [31] in terms of the anomalous dimension matrix y or alternatively
the R-charge R = %(1 + y). Introducing terms linear in S-functions there is a corresponding
expression which is valid away from critical points and this can then be shown to satisfy many
of the properties associated with the a-theorem [32,33]. For the theory considered here, with n¢
chiral scalar multiplets, these results take the form

~ 1 1 2 1 3
where we require®
Ao By =By o A, H=H. (7.52)

A is determined in (7.51) up to terms which may be absorbed in H so that A o dY ~ A odY +
By o g odY. Assuming the result (7.51) for A satisfies (7.9) then H is arbitrary as a consequence
of (7.17).

However A is constrained by imposing (7.9). Defining (Y A);/ in a similar fashion to (7.15),
then

(5 %) + 3 0) + A0y ) =u(ary (T ) =y +7)
+ (dy A) o By (7.53)
Hence if A is required to obey’
3YA) =y —y*+ 0o By, ® odY € gl(nc, C), (7.54)

then (7.51), excluding the H term, satisfies (7.9) if we take

8 In [32] and [33] A plays the role of a Lagrange multiplier enforcing constraints on the R-charges. At lowest order
the result for A and also the metric G obtained in [32] are equivalent, up to matters of definition and normalisation, with
those obtained later here and in (7.25).

9 More generally if 3(YA) =y —y2+ O o By +1E, By 0 dyy],d'Y o K odY =tr(Z[d}y, dyy]). Such a term can
be removed by considering changes as in (7.11).
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1 - - _ 1 -
EdY oT odY =tr(dyy® odY) +dyAodY + EdY oT odY,
dYoKodY =0, dYoT o By =0. (7.55)

A related result, with effectively & = 0, is contained in [32]. For supersymmetric theories, satis-
fying (7.54) is consequently essentially equivalent to requiring (7.9), although terms involving ®
are necessary at higher orders. The relations (7.54) and (7.55) are not invariant under variations
of g asin (7.52) and so this freedom is no longer present.

Since y is hermitian a corollary of (7.54) is that A, ® must satisfy

3(YA) —3(AY) =0 o By — By 0 B. (7.56)

This is essentially identical to (7.14) and suggests a relation between A, ® and W, Q but a
precise connection is as yet unclear.
For variations as in (7.21) and (7.23) then compatibility with (7.51) requires

8AodY =—(Y *h)odyAodY +8AodY, (7.57)
where §' A satisfies, assuming (7.54),

8’ Ao By =—pBjoSo Py, dY o SodY =tr(dyh® odY). (7.58)
Furthermore, (7.54) is also invariant if

80 odY = —(Y xh) 0 dy® odY —dyh

+dghy +ydyh — @ o (djh*Y) +8'© odY, (7.59)

so long as

3(Y8'A) =680 o By. (7.60)
This can be solved subject to (7.58) by taking

8’AodY =—PBjoSodY, §'® odY = —=3(YdY o S). (7.61)
Using (7.57), (7.59), (7.61) in (7.55) generates variations in agreement with (7.24) up to contri-
butions which may be absorbed in T'. Such variations generate terms in ® which are 1PR. Also
we may show §(Ao By — By o A)=0 subject~to (By 0 0y — By o dy)h = [y, h].

The perturbative results obtained here for A may be expressed in the form (7.51), although
this can require additional constraints on y beyond those required for integrability of (7.9). As
was already shown in [19] the low order results in (7.30), with the one and two loop expressions
for y in (5.21), can be expressed in the form (7.51). At lowest order it is necessary that

_ 1 _ _
A(z)odegYodY = 3(ra@)=»". (7.62)

In general at the next order we may take
AP odY =rt(dYY)(YY)), 0P odV =6@dYY). (7.63)

In this case
_ 1 _ _
3(ra®)—eo ﬁ;” - (x - §9>(2(YYYY) +(YY)?). (7.64)

Equating this to y® — y (2 in accord with (7.54), requires
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1 1

A— =0 =——, 7.65
2 4 ( )
and using (7.63) in (7.55) is compatible with (7.26) for
1 1
a=2k=—§+9, b=2k+0=—5+29. (7.66)

For A® given by (7.30), (7.51) is then satisfied with H @ =o.
At the next order there are several terms which may contribute to A® and ©O in (7.54).
Assuming A, @ can both be represented in terms of 1PI graphs we then take

AW odY =atr((YY)(AYYYY)) + Btr((dYY)(YYYY)) + Déd); tr(yp),
O 0dY =o@YYYY) +1(YYdYY), (7.67)

where a potential contribution tr((dYY) (Y Y)2) to A® odY is discarded as it would be necessary
later to set the coefficient to zero for consistency. Imposing now

3(FA®) = 0@ 0 g1 = @ 0y, @0, (7.68)

requires then

a:l—ZB—le, r:—l—ZA—i—ZB—{—lG, oz:l—lQ,
4 2 4 2 8 4

p=>_p_1y (7.69)
8 4

and the solution requires the constraint on y

1 1
A—2B— - C=—-. 7.70
3 3 (7.70)
This is satisfied by the calculated results (5.29) and the derivation remains valid if additional 1PR
contributions are allowed in ®® in (7.67).
Using (7.67) with (7.69) in (7.55) gives contributions to 7™, K® of the form (7.34), (7.35)
with
28 3 2B 10 28 + : 2A 2 : 19
= = = — — — —bu, = T=—-— s = = - — —U,
a=a 4 2 a3 2 W=2=372

3 3
a5=2,3—0=2—28—56, b1 =by=b3=0, e=f=0, (7.71)

which is compatible with (7.39) for X; =3 — B — 20, X, =1—2B — 40, X3={ — 10 and
X4 =0solong as a, b satisfy (7.66). With these results we may check

) 1
A9 = —u(y Oy ) - Lu(y®?) £ u(y02@)
+ 4P 08D 4 A0 0 pP 4 A® 6 g, (7.72)

as required by (7.51) to this order with H = 0. The results for A may be expressed also in the
form
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_ 1, - . 1 _

AP ody =dy6tr((YY)), A® ody =d}7§Atr((YY)2),
_ 1 _ _

AW ody = (a - 5,3) r((YY)YYYY))

—i—dy(%ﬁtr((?Y)(YYYY)) + éDtr(yD)) (7.73)

At higher orders the number of potential constraints increases when the number of inequiva-
lent lines of a (¢ + 1)-loop vacuum graph, related to the number of terms in y ¥, becomes larger
than the number of inequivalent vertices, which are related to possible contributions to AEED,
The calculations of [34] for y® in terms of ¥, Y correspond to 11 distinct graphs which are
related to 6 5-loop vacuum graphs giving 13 possible A®). However the number of independent
terms in y® may be reduced by considering redefinitions as in (7.23) with & o y4, ¥5, ¥c. ¥D
and letting By — ﬁg), y — y . By taking h = %;(4))/1) all terms, corresponding to non-planar
graphs which contain the yp subgraph, involving ¢(4) in the expression given in [34] are gen-
erated by (7.23). There are 7 planar graphs relevant for y® and applying (7.54) in conjunction
with lower order contributions gives one relation, which is invariant under changes of scheme
and is analogous to (7.70), amongst the coefficients. This is satisfied by results of [34].

Some calculations checking the validity of the essential equations (7.9) or (7.54) at each loop
order when new transcendental numbers appear are also undertaken in Appendix A.

8. Renormalisation with local couplings

The results derived in Section 2 can be specialised to renormalisable quantum field theories
when the metric G;; and other quantities may be calculated in a perturbative loop expansion on
a curved space background. Within the framework of dimensional regularisation with minimal
subtraction on flat space there is also a precise prescription for determining quantities, such as
Sy and Wy, which are initially defined in terms of contributions involving 9o, in terms of the
o -independent counterterms, necessary for a finite theory, which are simple poles in e =4 — d.

To demonstrate this we consider initially a generic renormalisable quantum field theory de-
scribed by a Lagrangian density £ formed from fields @ and their conjugates @ depending on
local couplings {g/(x)} for a complete set of marginal operators {O; (x)}. For renormalisability
L must contain background gauge fields {a,(x)} and local couplings {M(x)} for all relevant
dimension two operators, corresponding to contributions to £ of the form £y = —®M®. In
L the kinetic terms, which are bilinear in the scalar/fermion fields @ and their conjugates @
and have the form Lx = —® K (9)®, are invariant under a maximal symmetry group Gx where,
for any g € G, @ — g® and ® — &g we require gg = 1, gK(d)g = K(d). For infinitesimal
transformations corresponding to the associated Lie algebra gx then for w € gx, @ +® =0. In
general Gk is not simple but is a product of U(n)’s or O(n)’s. The symmetry Gx extends to
the complete action L if the couplings are also transformed appropriately, so that for any w € gg
then 8g’ is given by (2.34). A local symmetry Gk is obtained as usual by replacing all deriva-
tives in KC(0) by appropriate covariant derivatives D, = 9, + a,, for a, (x) € gk . In general then
L(D, D, g, a, M).

As usual a finite quantum field theory in a perturbative expansion obtained from £ is achieved
at each order by adding appropriate local counterterms L. . As well as counterterms involving
@, @ with x-dependent couplings, additional local contributions independent of the fields in-
volving contributions containing ]—[i Bmfg"' with Zi m; <4 and also f,, as defined in (2.36),
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are also necessary. Assuming an invariant regularisation then all derivatives of the couplings are
extended to covariant derivatives, 9, gI — Dy gI , as in (2.35). RG equations are obtained by
assuming that £ is such that the bare Lagrangian generating a finite perturbation expansion order
by order is

‘COZ‘C((psés gaav M)+£C.l.(¢7éagva7M)

= L(Py, Do, 0, a0, Mo) —

e X(g.a. M), 8.1)

X includes all the extra field-independent counterterms and is arbitrary up to total derivatives.
Assuming dimensional regularisation with minimal subtraction, then in a loop expansion
. 1
Leo(@,@,8,a,M)0=>"Le(D,8,8,a,M)"—, (82)
8?‘
r=1
so that X' contains just poles in €.
The RG flow equations which are considered here are obtained from

<w — Dy — Dy g5 — (2 — )3y D¢’ >£(¢>0, @y, g0, ag, M)

3D2g1
0 _
= a/‘l (8MGT : a_M‘C(®07 ¢07 gO» aop, MO))a (8'3)

where o is linear in x, of the same form as o, in (4.8), and the right hand side for T € V), is
a potential total derivative contribution when o is not constant which can be neglected in the
subsequent discussion. In (8.3) Dy, D, 4 4 are derivatives defined by

A 0 d
Da=0,31'@-F(GPIDMS'I_BMGU)'%
m

+ (U(J/MM - 31D2g1 - eljDﬂngﬂgJ) — 23H091DMg1) S

1 9 _(1 _ 0
Da,qb,d_b:(0<§8_)’>(p> 'ﬁ"ﬁ‘(ﬂq)(i@—y)) Yy (8.4)

Here D, Da,<p,q3 act on local functions of g’ sau, M, P, @ and their derivatives so that for
instance acting on f(g(x), 3,8(x)), h - % = h(x)% + auh(x)m. The action of D,
is then equivalent to the corresponding contributions to the functional derivative operator
Ao + Ag.q 4 Ag ar defined by (2.2), (2.41) and (2.47) although B/ — B. A derivation of (8.3)
is sketched in Appendix B.

For the marginal couplings g’ (2.3) becomes

Bl (e)=—ckig" + B (2), (8.5)
and minimal subtraction ensures that 8/ (g) is independent of . In a loop expansion
1 1. ¢ ¢
<1+Xl:k1g1-81 — 5% 90— 5 .a¢>cg_3=ecg_3. (8.6)

Amongst the counterterms in £ + L. for constant gl the quadratic kil}etic terms are in
general modified just by the introduction of an appropriate matrix Z(g) = Z(g) =1 + O(g),
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Lg — —gSZIC(B)CD. This determines the anomalous dimension matrices y(g), y(g) for the
fields @, @ in (8.3) through

A d
ﬁ’<g>@2<g> =7(9)Z(g) + Z(2)y (). (8.7)

At ¢ loops, with YA expanded as in (8.2), (8.7) requires y(e) + )7(15) = —EZ%E). The standard
prescription determines y ) (g) by assuming 7(g) = y(g) so that the eigenvalues are real. In
obtaining RG equations describing the RG flow it is necessary to factorise Z,

Z=ZZ, (8.8)
so that in (8.1)

Gg=ZP, Py=D2Z. (8.9)
The factorisation in (8.8) has an essential arbitrariness generated by infinitesimal variations 6 Z =
wZ,8Z=2Zw=—Zw for w € gg. The RG equations for Z then take the form, from (8.7),

3’(@%,2@) =w(g)Z(@) +2(g)y(g). w(g)€gk. (8.10)

Assuming y = y and taking zM = %Z(l), ZzZ0 = %Z(Z) — %2(1)2 then combining (8.7) and
(8.10) gives @ = Hy M, ZzW1=0but 0@ = L[y @, ZO] + L[y D, Z@] may be non-zero.
It is possible to choose Z so that in (8.10) w = 0 but then y # y in general.
In (8.1)
aop =ay +vDug’, v egk, (8.11)

is detern_lined SO tk_lat all terms involving derivatives o_f ® or @ in L., are absorbed by let-
ting D, P — Py, Py and D, @, D, @ — Do, Do, Do, Py with Do, = 9, + ap,.. Hence Lgo =
—@DoKC(Do)Po up to total derivatives. The RG equation from (8.3) then requires from (8.10)

Dy agy, = —Doy(cw) = -0, (cw) — olagy, w]. (8.12)

The resulting equations from the terms in (8.12) proportional to o and 9,0 become

~z§,;3t1+,51=31(U—w)+[t1,v—w], (8.13)
for

B'=p" - (vg), (8.14)
and

B =v-ow. (8.15)

Assuming t;, @ contain only poles in ¢, so that t; = Zn>1 vr,e ", the O(1) terms in (8.13) and
(8.15) determine p;, v

o1 =ijgj(31t1,1 —3rty,1), U=—Ztl‘1k181- (8.16)
7 7

Since Z, ,61k1g1 = 0 then contracting (8.13) with B! and using (8.15) shows that these equa-
tions require
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p1B" =pB" =0, (8.17)
in agreement with (2.52). .
The counterterms contained in My, where L0 = —PoMoPg, have the general form
Mo=Zy(M —0,D*¢" —¢;;D*g'D,g7), (8.18)

with 07, ¢e77 € Vi, Zpy 2 Vg — V. (8.3) then implies

(Da +(Z—S)BMGD“glaD2g1>M0:U[a),M()]. (8.19)
This decomposes into

Ay 0

B @ZM —lw, Zul=~Zuywu, (8.20)
which determines y(e) = ZZ](VC})I, and

—¥'0; —e B =0y, (8.21)
for ¥,/ = (1 — 1e)8;7 + 9B’ + 1(5;¢)” and 2;,X as in (2.50) with B — B. (8.21) then
determines the ¢ independent 8y, €;; and

1 J
0 = (kI + §>01,1 + ;elj,lkjg . (8.22)

By virtue of (8.17), (2.55) also extends to [Zg,,;, lf/[ J] = Q;K 7 BX 5o that we may obtain directly
from (8.21) the finite relation

(Lhp—ym)0r =W/8;+e11B’, (8.23)

for which the O(e%) contribution is identical to (2.54) while the O(¢) terms equivalently deter-
mine 6 in terms of 87, €;.

The additional field-independent local counterterms in (8.1) may be reduced, by discarding
total derivatives, to the form

1
X(g.a,M)= EAUDZg’ngJ + Bk D*g' D*g’ D, g¥

1
+ ECIJKL D"¢"D,g’ D'¢¥ D, g"

1 1
+ S Ly fuv+ MLy M+ 4 PryDyg! Dyg?
+Jr-MD*g" + K1y -MD gD, g’ (8.24)

Assuming this expression the flat space contributions X, Y in (2.60) are determined through the
RG equation
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(80 — Dy — (2 —€)d, 0D g’ )X(g,a, M) —oX(g,a, M) +23,0Y"(g,a, M)

8D2g1
1
= —29,0 <8u(QIJD”gIDUgJ) - 53“(Q11DU81D1}8J))

= —20,0(G1sD" ' D*¢’ —G1y(f"'8) Dug” + [T D"g' D"’ Dig"X),  (825)

allowing on the right hand side a total derivative which generates terms of the same form
as in X and X, Y" as given by (2.61). To obtain (8.25) we assume that G;; = G satisfies
(we)X9xGry + Q’Kja)f + g,wa = 0. The contributions in (8.25) arising from Gj; are the
same form as the terms in Y* which involve S(; ), sk, Q1 so e-independent contributions to
Gy give rise to a corresponding ambiguity in Y. This freedom is removed by requiring that
Gy contains only poles in ¢.

Decomposing (8.25) we find for the M-dependent terms

(e — Zé,,&)jl —Jr-ym+é1-Ly=1Ji,
(=L )i —Kiy-ym—R2115Tk +e1s- L =Ky,
Ul T+ KiyB) =6 - Ly =Ly, (8.26)

which determine J;, K, L; so that
L, <k1—|— )j”—ZIC”,k,g (8.27)

Using (8.23), and in a similar fashion, assuming

(e — L)Ly —ym-Lv — Lyt - v =B, (8.28)

(8.26) requires for consistency (¢ — Zg,,;)LI —Li-ym= @]JJJ + K[]é] — 67 - By which is
equivalent to (2.72). For the contributions involving " (8.25) reduces to

~ - 1 - -
w-(e =L ;)Prs — () px - Prj— 7@ Ly-@1py—01p1)=w- Py,
w-(e— Eﬁ’ﬁ)ﬁf o —w- Ly (w/g)KﬁK — ()% bk Ly-o=w-Byf-o,
N 1 -
—w~73”BJ+Ea)'/Jf~,01+glj(wg)J=w'Ql- (8.29)

To obtain (8.29) we presume Gk covariance as in (2.42) to ensure ﬂ p — B, p so that for
instance o - EB iPri=w- Eﬁ o P17 — lw,v]-Pyy. From (8.29)

Q1= Pisiksg’, (8.30)
J

and also from (8.29) we may obtain, using —(d; 05 — 8“51)12’1 = Z[;,%;,E] — (p18)” py, the finite
relation

~ B A 1 N
w-(e—Lp ;)01 — () py- Q1 =—w-PryB’ + @ Br b+ Grj(wg)’, (831
assuming

(e —L3.5)G11 =Gy, (8.32)
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with G e-independent. For ¢ — 0 (8.31) is just (2.66b). Directly from (8.29)
w- Q1B =(wg)'G1B. (8.33)
Since (8.30) ensures that Z[ Q1k1g =0so that Q; Bl = Q1 B!, (2.66b) is satisfied if

Wi=-G B = w= Zglj,lngJ~ (8.34)
N

The remaining equations arising from the decomposition of (8.25) are then

(e = Lip) A1 +2Tu -85y = A1y,
(e — Eé,ﬁ)BIJK — 25k AL+ T -ejx + Kk -8 = Biyk,
(e — Zé,ﬁ)CILJK — 2 MBysk — R2ixMBuyi + KL - €k + Kk -err
+ 01p7 — 07 p1) - Pryr + Orpg — 9w o) - Pxyr =Crrik. (8.35)
and also for terms involving 9,0,
UK Ag s+ Bk BX —J5 01 = S15+ 61y,
Ul Brik +Croix B —Kyk 01 — b - Pryr = Trox + FI(J[)( (8.36)

This determines

NTES <k1 + )Au 1= ZBJIK tkrg®,
Tk = (kl + )BUK - Zczm 1kgh. (8.37)

Since (¢ — ﬁg’ﬁ)F(g)lJK — 27k G1L + (@15 — 3PN Gryr = ' D1k then applying
£ — £~1§, 5 to (8.36) and using (8.35) gives finite relations which, after dropping O(g) contribu-
tions, are identical to (2.74) and (2.75).

Furthermore, eliminating A; 7, By jk, C; sk from (8.36) gives

. . 1
Li-07+ = /0 Q=815 = F(g)[lJ]KBK - (‘I’[IK - 5(,0[1g)K>gJ]K =Wy,
(8.38)

where S[[]] = —lf’[IKS]]K + T[[j]KéK = —‘I’[IKS]]K + T[[]]KBK and Wy is determined by
(8.34). Hence (2.65) is recovered.
9. Calculations for a scalar fermion theory

For the theory defined by (5.1), where @ = (¢, V¥, x), gI = {yi, Vi, Aijkl}, then the kinetic
symmetry group Gg = U(ng) x U(ny) x U(ny) and for w € gk then

a)=—w7'= {a)¢ij’a)w,a)x}, a)~w/=a)¢l-/a)(’bji _{_tr(a)wa):p)—i-tr(a)xwg(). ©.1)

To allow application of the formalism of Section 2 it is necessary to extend the theory to include
background gauge fields a, = {agui’, aypu, ayu) = —al € gk and a scalar field mass term
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L==D¢' - Dy —Jic - DY = XiG - Dx — X' by — V' Jix
. 1 .
= M §'; — 21" 9' B dug, 9:2)
where the covariant derivatives depending on the background gauge fields are

Dugi = 9udi +agui’dj.  Duy =¥ +ayu¥,  Dux =dux +agux. (9.3)

Acting on the local couplings, in accord with (2.35), the covariant derivative is determined by
using (6.19) for (a, 2)". For this theory the minimal subtraction S-functions are expressible as
in (8.5) in the form

N a | : A I _
Bt =—exii + B, By=—cey' + B Bui=—5e5i+ B 94)
To obtain counterterms involving derivatives of the couplings when they are x-dependent the
methods described in [35,26], which avoid momentum space, may be adapted. For the theory
defined by (5.1), neglecting mass terms and background gauge fields, the propagators are given
by

(Y)Y ()= S(s)=—i5 -3Go(s), (x()x ()= S8(s)=—io - 3Go(s), 9.5)
and
(¢ ()7 () =8/ Go(s), (9.6)
with
1
_ 1 nl-1g _ 2724 o
Go(s)_m(s ) 2, ES ) s=x-—y, 9.7)

so that —32Go(s) = 89(s). For graphs involving two vertices the & poles may be determined by
using

2 1 1
Go(s)" ~ —

e (1672)"=1 (n — 112 (8%)"?5%(s) forn=23,..., 9.8)

and various extensions involving derivatives [35]. At one loop it is sufficient to use (9.8) forn =2
since

tro (S(5)S(=5)) = —=82Go(s)2,  S()Go(s) = —%i& -G (s). 9.9)

This formalism may also be extended to allow for mass terms and gauge fields in a manifestly
gauge covariant fashion.
With these results it is straightforward to obtain

L8 =~ (58 9y)g; +¥yiio - Ty'y +%y'i5 - Tiix). 9.10)

for 9 = %(8 - g) and also rescaling the couplings as in (5.7). At two loops the corresponding
contribution to L‘ézt)‘ involving x is given by
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1 1 . . .
2 - - .= — N _ _
Lg.t).x = @<1 - Z€)(xy’yjy’w 85X — Xy'iG - 85,¥5ix)
1 SN i e
- E(l - ZS)X)"W : ()’j 3yj)in
1 3 - i _ ] .- — - i.= <~ - j -
ol gf (xy' r(yiy’)io - 0yjx — xy'ia - 9w (yiy!)yjx)
1 TN o e
- 1+Z£ xy'ic-tw(yi 0 y)yix, 9.11)

and similarly for Egt).w obtained from (9.11) with x — v, y <> y. Furthermore, the two loop
scalar field counterterm is given by

1 -, .
‘Cézt)(b = Eqbl)‘ikmng' aAmnqusj
2 U Nsis o ok Lo if(n25 ok -2k
+3 1- yid @' Lix (3 - 3y* )¢ — Z¢ Lir? (tr(0°3y") + tr(3107Y°)) p;

1 3\ .
+ (8—2 (1 - Zg)d’l tf(yié-' Y moy!)e;

1 I\, ) ) o o
+3 (1 - Z8> (@ w(F (T 3) -9y — ¢ (58 - (¥* 3 3)y7)o))
1 5\- L 1o, o
- ﬁ(l - —e)¢’ tr(5:0% (v 3)y7)pj — =" (510" - 05uy7 )b,
e 4 e
+¢ <0, ye&) (9.12)
The result (9.10) then determines

1 O T e
Z(l):—E{tr(yiyj),—yiyl,—yl)’i},

2 2
1 _ L e
a(()l)ﬂ = tgl)augl = —E{Ztr(yi(g)ﬂyj), yi(g)ﬂy’, yl(g)ﬂyi}, (9.13)
as well as the required contributions to M(()l)
] . B . . B .
M(gl),--’ == (ZAik/lMlk + tr(yiyk)Mk/ + M;* tr(yky-’) — 2tr(8"yi 8Hy/)). (9.14)
In consequence at one loop from (9.13) using (8.16)
. o1 o1, o
pydg! = —{tr(yidy’ —dyiy’), 5 Oidy' —dyiy’), 5 (v'dyi = dylyi)}. (9.15)
From (9.14) using (8.18) and (8.21)
8\Vdg! =0, (e;/Vdgldg”)./ =2u(dyidy’), (9.16)

and also

. 1 _ . _
(6;7dg"), = 5 (u(5idy?) + tr(d5iy’)). 9.17)
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From the two loop result (9.11) we may obtain, as well as Z)((z),

1 1 o o 1 5\ . o
2 _ _ _ _ _ _
as? yn = _E<1 - 18) (V' iy 0.y — 0uy' V¥ 3i) + F(l - Za)y’ (37 9 wy’)yi

1 3 . Lo 1 1 - _ < ;
— s_2<1 — ZS) tr(y,-yf)(y’ auyj) + 8—2(1 + Ze)y’yj tr(yi 3uy])
< 1 1
~EZW0T, 20— 2000, —a,, Z0. ©9.18)
Also from (9.12)
. 1 .
a(()Z)q);u'j = _Ekikmn(g)p,)\mnkj

1 3\, o e o
- 2—82(1 - 1€> (tr(3iy k8 y”) — (35 ¥ 5y

+ (v 59 y7) — (58 5iv7))
1 1 e -
+ (1 - 18> (tr(3 (F 9 w3 )y?) — e ((V* T uvw)3iv?))
— 2% T 2507 — 20 all gt — ag gt 2507 9.19)

Furthermore,

. 1 .
M(gz)ij = _Ea)\ikmn ' 8)\mnk]
2

1 ; 1 .
-5 (1 - Ze)k,-,ﬂ (33 - 9y*) + Z)vik[j (tr(2%31y%) + tr(70%y*))

- i(1 - %e) (t(853 - Y kdy”) + te(3xy* a5 - 9y7))
- (1 3¢ wtase- av) + (o - 05507)
+ (95 - Y59y + eyt - 95iy7))

F o (ot 3iay’) + w05 Fos)

+ r(edy" - 5i0y7) + (05 - Y 05:y7))

— (AR (7 (500 )

F (ot 050+ (o505 5i0)

= (025" — ag"s") - (0257 + 4" )

Letting in (9.13), using (6.19),

) L —_— o N
wyi =Y 0 uyi + ¥ ayuyi +y'yiagui’ — Eaxuylyi - Eylyiax;u

o )
lauyiﬁyl

ot



480 1. Jack, H. Osborn / Nuclear Physics B 883 (2014) 425-500

(5 0 uy7) > (5 Duy’) = (5 T 37 + te(Fiayuy’) — trlayu iy’
1 T .
= S (T )agu! = Sagu* (5ey’), 9:21)

we may verify that the RG equations (8.12) are consistent with the double pole terms in (9.18)
and (9.19) with w = 0 to this order. The double e-poles in (9.20) are also determined by (8.19).
The two loop results (9.18) and (9.19) then entail

1, .. . _ . 5. _ . o
(pydg"), = g (5,375 = dy'5;y751) = 23" (3,dy7 — d5iy')5i

3 N T
+ 5 w(Fiy’) (v'd5) = dy'5)) + 3355 we(Fidy! - d3iy),

—_

(P}z)dgl)wj = _Z( k™ A — AAi™ A )

3 _ B . B _ . B _ . .
+ Z(tr(yiy"ykdy’ ) — te(d3i Y 5ey?) + e (Gey* idy’) — tw(y* edyiy’))
1 _ _ _ . _ N
— 5 (i (i = dy*5)y7) — (v a5 — dy*5) 5y ))- (9.22)

A related calculation, which was extended to three loops, was described in [15]. Also from (8.12)
we obtain

vV =p® =0. (9.23)

A useful check is to restrict (9.15) and (9.22) to the supersymmetric case (5.17), where, with
a similar notation to that in Section 7,

| = i v j
(pﬁl)dgl)Susyi] = 5(_(YdY)iJ + (dYY)i])’

. 1, - _ . - . _ _ . _ _ .
(pfz)dg’)Susy,.J = 5((YYYdY),~f —@YYYY) + (YYdYY) — (YdYYY))).  (9.24)

These results are in accord with (7.4), using (5.21).
The condition (2.52), which links different loop orders, provides a further verification of the
results (9.15) and (9.22). It is easy to check that p}l)ﬂ(l)l =0 and also

(08" M), =—(p}"8'®), = %fiyjijy’ikyk + %&iy’ikyk tr(y'5;) — conjugate,
(078" D)7 == (0] ') yi7 = 228" (5" Fuy”) — %Aik’""xmn” u(51y7)
+ Z(tr(y,-ykyky’) +tr(ey* 7iy')) tr(31y7) — conjugate. (9.25)
From (9.20) we may also read off
(877dg"), = —aan! (r(d5iy*) + u(51dy*))
+ %tr(yi (dy“5i + " d3e)y/) + %tr((dykyk + 5kdy*)3iy7),
(Egzj)dgldgj)ij = %d)\ikm”d)\mnkj — hir" tr(dy,dy*)

3 : j
— 5 (te(dFiy* 5idy?) + eyt didy”))
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tr(Fiy*dedy”) — tr(dyidy* ey’
tr(dyey* yidy’) — tr(Fedy*dyiy’)
1 . .
—3 tr(Fidy* Frdy’) + tr(dF; y*dey’)
+tr(Fedy* 5;dy7 ) + tr(dFeydgiy’))
— wr(Fidy*dyiy’) — tr(dyedy*yiy?). (9.26)
Reducing (9.16) and (9.26) to the supersymmetric case

(€17 M dg' dg”)gi? = (@YAY); 7,

(e1/Pdg’dg”)y i/ =—(dYYYdY);/ — (dYdYYY);/

Susyi
—(YdydyY);/ — (YYdYdY);/, (9.27)

which agrees with (7.5).
The results are compatibl;: with the consistency relation (2.54) or (8.23). Assuming (9.17),
and for simplicity dg/ = (dy’, 0, 0), then

(£ﬁ<1>9;1)d81)ij = %tr(iiykikdyj) + %tr(ikykiidyj)
+ %tr(iidy" ey?) + % tr(Fedy* i y/)
() u(rdy?) + 3 (50 n(5o),
(v 01" dg"),) = nisl tr(Fudy*) + %tr(&iyk) tr(edy’) + %tr(&fdy") t(Fey’),
((0f"2) 05" dg"),’
= %tr(&idyk&kyf ) + }Ltr(ykdykyiyf )+ %tr(yiy") tr(Frdy”). (9.28)

The sum is then equal to (852) + e}lj)ﬂj(l)),-jdgl, as required by (2.54) to this order.
Similar calculations determine X'. At one loop there is no dependence on the couplings and

1 v v ) 1 j i
X(a,M)(l)za(tr(fq’; Fown) +20 ()" Fyuo) +2u(f3 fx,w))+gM,'/Mj, (9.29)

giving E(f]) and L’;}I) in (8.24). Two loop contributions to X, which determine the leading con-
tributions to Ay s, Py, Jr, Ky in (8.24), may also be undertaken within the framework of [35].
For the scalar/fermion theory determined by (9.2) there is just one two loop graph involving only
the Yukawa couplings. For zero a,, M this gives

w®=_ / dxdly tr(y' ()3 () tro (S () S(—5)) Go (). (9.30)

Since try (S(s)S(—5))Go(s) = —%32G0(S)3 the divergent part of (9.30) is determined by using
(9.8) and gives, after rescaling according to (5.7), X(g)(z) = 61—8 tr(azyiazy,») as was obtained in
[9].

Extending this two loop calculation to include the additional contributions involving the back-
ground gauge fields a,, and also M gives
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X(g.a,M)?
_IL pripzay g 2 (142 DAY
= ggtr(D y' D y,-)+ 362 + — 12 tr(Duy Dv)’j)qu i
2 7 ; _ P
+32 (1 - E€> (tr(Dpy' £ Dv3i) — r(Dpy' Doy 1))
2

1 1
82<1—18>M1tr(D 51 Dur') + 9 Ml (5(7, D7) + w(D25,)

1 . _ . 1 1 i _
— g(tr(y’ ff;vflp/wyl') +tr(yl)’if)’<wfx;w)) — @(1 - )tr((f’” )l(f;wy)i)
1 - ) 2 1 o .
te w((fw)'5) f4 " + 8—2M/kle’M1’ + 8—2(1 - §5>Mi] (3" ) My,
9.31)

which is consistent with the general form (8.24). The RG equation (8.25) provides a non-trivial
check of the double poles in ¢ present in X'® which are determined in terms of (9.29) and the
one loop results (9.15) and (9.16). In the O(f?) terms it is useful to note tr((f““y)ifwﬂvyi) =
—tr(y fyuv(F*'9)i), with similar relations for fy — fy, fp. For (wy)’, (w¥); = 0 the O(f?)
contributions are just the two loop Yukawa contribution to the gauge beta function [26,36].

The two loop contributions to X and Y* are determined as in (2.61). This gives using from
(8.35) and (8.37)

2 .

GVdgldg! = AP)dg!dg?’ = 3tr(d)7,-dy’),

sPdgld'g’ = —g(tr(dyid’yi) + te(d' 7idy')). (9.32)
For terms involving M using (8.27),

(J(z)dg ) j = tr(y;dy’ )—i—tr(dyiyj), (K(z)dgldg ) ’—tr(dy, dy’ )

‘ 5. . .

(Lidg"),) = =5 (t(5i dy/) + uw(d5iy’)). ©-33)

while for the f,, terms, if P;;, Q; are decomposed as in (9.1),

5 . 4
PPdgl d'g’ {—Eu(dyi d'y/ —d'y;dyl),

7 7, .
T —(dyi d'y" —d'y;dy’), I—S(dy‘ d'y; — d/y’dyi)},

2 5 _ 7 _ 7 i - P -
0 dg’ {—ﬁ (3 dy/ = dyiy’), = (i dy' = d5iy'), =5 (dy'5i = dyi)}. (9.34)
It is easy to see that J; @ — 9(1) 9}1) . /31(\/11) in accord with (2.72) at this order. Also
ngj)(a)g)J =—1w- ﬂ(fl) ; ) as required by (2.66b).

At three loops we determine for simplicity just contributions independent of a,, M. For the
quartic scalar coupling there is a single vacuum graph

WS = 3 / dx dy ai ;M () () Go(s)?, (9.35)
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which gives, using (9.8) for n =4,
X, = liazxi K% (9.36)
e 144
At four-loop order the vacuum graphs involving just the scalar couplings also give

1 .. ..
w = T / dx d?y d?z (0™ ) mn ™ DA (2) 4+ 2™ DA™ () Ata™ (2)

+ 8 i ™ () 2™ (VA (2))

x RGo(x — 2)*RGo(z — y)*RGo(x — y)?, (9.37)
where
1
RGo(s)? = Go(s)? — ——8%(s). (9.38)
812¢

The additional pole term in & is necessary to ensure subtraction of one loop sub-divergences
and would be generated by appropriate counterterms consistent with minimal subtraction. Using
results from Appendix D the divergent part of (9.37) determines
X A 4 _ 1 1 11 1 82 A mn)\ kl 4)\' kn)" Im 82)\. ij
(A) =2 +E8ﬁ (ij mn T 4him jn) ki
11 .
_ g % ()»ijmn 32)\mnkl + 4)\imkn82)»jn[m)82)vklu ) (9.39)

It is easy to check that (8.25) determines the double poles in (9.39) using (6.4) and (9.4). (9.39)
gives (6.10) with G = —7/216.

At three-loop order there are also further vacuum graphs involving solely the Yukawa cou-
plings. There are just two relevant graphs which contain two and one fermion loops giving at this
order in addition to (9.35)

1 _ _
Wy =2 / dlx dly (5 (0)92Y 5 (x, ) (5 ()82Y i (v, 1)),

1
w :—g/ddxddy(trtrg()_zi(x)a~8ny,- (X, )5-8y5; ()oY, (v, )50 )
Ftrtrg (V' ()6 -85 Y5, (x, )0 -3y ¥ (159, Y5, (v, x)a-x ), (9.40)

using (9.9) with
Y/ y) = / 472 RGo(x — 2 (2)Golz — ). 9.41)
From (9.41) it is easy to obtain

Yy, )(=97) =RGo()* f (). (9.42)

The analysis of (9.40) is more involved than obtaining (9.31) or (9.36) and is described in
Appendix C by obtaining formulae for the local e-poles which arise from products of Y, with
derivatives. Thus
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_ 2 5 ‘ o
X (v, )P = 92 (1 + E8> r(y;0 y’)tr(azyjyl)
1 25 o

+ @<l BETX tr(azyiazyf)tr(yjy’)

+ L(tr(aZy,yf)tr(a yiy') + u(30*y)) uw(3;0%y7))

36¢
2 7

" @<1 - Eg) (tr(auyla Y )tr(al‘yfy )+tr(82y oy )tr(y/auy ))
2 5 ) ' o ] |

9 <1 ! ES) (8" 5:0,uy7) (ur(975,") + tr(5;6%y7))

1 _ . _ . _ . .
~ % (tr(0" ;i 82y1) tr(y;jo.y') + tr(azyial‘yf) tr(9,5;y"))

4 5 35 _ . _ : _ :
+ o (14 e 1 @505 ) (0,505 ~ w(2.5,,5')

+ i(l — le — £82> ("5 9,37 ) tr(3"5;3,)")

3e3 4
1 _ . B .

+Ktr(8“y18 Y ) (tr(8,78vy") + tr(8, 5,8, 5")), (9.43)

and
3 1 13 j
e NP = s (1- 3¢ r(825:0%y' 5,57 + 8%y 8% 51y7 )

1 7 2.0q2 Jj 2. ja2

+@ 11— Es tr(ylayay/y +3yyy8y/)

- mtr(azyiy’ 375,y + 502y 5,027 + 9%y 5977 5 + v 97537 975,)
1 1
02 <1 — —28> tr(8“y,3 y Buyjyf + 923;0My! yJBMy

+ Ry 975:0,y7 5 + 02y 95y ,5;)
1 5 _ T
* 182 <1 + §8>(3“yi3uy‘(3 iy +73;9°y7)
+ 0ty 8,5 (929 5 + 7 925;))
2 7 41 2 - ; - i - i
+ @(1 TR 144t )tr(a“yt3”y’ (0,300 )" = 8,50,y7)
+04y 9”5 (0,3 0,5 — 3,7 0,55))

1 o o
- Ftr(a“yz 3y 0" y;0uy! + 0"y 9,5i0"y! 0,y;)

1 _ . _ . _ .
+ 182 tr(aﬂ)ﬁ'avyl (8/1)’javy] + 8v}’jauyj)
+ 0"y 0" 5 (3.7 00 3j 4 00y 0, 37))- (9.44)
The double and triple e-poles are determined by (8.25) starting from (9.31) using the one loop
results (9.15) and (9.16).
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From (9.36), (9.43) and (9.44) we may determine X (g)©® and Y*(g)®. In particular the
82g'3%g”’ terms give the three loop contribution to A;; which involves both the scalar and
Yukawa couplings

(3)dg1dg 4d)\-ijkld)"klij
L3 5 dy v 4 dyidvi5,) — - (5 dyid5 v/ +dvi 5 vids
—%tr(dyidy yiy' +dy'dyiy )’j)_ﬁtr(}’id)’ dy;y’ +dy' 3y’ dy;)
1 o . . o . . .
— 5 (@i dy;y’ +dy'yidy’ 3+ 5idy' 5y’ + dy' yidy’ 3;)
25 N iy LD (= - i
13 tr(dy,-dy )tr(yjy )+ §tr(yl~dy )tr(dyjy )
1 . . P
+ g(tr(dyiy]) tr(dy;y') + tr(yidy’) tr(y;dy")). (9.45)
At this order there are extra terms necessary to calculate G ;. Using results in (9.15), (9.17)
and (9.32), (9.33) then, since S(7}, + 3AY) =0, (2.74) gives
1
3 3 1 2 2)
Gg}dgzng:(Ag; 2(0) KAQ _ @ g )>dg]dgj

1 kl
= ﬁd)‘lj dAiy; i

13
— 3¢ r(dmidy 5,57 +dy'd5iy5))

= tr(idy’dy;y/ +dy' 5y dy;)

9
25 . _ 7 j _
R tr(dyidy )tr(yjy ) — §tr(y,~dy )tr(dyjy )
1 . , . ,
5 (tr(dyiy-’) tr(dyj yl) + tr(y,- dy-’) tr()_)jdyl)). (9.46)

This gives the results in (6.7). The additional contributions are crucial in ensuring that the metric
satisfies the necessary consistency conditions.
For
grsdg’dg’ =u(31y'), (9:47)

then

(Lym png10)dg"dg” = tr(dyidy' 5, y7 + dy'd§iy/ ;)
+2tr(Fidy'dy;y/ +dy'5iy/dy;)
+ 2tr(dyidy’ ) tr(y;y") + 4 tr(3idy/) tr(dy; '), (9.48)
which determines the possible freedom in Gg 7 shown in (6.8).

Using (8.34) we may determine from (9.32) and (9.45) the two and three loop contributions
to W;. This gives
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2 I 1 = i
wPdg! = d5 tr(yiyl),

3) I kil v
Wide ‘d(mM it = g G ()
288

Restricting to the supersymmetric case according to the prescription described in Section 5
then (9.31), neglecting gauge fields and M terms, gives

11 _ . . .
— — 'y + y’m’w))- (9.49)

_ 1 _ .
Xy, Vg, = c(@279%y) (9.50)
while from (9.36), (9.43) and (9.44)
3 Liso2o iia2pyy i
X(Y, Y)Susy———(YY), (8°7a%Y) ! 8(Y8 Y),/(8°rY);!

1,,- . _ . _ . _ .
—~ g((Ya“Y)l.f(azYauY)j’ +(0"7Y),/ (3, Y0%Y) )

1 _ . _ .9 _ . .
— E(EWYB"Y)I./(E)MYBVY)j’ + E(aﬂyaw)if(auya#y)j'
— 19—6(8“Y8,4Y)ij(8”178,,Y)j". (9.51)

This three loop result has been verified by an independent superspace calculation.

In the supersymmetric case the gauge field contributions at two loops may be obtained from
the calculations in the scalar/fermion model by letting ay = —af = agy so that the results in
(9.34) may be added to give

. 1, - _ .
@) g, 14,7
(P7dg'd'g")gyyi’ = Z(de/Y —d'ydy)/,
. 1 _ _ .
@
(048" )gppy” = @Y = YY)/, 9.52)

Assuming (7.28) then (7.20) gives (AQ'dg’)susy = 22(dVY — ¥dY) so that 0@ — 0if z =
— 5. If this is done, from (7.29) and (7.31), a — —3, b — —1. Furthermore, from the O(f?)
terms in (9.31)

((’0 'B(l) )Susy = 2tr(a)2),
(@ BY - 0)gyy = —2tr(@* (YY) — %(Y xw)o(wxY). (9.53)

These results (9.53) together with (9.52) are sufficient to check (2.66b) with the three loop G
given by (7.26) and (7.31). The one and two loop expressions for By are compatible with an
extension of the NSVZ formula for the matter contributions to N =1 gauge B-function of the
form (w - Bf - @)susy = 2tr(a)2(l —2Y) — (Y *w)oGo(wx* Y)

10. Conclusion

In this paper we have endeavoured to show that the existence of a metric on the space of
couplings, for renormalisable theories at least, and the associated equations, which are related to
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gradient flow, provide significant constraints on S-functions and anomalous dimensions. These
results are applicable in the context of the standard model in that their application here provides a
partial check of the three-loop Yukawa g-function in [17]. For supersymmetric theories there are
additional constraints such as the metric being hermitian and Kihler which might follow from an
extension of the present discussion to superspace.

A critical issue which has not been analysed in any detail here is the role of anomalies which
render the assumption of invariance under arbitrary gauge transformations Gk invalid. This
is crucial for a more complete analysis of supersymmetric theories where careful analysis of
anomaly matching links IR and UV limits under RG flow [31].

In this paper we have avoided perturbative calculations on curved space backgrounds. Nev-
ertheless the techniques described here for three loop calculations of vacuum graphs with local
couplings should allow an extension to arbitrary metrics following [37] although as always the
calculational details are non-trivial.

Note added

It has been pointed out to us by Zohar Komargodski that the requirement that the metric be Kéhler in
supersymmetric theories should only be possible for strictly marginal operators. This suggests that (7.45)
be modified to

dY oG odY =dydyF +dY o HodY,

where H vanishes if By or By are zero.
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Appendix A. Higher loops in the Wess—Zumino supersymmetric theory

In higher loop calculations of the anomalous dimension y transcendental numbers, such as
£(3) in three or more loops, arise. These numbers are associated to diagrams with particular
topologies which are possible initially only at some minimal loop order £. The connection be-
tween particular transcendental numbers and a particular graph topology is valid only up to
scheme-dependent contributions to y and these need to be considered separately. For each such
non-scheme-dependent term y, contributing to y® =0(r*y?), which is proportional to a tran-
scendental number ¢ and corresponds to diagrams involving a topology which are not present at
lower loop orders, the equations simplify. It is only necessary then to consider the lowest order
T® and also T“*D to determine the associated contribution to A¢+2),

The simplest case is when tr(y; ) corresponds to a connected symmetric graph with £+ 1 loops
and £ Y-vertices linked to £ Y-vertices. Such graphs are edge transitive so that all 3¢ lines are
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related by an automorphism and are therefore equivalent. In this case y, may be recovered from
tr(y;) by cutting any line. This implies the identity, for any w;’ and with notation as in Section 7,

1 _ 1
tr(wy;) = ﬁ(a) *Y)odytr(y;) = Q(Y * ) o dy tr(yg). (A.1)
With B, = (y; * ¥) and T® given by (7.25)
dY o T® o0 B,y =tr((YdY)y;). (A2)

To ensure integrability in (7.9) it is necessary to assume T “*1 contains a term proportional to ¢
of the form

dY o T; od¥ = S%dydy tr(ye), (A3)
since then
Y oT@ 0By +dYoT; o ﬂg) = dy ur((YY)ye). (A4)
In consequence there is an associated contribution A; to A+2) given by
A= ltr(()_’Y)yg) = iﬁ(.“ 0 0y tr(y;) = iﬁg” o Oy tr(y). (A.5)
2 3¢y 3¢

For this case

—tr(yVye) + 4% 0 By =0, (A.6)
so that we must take in (7.51)

Ar=A,0BY, (A7)

where A, is part of A“*D . Hence from (A.5)

_ 1 _
AgodV = —dptiye) = 3V A) =, (A.8)

in accord with (7.54). In this case the metric G; = T; so that (A.3) ensures (7.45) is satisfied in
this case with
2

Fr = T tr(y;). (A9)

These results apply when £ = 3 for the term proportional to ¢{(3), yr3) = Dyp where
tr(y;3)) = %{(3)(Y3 1?3)1(3’3 , and also when £ = 4, according to [34], for the term proportional to
£(5), which satisfies tr(y;(s)) = —10£(5)(Y 74 Mg, With the vertices contracted as in the sym-
metric non-planar graphs K3 3, with 6 vertices 9 edges, and Mg forming a cube respectively.

At the next order there are additional non-planar contributions to ® which are proportional
to ¢ (3). These are determined by the corresponding term at three loops. To show this we consider
a contribution to y, in addition to the £-loop y; satisfying (A.1), at £ + 1 loops which is expressed
in terms of y; . It is sufficient to assume that the relevant term in y “*D has the form

il = AYum Y™y, (A.10)
with an undetermined coefficient A. As usual yg’ determines ,3; ;= (yg/ % Y) and hence we may

obtain d¥ o T® o ,3;); +dY o T9 o B, which is part of dyﬁ’g. There are also contributions
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dY oT; o ,B)(-,z), determined by (A.3), but it is necessary also to allow corresponding terms in

TUHD and K “+D_ Assuming these must contain the subgraph associated with v¢ they can have
the general form proportional to y,

dY o T/ odY = a; tr((dYdY)y;) + a2 tr((dY Y)dyy; ) + ez tr((YdY)dyy;)

+agtr((YY)dydyye ),
d'Y oK, odY =Bur((Yd'Y)dyy;) —d'Y < dv. (A.11)

To calculate dY o Tg’ o ﬂ)(_/l) + ,31(,1) o Ké odY we use the identities

1, -
(8" o =" 00y} = 3[7V). ] (a12

a special case of (7.8) valid for any y;, and

_ _ 1 _ _
w((FdY)BS) 0 dpye) = (YY) (dy BY) 0 Bp ) + S w([(Fay). 7 0)]ye). (A.13)

which may be derived from (A.1) and reflects that all lines in the graph for tr(y; ) are equivalent.
Combining all contributions to dyzilc gives finally

24, =Y, te((YYYY)ye) + Yatr((P )2y ) + Yate((YY)BS 0 5 7). (A.14)
where
YI=2a+01=2b+A=—-14ar+ 8,

1 1 1 1
Y2=a+Z(0t3+,3)=b—Z(Ol3+ﬂ)+§0l1=§(052+ﬁ),

1
i=as=3(e3—f). (A.15)

The equations for Yy, Y» give rise to integrability conditions once more so that we may eliminate
o1, 0y + B, a3 + B and then determine

A=-2, (A.16)

independent of a, b. Remarkably this agrees with the non-planar ¢(3) term in y®, after sub-
tracting scheme-dependent terms, obtained in [34]. Subject to (A.16)

Yi=4a -1, Y, =2a. (A.17)
At this order there is the freedom due to (7.18) arising from taking g = wg, for
-1
dY ogrodY = ﬁdydf/ tr(y;), (A.18)
which leads to an arbitrariness under variations
Aoy =Aaz=Aog=—-AB=w, (A.19)

giving AY; = AY, =0, AY3 = w. The corresponding variation in Aé follows from

1 _
By ogropl) = 5 w((PV)BY 0 dpvc). (A.20)
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For (7.28), dY o g o dY = zdY o dY = ztr((dYdY)), leading to (7.29) Aa = 3z, Ab = 67 then
also it is necessary that

Aop = Aoy = Aoz = AB =6z, (A.21)
so that AY; =12z, AY, =6z, AY3 =0. In this case

(By o Bev + Bev 0 By) =2u((T YT V) + (VY. (A.22)

[SSEIE

Ifa=b= —%, asin (7.47), (A.15) has the solution

ap=wm+B=a3+B=-2, (A.23)
but the metric G; obtained then from (A.11) cannot be written in the Kéhler form (7.45) for any

choice of oy = %(a3 — fB) making use of the freedom under (A.19). However if we also allow a
change of scheme as in (7.24) with T — TD and h — —y; so that

dY 08T, odY =tr((dYdY)y;) + tr((dYY)dyy;) + tr((YdY)dyye), (A.24)
then, taking B =0, ag = —1,dY o (T} +8T/) o dy =dY o Gjo dy = dydy F with
Fl=—u((YY)y;). (A.25)

The result (A.14) with (A.17) may also be expressed in the form (7.51). To solve (7.54) it is
sufficient to take

ApodY =utr((dYY)y;) +ve((YY)dyye). (A.26)
Using [(@ % ¥) 0 35, (w* ¥) 0 d5] = ([@, @'] % ¥) 0 3y then from (A.1) we may derive

tr(w(o' *Y) 0 dpy;) =tr(0/ (@ Y) 0 35y;) + tr([w, '] y¢). (A.27)
and hence obtain, with ©®® as in (7.63),

3(YA) —0P 0By =yl +w—0)X Yy + @ =0y (YY) +v(YY) %05y, (A28)
for ygf asin (A.10) so long as

2u—0)=A. (A.29)
Hence 3(1?A2) o 0By — O 0,32(-,1) = y{/ —y Wy — vy W if we take

O odY =2vd;ys, (A.30)

and

1
U—v=v—0=—-. (A.31)
2
Applying (A.31) in (A.29) gives (A.16) once more.

Using (A.26) and (A.30) in (7.55) gives a metric of the form (A.11) with

o) =2u=-2+726, ay=a3=4v=—-2+46,
oy =2v=—1+20, B=0. (A.32)
These results satisfy (A.15) for a, b given by (7.66) so that
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Yy =—3+449, Yy =Y3=—1+20. (A.33)
Since, with A® | A® given in (7.73),

—u(y V) + 4@ 0l =—u(y@y;) + A 0 87 =0,
tw(y D2y) = %tr((?Y)zy;),
AP o By =20tr((YYYY)ye) + ate(FY) 2y ),
Ao B =ut((FYVY)y) + %u w((PV)2y) +ote((YY)BY 0 dpye ), (A.34)
we may verify
Ap = —u(yVyl) —u(y®ye) +ue(y D?y)
+ 4P 0B+ AV 0By + Ao Y + AL 0 B, (A.35)

as required by (7.51) with H =0.
Appendix B. Derivation of local RG equations

Usually RG equations are derived by considering the response to a change of cut-off scale
or using dimensional regularisation variations in the arbitrary mass scale p which is necessary
for dimensions d # 4. For the equations in Section 8, which are related to broken conformal
symmetry, a slightly different approach is required. For renormalisable scalar fermion theories
in d dimensions £(®g, ®o, go, a0, Mo) can be chosen to be conformal primary under conformal
transformations so long as go, ag, Mo transform appropriately as well as @, ®g. The generator
of conformal transformations for this theory is then, for any conformal Killing vector v*,

1 d - 1 - ol
_DO,U = <£U¢O — ESUU¢O) . Téo + (LU¢O — 580U¢0) . E

d a0
+ (V49,88 + sovkrgl) - — + Lyagy - —— + LoMy - ——, B.1
( 180 v Ig()) Bgé va0u aa()p, vi1Q 8M0 ( )
for
1 v
LyDo= Uuau - Ea)g Sopy +0vAe | Po,
- _ - (1

L, Dy = U'uau¢()+¢0 Ea)l’f S +ovAg ),
Evaoﬂ = vvavaoﬂ + 3“1)”(10‘,,
[:vM()va‘aﬂMo—l-O'U(4M0— AgMy— MoAg), (B.2)

where v}’ = 8!*v"! and s¢ uvs 86, are the appropriate spin matrices. Ag, Ag are the canonical

dimension matrices for &, @ when d = 4 and in consequence £, has no explicit dependence on
¢ for each case in (B.2). It is easy to verify

[Do,v, Do,v'1 = Do,[v,v']- (B.3)
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The crucial assumption is then that £ satisfies'’
—Do,u L(Po, Do, g0, ao, Mo) = (v"*8), + doy,) L(DPo, Po, g0, ao, Mo). (B.4)

The derivation of finite local RG equations depends on the detailed form of the relation be-
tween @q, Dy, gé, aou, Mo and the corresponding finite @, @, g’ ,a,, M implicitly defined by
(8.1). Defining

0 d a

9 )
Dy = 088! -~ — Loty —— — LoM -~ — Lo - —— — L, —=,  (BS
VT8 el T e T T T a0 T 56 (B-5)

then Dy , may be expressed in terms of g’ Jau, M, D, @ in the form
Do,y =Dy + Dy, + Ds,,0,6, (B.6)

with Dy, Dy .6 as in (8.4). The commutation relation (B.3) ensures that the coefficients in D,
obey the required consistency conditions.
Since —D,Z = v*93,Z, —DyD,g' = L,D,g" then

—Dy®o = Ly P, _quSO = qu_jo’ _DUQOM = ﬁva0u~ (B.7)
However
~DyD*g" = (v"3, +20,) D?g" + 8%v, D¢, 3*v, = —(d —2)d,0,. (B.8)

As My may contain counterterms involving ng’ in general —D, My # L, My but taking this
into account

3 _
_(Dv +(d —2)d,0,D"g’ D21 )C(‘Po, Do, go, a0, Mo)

~ (vuau + 40v)£(¢0’ 607 g07 aOv M0)9 (B9)

where ~ denotes equality up to total derivatives. Subtracting (B.9) from (B.4) then gives

d
<8(T —Ds — Do — (2 — 8)3MO’DMg1 i

ng,)ﬁ@o, @0, 80, a0, Mo) ~0,  (B.10)

for o linear in x, which is identical to (8.3) for a suitable choice of total derivative contribu-
tions. As shown in Section 8 (B.10) is sufficient to determine the various contributions to D, in
particular

g0 =—ekigl. (B.11)

This is equivalent to the standard definition M% g!l 0 = ,é I when gé = ke (gl + L1 (g)), with

L' containing just poles in & and gives the standard form (8.5).
We assume also that (B.4) with (B.6) extend also to £y including also the field-independent
counterterms so that

(Dy + Do, + Doy 00,6 + v7 0y + doy) Lo ~

3 (@ X = 20,0,7), (B.12)

In a similar fashion to the above this leads to (8.25). (B.12) directly implies the broken conformal
Ward identities discussed in Section 4.

10 Thjs is the condition for £ to be a conformal primary, it dictates the form of the scalar kinetic term so that Lxo =
—d¢o - do + 39 (Bobo).-
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Appendix C. Calculations

Assuming continuation to a Euclidean metric the short distance divergent parts in (9.40) may
be obtained by using the integral formula

dz(x -2 -2 " f @

T2
1 1 N\ Ad—r—p+n
- —r A+u——d—n) 2 by (x,y)
m)r(u)Z ! ( ) !
+ terms analytic in s, (C.1H

for
1

bn(x,y)zfdtt%d’“r”’l(l 1) 2d—ptn= ‘(4 ) fx —15). (C.2)
0

To verify (C.1) it is sufficient to consider Fourier transforms with respect to x, y where

17 r—1d
/ddx ek (x2) 7 :n%dMsz) o (C.3)
ra \4

and on the right hand side the sum over n reproduces the left hand side within an appropriate
region of convergence. For generic A, u, b, satisfies

1
(s-3y+d—x—p+n—Dby(x,y) —nzaib,1_1<x, ¥)

1
= <§d —A— 1>bn(x, W—rtts C4

as well as the similar equation obtained by x <> y, A <> u. The t-integration in b, is con-
vergent when A, u < %d + n but it may be extended by analytic continuation. b, (x,y) are
smooth functions for y in the neighbourhood of x but there are poles for A, u = %d +n+p,
p=0,1,..., which reflect short distance sub-divergences. The poles present in the expansion
Clhati+pu= %d + n are generated by divergences for large z which should be cancelled by
the analytic terms assuming f(z) falls off sufficiently fast as z — oo.

For calculations here the divergent e-poles are obtained by using, for u an arbitrary scale
mass,

p i 1
3y (s2) TR _Z 55 a d) ( ) 8%(s) +0(1), (C.5)
i=0 nit

as ¢ —> 0 where «;, §; are assumed to depend on ¢ such that in this limit

8;i = 0(e), o = 0(8_p),

p
> s =0(1), r=0,....p—1 (C.6)

The conditions (C.6) are necessary and sufficient for the left hand side of (C.5) to have a finite
limit as ¢ — 0 and also ensure that the pole terms on the right hand side, of O(¢ "), r =1, ..., p,
have no u dependence. The result (9.8) is a special case of (C.5).
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The results given in (C.1) and (C.5) may be used to obtain the e-poles reflecting short distance
divergences in products involving Y ¢ (x, y), as defined in (9.41), and also

I7f(x,y)=/d”’zGo(x -2 f(@)Go(z —y). (C7
(C.1) gives the expansion, up to terms which are regular as s — 0,
1 1 3-d 1 1 nl—1d
Yr@,y) ~ ————————bso(x.y)(s ?
1EN ™ g a—ra—3 " D) s s zf( (%)
1 1 1
. — Y S e —1), C8
i3 N5 () ) €9
where
: 1
bf,,,(x,y)zjdn"“"d(l ( ) flx— (C.9)
0
and also
Py~ =2 (B0, Brays?) ()7 =1),  (€10)
A 4S5d—2¢ FOR —%d S ’ '
for
1
~ 1 n
bf,n(x,y):/dn"(l—t)”<132> fx —15). (C.11)
0

In both (C.8) and (C.10) terms which are regular as s — 0 have been subtracted to cancel an
IR divergence at ¢ = 0. The terms omitted in (C.8), (C.10) are then without any e-poles. In
consequence

I I ,
0 S a2 d 36— D& —d) 48 F@.

_ 111

Py~ S s 0, (C.12)

There is also a UV sub-divergence present in b 1,9 since

2
brole,y)~ —f(0). (C.13)

The various results in the text can be obtained from analysing the singularities in products

involving 17 f» Yy using (C.5). For two loop graphs relevant for calculating (9.18), (9.19) we used
2 ~
(167[2) Yf(x, y)guyyg(Yv x)gvx ~ ( 67 8vaf(x Y)guyy (y,x)
1
—2( - —€>f(X)g(X)5uu3 (5), (C.14)

and
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2 1
(1672)*Y (x, »)Go(s) ~ ‘?2(‘ — §8>f(x)8d(s),
1 1 1
(167‘[2)2Yf(x, ¥)9 4y Gols) ~ = <1 — ZS)f(x)BMSd(S) + Zauf(x)(sd(s),

« 1 3 1
(1672)7Go(5)9 1y Y 5 (v, x) ~ = <1 — Ze)f(y)auéd(s) + %aﬂf(x)ad(s). (C.15)

For the three loop integrals in (9.40) it is necessary to determine the e-poles in various prod-
ucts involving ¥ with Y, or G3. These can be reduced to

8 1
(167‘[2)3Yf(x, Y)Y (v, x) ~ §<1 - 58— —s )f(x)g(x)Sd(s) (C.16a)

(1672)°Y 1 (x, y)RGo(s)> ~—%<1 - %g) (f(x)3%89(s) + 8% f (x)8%(s))

+ —f(y)azsd(sx (C.16b)
3e

and with one derivative

4 11
(16n2)3yf(x, V)0 uy Ve (3, %) ~ —§<1 - 56— 182>f(x)g(y)8u6d(s)

— 1382(1 — %a) 3. (£ ()g(x))8%(s), (C.17a)
1 7
(16n2)3yf(x, ¥)9,yRGo(s)> ~ o7 (1 - Es) (f()8,8%8%(s) — 8,8% f (x)8%(s))

2
+ Q(amwazad(s) — 8 f(1)8,8,8%(s)),  (C.17b)

and with two derivatives
(1672)°Y (6, 3) 30y Yo (3, %) T
2 1 & ,
—(g<1 ¢ 1t )f(x)g(y)
1 13
~ 182 (1 - ﬁg> (f()gx) + f(y)g(y))>
X (28,9, + 8,,0%)8%(5)

1
+= 32 ( 8) (f(x)g(y) - —(f(x)g(x) + f(y)g(y))>8uau5d(s)
1
12
< 7
T 182\ 12°

1
(1 - Zs)awa ) (01 £ (80) + F()18())

@( __8>8;w (x)azg(x)-{-a f(X)g(x))Sd(s)
) F()8,8,8(x) + 8,80 f (x)g(x))8%(5)

t 32

1
+ 9_8(3;w8f(x) L 08(X) + 0, f () Dy g(x) + By f (x)8,.8(x))8 (s). (C.18)
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By integrating 8)%, 3}2, by parts and using (9.42) with (C.16a), (C.16b), (C.17a), (C.17b) and
(C.18) we may obtain

/ dx d?y h(0)02Y  (x, YK (7)Y g (7, %)

4 119 1
— (1 — - E52>a,Lha,Lfavkavg + gz duhduf (Bukdug + dukdug)

35
1+ Es — 144 )8,lh31,f(8ﬂk8‘,g — 0vkd,g)

T (1 - %) (%R fkg + hf ki)

+ 9% (1 + 15—28) (hd% f0 kg + 0°hfko>g) + %(azhfazkg +ho” fk3’g)

+ 91? (1 - 17—28> (0.hd* fo,kg + 9%hd, fkdug + hdy fO°kdug + d,hfo,kd>g)
_ ﬁ (1 + 15—28> (8,13, f8%kg + B, hdy, fkd%g + 9°hfd,kdug + hd® f3,kd,g)
_ é(a%aufaﬂkg + 9uhf 07kdug + 0,hd> Fhdyg + haufauk82g)>' (C.19)

In a similar fashion, neglecting possible e-tensor contributions,

1 -
—(16n2)3z / dx d?y tr, (h(x)o-8c Y7 (x, )50 yk ()0 -8y Ye (v, X)5-0)

g (4 7 4
dx( g (1= 156 = g ) duhv S @ukdog — Bukd,g)

1 1
— —03,hd, fo,kd,g + —0,hd, f(3,kd,g + 0,kd,8)
e e

1 13
— (1= 3%hd* fkg + hf ko>
+1882< 12 >( fkg +hfo°kd%%)

1
2 2 2 2 2 2 2 2
f 3hfko’g) — — (0°hf kg + hd> fkd
982( ) (hd* f3°kg + g) 365( [0 kg +hd* fkd*g)

+ 52 ( ) (9,h9? kg + 9% hdy, fkd,g + hdy, f37kdug + Buhf 3,kd%g)

1

+182

(1 +3 )(%haﬂfazkg + 8, hd, fkd*g
+ 9%hf 8,kd,g + hd* faukaﬂg)). (C.20)

Appendix D. Four loop calculations for scalar fields

The additional counterterms necessary for x-dependent couplings may be extended to four
loops for purely scalar field theories. For simplicity we assume here a single component real
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scalar field ¢ with interaction V (¢) = ﬁm“. For arbitrary A(x) the first relevant vacuum graph
is at three loops giving

1
w® — E/ddx d?y A()A(NGo(s)*!

~—— = [ dx 32082 (D.1)
(1672)3 ¢ 864

At four loops there is also just one vacuum graph which generates simple poles in ¢ and
therefore contributes to A;; and other terms in (8.24),

1
W = -4 / d?x d?y d?z ()X RGo(x — 2)*RGolz — y)*RGo(x — y)*,
(D.2)
for RG} asin (9.38). Letting

Y(x,y) = / d?2RGo(x — 2)*L(2)RGo(z — y)?, (D.3)

then using (C.1), in order to determine just the contributions containing poles in ¢ it is sufficient
to replace

Y(x,y) = Yo(x,y) + Yi(x,y) + Ya(x, ), (D.4)
where

1 rGarEd —4

Yo(x, y) = bo(x, y)(s2) "2
2d —2)*s3  T(d—2)?
_ l% 2\2—d i# d
TR (@) +2M) (%) + 16s3“x)8 (),
_ 1 TGArGd-s) 25— 3d
1 rEayriEd —e 3
R T e 2F(d _22)2 by, y)((s7)°7 2 = 1), (D.5)
d
where now
1
bn(x,y)zfdnl—%‘”"(l —t)l—%‘”"(%a?) A(x — 15). (D.6)

0

bg has the expansion

_TB—3d)? (2 11 . i
bo(x,y) = ﬂ(;()»()@ +)L(y)) - mz((s S9)2A(x) + (s - 9) )»(y))
34-5d 1
m@((s ) (0) + (- D)) +O(s6)>. (D.7)

Applying (C.5) gives
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1 7
(16712)4Y0(x, VGo(s)? ~ ~ 362 <1 — Ee) (A(x) + 1(1))9%9%8%(5)

—L(a QA + 3,80 (1)) (20,8 + 8,097)8% (s)
Sag \TH% wov ALYy Oy v

7 202 d
— A(x)$
+ 14483 O7A(x)8%(s),

(16712)4Y1 (x, V)Go(s)* ~ é((a%\(x) +9%4()) %8 (s) — %azazx(x)(sd(s))

(16712)4Y2(x, VRGo(s)> ~ —361? (1 — %)azazx(x)ad(s), (D.8)

and hence

(1672)*Y (x, y)RGo(s)?

~ — 1 E 2q02¢d 2q2 d
3652(1 + 128>((Mx)+k(y))8 8%5%(s) + 9%0°1.(x)8(s))
1
+ E(@zf\(x) +02A(1)) 028 () + 9705 (M(x)8%(5)) ). (D.9)
This gives
1 1 1 11 )
@ s d o 202425 2
w (1672)% 22 576/d x<<1+ 128>,\ 370°% — 3¢ (9°1) > (D.10)

Using (D.4) with (D.5) we may further find

1 1
(1672)°Y (x, y)Go(s) ~ ~32 <1 - Ze) (R (x) + 1(»))3%8% (s)

+ ia%\(x)(sd (s), (D.11)
3e

which is equivalent to (C.16b), and to a result obtained in [9], and also

- 1 3
(1672)° 7 ¢ (x, )YRGo (s)* ~ ~33 (1 - §e> (f) + £())2%6%(s)

+ L (1 — %8)82f(x)8d(s). (D.12)
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