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Let T be the forgetful functor from uniform spaces to completely regular topological spaces. 

We study T-sections, i.e. functors right inverse to T. We develop as tool the notion of spanning 

a T-section by a class of uniform spaces, and the order-dual notion of cospanning. Coarsest and 

finest uniform bireflectors and corefiectors associated with a T-section are characterized. Certain 

effects of the uniform completion reflector on a T-section are expressed in terms of the associated 
bireflectors. 

AMS (MOS) Subj. Class.: Primary 18A40, 54E15; secondary 54D60 

uniform space bireflector coreflector completion-stable 

spanning cospanning completion completion-true 

1. Introduction 

Let Unif denote the category of uniform spaces and uniform (i.e. uniformly 

continuous) maps, and Creg the category of completely regular (thus, uniformizable) 

topological spaces and continuous maps. Hausdorff separation is not assumed. 

There is the forgetful functor T: Unif + Creg. We study functors which equip spaces 

in Creg with compatible uniformities, i.e. functors F : Creg + Unif with TF = 1. Such 

F is called a T-section. 

The spanning and cospanning constructions (Section 3) factorize a T-section F 

as F = acp = b%* where a is a bireflector, b is a coreflector, P is the finest and %?* 

the coarsest T-section, and both a and b preserve topology. One main result (5.5) 

is that the bireflectors thus associated with F occur as a closed interval [pF, (~~1 in 

the partial order ‘coarser than’ for bireflectors. The dual result (6.3) is restricted to 

coreflectors that stay above the level of the eech uniformity. In Section 7 we let 

the completion reflector y act on the functors and show, e.g., that F is y-true (resp., 

strongly y-true) iff pF is y-stable (resp., (Ye is y-stable). 
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at the University of Cape Town. 
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Our general reference for uniform spaces is [23], for categorical notions [18]. 

Special terms are defined below. 

For X, YE Unif, X c Y means that TX = TY and X has coarser uniformity than 

Y. For functors G, H on the same domain and ranging in Unif, GS H means 

GX d HX for each X in the domain. Then G < H means G s H but GX # HX 

for some X. Join (v ) and meet (A ), where they exist, refer to G. 

U(X, Y) denotes the set of all uniform maps from X to Y. Obvious extensions 

of this notation are U(X, &) and U(%‘, Y) where &, .% c Unif. 

R, shall stand for the real line with its usual uniformity, and R = TIW, is the 

associated topological space. Likewise, 0, is [0, l] with its unique uniformity, and 

0 = TO,. 

All our subcategories will be full and isomorphism-closed, so we do not distinguish 

between a full subcategory and its class of objects. When S is a (co)reflective 

subcategory of C, the (co)reflector R : C + S is sometimes regarded as endofunctor 

R : C+ C. A birejlector is a reflector R whose reflection maps ix :X + RX are 

bimorphisms; in our setting ix will be the identity function on the underlying set 

of x. 

2. T-reflectors and T-coreflectors 

For &c Unif, init ~4 stands for the initial hull ( = bireflective hull) of &, i.e. the 

class of all X ~Unif whose uniformity is initial, i.e. weak, for U(X, &). The 

bireflector a : Unif + init & is given by: aX is initial for U(X, &). 

Dually, for B c Unif, fin 93 denotes the final hull ( = correflective hull) of %‘, i.e. 

the class of objects X final, i.e. strong, for U(%, X). The coreflector b : Unif + 

fin 58 is defined by: bX is final for U(%,, X). 

Any bireflector (coreflector) r which preserves topology, i.e. satisfies Tr = T, will 

be called a T-reflector (T-corejlector). 

2.1. Examples of T-reflector. (1) The precompact reflector p : Unif + Precpt = 

init {I,}. 

(2) Let m be an infinite cardinal. A uniform space is m-precompact if it has no 

uniformly discrete subspace of cardinality m. For fixed m these spaces form a 

T-reflective subcategory. In case m = NO we have just Precpt. The K,-precompact 

spaces are also called separable, and the corresponding T-reflector is denoted 

e [23, p. 129; 251. 

(3) Another T-reflector with a favored symbol is c: Unif + init {R,} [23, p. 129; 

251. It is clear that p < c < e. 

(4) Some general ways of creating or changing bireflectors in Unif may be found 

in [ 10,21,22,24]. 

2.2. Examples of T-coreflectors. (1) Recall that p denotes the finest section of T. 

The T-coreflector cpT: Unif + Fine defines the Jine uniform spaces. 
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(2) A uniform space is sub$ne if it admits a uniform embedding into some fine 

space; equivalently, if it admits an initial map into a (separated) fine space. The 

subcategory Subfine of these spaces is T-coreflective. (The proof in [23, p. 1231 is 

restricted to separated spaces, but can readily be adapted by using the separated 

reflection.) For a generalization, see [ll, p. 1001. 

(3) The locally fine uniform spaces [23, p. 1271. 

(4) General methods of constructing T-coreflectors are described in [15, 1.11 and 

[16, 1.11; and [17, 951 gives a technique of modifying one to get another (see 

especially [17, 5.41). See also [lo, 11, 13, 14, 21, 22, 25, 27, 281. 

2.3. Proposition. (a) For a birejlector a: Unif+ init d these are equivalent: 

(1) Tu=T; 

(2) 0, E init &; 
(3) 0, is uniformly embedded in some A E d; 

(4) Precpt c init &; 

(5) psa. 
(b) For the coreflector b: Unif+fin 93 these are equivalent: 

(1) Tb=b; 

(2) Finecfin 933; 

(3) b<pT. 

Proof. Standard; in (a), (2)=+(3) by the Hahn-Mazurkiewicz theorem [19, p. 

1291. 0 

3. T-sections, span and cospan 

Trivially, if the functor F : Greg+ Unif is defined by F = acp (or F = b%*) for 

some T-reflector a (T-coreflector b), then F is a T-section. We show in Proposition 

3.2 that every T-section has both these representations. 

Let X E Creg. The uniform space %*X is defined to have the uniformity initial 

for the bounded continuous maps from X to R,. Equivalently, %*X is initial for 

C(X, 0) to 0,. However, as set of functions C(X, 0) coincides with U((pX, 0,). Thus 

%*X is initial for U((pX, 0,). This idea is extended and dualized in Proposition 3.2. 

3.1 [3,4]. The functors %‘* and cp are T-sections, and if F is any T-section, then 

%*S FCrp. 

Proof. The claims for cp are clear. Since T preserves initiality, 7%*X is initial for 

C(X, 0). But the completely regular X is also initial for C(X, 0). Thus ZV*X =X. 

To see that %?* s F, consider a map g in the initial source U(‘%*X, 0,). Then 

FTg E U( FX, FTO,) = U( FX, O,), and so %*X s FX. 
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3.2. Definition and Proposition. (a) Let & c Unif have 0, E init d and let a : Unif + 

init d be the associated T-rejector. Define (&) : Greg+ Unif by: 

(&)X is initial for U((pX, SQ). 

Then, (a) = (init ~4) = acp, and this is a T-section, called the T-section spanned by &. 

(b) Let 94 c Unif have Finec fin 93 and let b: Unif+ fin 93 be the associated 

T-corejlector. Dejine [ 931: Creg + Unif by: 

[ B]X is jnalfor U( 8, %?*X). 

Then, [a] = [fin 931 = b%?, and this is a T-section, called the T-section cospanned by 

6%. 

Proof. Immediate, in light of Proposition 2.3. 0 

Thus, to say that the T-section F is spanned by & (resp., cospanned by 33) is to 

say that F = acp (resp., F = b%*). 

3.3. Remarks. The spanning construction was used by HuSek in [20], by the first 

of the present authors in [2-71, and by us in [8]. (The term ‘spanning’ comes from 

L61.1 
That the spanning construction yields a T-section in Proposition 3.2(a) follows 

from the fact that T preserves initiality; this was analyzed in [3,4]. But T does not 

preserve finality, and consequently a strict categorical dual of spanning fails to give 

correspondingly dual results. The notion of cospanning introduced now in Definition 

3.2(b) is an order-theoretic dual; it is contrasted with the categorical dual in the 

following proposition. 

3.4. Proposition. Let 93 c Unif with Finec fin 93. Let b be the T-corejlector onto 

fin 93. Let the functor G: Greg+ Unif be dejined by: 

GX is jinal for C( T.93, X) from SB. 

Then the following are equivalent: 

(1) G=[Bl; 
(2) G is a T-section; 

(3) b>‘%*T. 

Proof. (l)+(2) by Proposition 3.2(b). 

(2)*(3): Let G be a T-section. For any Y~Unif we have: 

bY is final for U(93, Y); 

GTY is final for C( T%l, TY) from 9% 

Since the functions in U(%, Y) all occur in C( T93, TY), it follows that bY has 

finer uniformity than GTY. Moreover T(bY) = TY = T( GTY). Hence bY 3 GTY 

By 3.1, GTYa V+TY. Thus ba %*T. 
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(3)+(l); Let bz ‘Z*T. Compare: 

GX is final for C( TB, X) from 93); 

[91X is final for U(B, %*X). 

The functor T induces a bijection from U(B, %*X) to C( TB, X) for each B E 9% 

To see surjectivity, consider g E C( TB, X). Let f= (%‘*g) 0 iB where iB : B + %* TB 

is given by B = bB 2 %?*TB, with TiR = lTR. Then fg U(B, %*X) and Tf= g. It 

follows that GX = [!B]X. Cl 

There are important examples (see Examples 6.1) of T-coreflectors which disobey 

the condition b 2 %‘*T of 3.4. Therefore we have to adhere to the notion of 

cospanning as defined in Proposition 3.2(b). (The condition may as well be called 

b > %‘* T because %Y* T is not a coreflection.) 

3.5. Proposition. Let F be a T-section. Then, F is both spanned and cospanned by 

range F. 

(The proof is now routine.) 

We do not know whether F = (~4) = [d] implies d = range F. We doubt this. 

However, range F is ‘calculated’ from & in Corollary 5.6 below. 

3.6. Definition. Let F be a T-section. We denote by pF the T-reflector onto init 

range F, and by K~ the T-coreflector onto fin range F. 

That pF and K~ indeed preserve topology follows from Propositions 3.5 and 3.2, 

or directly. 

3.7. Proposition. Let F be a T-section. Then, 

(1) F = p+p = K~%‘*, and 

(2a) If F = acp for a T-reflector a, then pF s a; 

(2b) If F = b%* for a T-coreflector b, then b s K~. 

Proof. (1) follows from 3.5 and 3.2. 

(2a): F = aqqrange F c range ajinit range F c range a (since init range a = 

range a), i.e., range pF c range a, i.e., pF S a. 0 

3.8. Remarks and Examples. (1) Even for quite ‘simple’ F, the pF and K~ can be 

unfamiliar and difficult to ‘compute’ (whatever that means): While pq* =p (clearly), 

K%* is not familiar; and K, = cpT (clearly), while pq is not familiar. 
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(2) Not every T-reflector occurs in the form pF. An example is the T-reflector c 

onto init{R,} (cf. 2.1 above). To see this, consider the T-section %’ = ({R,}) = ccp. 

(The notation % is from [ 12, p. 2191.) Ifthere were F with c = pF-, then F = p.q = ccp = 

%. So it suffices to show that c # p%. Indeed, II%, = CR, #p&,, because p&2,, is 

precompact, i.e., each uniform g : Iw, + ccpX has precompact range. (If not, there is 

countably infinite uniformly discrete {x, 1 n EN} in g(oB,), then uniform h : ccpX -+ [w, 

with h(x,) = n2-use [12, 15.15(b)] to extend X,H n2-so that h 0 g E U(aB,, LQ,); 

but h 0 g grows too fast for that.) 

(3) So, one wants a characterization of the pF’s, or, what is the same thing, a 

characterization of the T-reflective subcategories of the form range pF = init range 
F. We don’t think there is a characterization in particularly familiar terms, but 

Section 5 below is a partial response to the issue. Observe that the conglomerate of 

all T-reflectors falls into equivalence classes under the relation a, = a,(~ a,~ = a2cp. 

The equivalence class of any a has a bottom, pF, where F = ucp, and we shall see 

that it also has a top, called (Ye in Definition 5.2 below. It would seem rather 

exceptional for such an equivalence class to collapse to a single member, as it does 

in the case of the precompact reflector p. 

(4) Similarly, not every T-coreflector occurs in the form K~, but this has two 

aspects. 

First, K~ a %*T always holds (this is easy to see, and also follows immediately 

from Propositions 3.7 and 5.4), while not every T-coreflector b has b 2 %*T. In 

fact, both the subfine and the metric-fine coreflectors fail this condition; see Examples 

6.1 below. 

Second, there are T-coreflectors b 2 %‘*T with b not of the form K~. Note that 

KF is the top (i.e. finest member) of an equivalence class of T-coreflections under 

the relation b, %* = b,%*. Again, it seems unusual for such an equivalence class to 

collapse to a single member, as it does for the fine coreflector cpT. See Section 6, 

Remark 7.14(4) and Proposition 7.15. 

4. Down-closure and up-closure 

We examine a construction, J (used in this context in [3,4]), which is much in 

the nature of things for further analysis of factorizations F = ucp (and, roughly 

dually, t, for F = b%*). 

4.1. Definition. For tic Unif, the down-closure of &, denoted J& is defined by: 

X E id means X s A for some A E &. If J,& = SQ, we say that d is a ~-class. 

Dually, we define the up-closure T93, and ~-class. 

Clearly L(J) = &, and T(t) = t always. 

4.2. Proposition. Let SQ, 93 c Unif. 
(a) rf d is birejlective, so is J,&. 

If d is T-reflective, so is id. 
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(b) If % is corejlective, so is t93. 

If 93 is T-corejlective, so is T!33. 

Proof. (a) We can suppose ti = init SQ, and show init la c J&. So let X be initial 

for U(X, &ti). Write U(X, &a) = {h : X + Aj}j with A,: s A, E 4, and let Y be initial 

for {h : X + A,}, (with an abuse of language). Since TAj = TA,, we have TX = TY. 

Also X is coarser than Y, so that X d Y. With YEinit &‘=ti we have XEJ,&. 

The rest of (a) follows from Proposition 2.3, and (b) is roughly dual. 0 

4.3. Examples. (1) Let m be an infinite cardinal and g(m) the T-reflective sub- 

category of m-precompact spaces from 2.1(2). Clearly Jg(m) = g(m) =init 9(m). 

(2) Clearly &range Z* = Precpt. 

(3) The class init{cpTR,} is not a $-class: R,~~init{rpTR,}, since aB,< (pT[W,, 

while [w, E init{cpTR,}, since U(Iw,,, (pT(W,) consists of bounded functions, as dis- 

cussed in Remark 3.8(2). 

We do not know whether init is down-closed, but doubt it. 

While, $init{cpTR,} = Jinit{R,}: As noted above, Iw, G (pT[W,, whence by Proposi- 

tion 4.2(a) $init{R,} = &init{cpTR,}. Conversely, by [9, Theorem l] (or in other ways) 

(pTlR, E init( whence J,init{cpTR,} c &init{R,}. 

We have, so far, been doing our best to pretend that ( ) and [ ] are dual, and 

that J, and t are dual. This is, of course, a fiction, the basic fact being that cp is 

left-adjoint to T while %?* is not right-adjoint to T (and T has no right-adjoint). 

In our considerations, this manifests itself in the facts that T-reflectors a always 

satisfy a s pT, while for some T-coreflectors b we have b & %‘* T; the latter confuses 

the interplay between [ ] and 1. So, for Section 5 below, we shall simply assume 

b 2 Ce” T when we need to. The issue of what happens without that assumption is 

discussed in the brief Section 6. 

4.4. Proposition. (a) For any d = Unif, we have (~4) = (.l&). 

(b) IfBcUnif satisjies B~%*TBforullB~%, then [C&‘]=[~%‘]. 

The proof is routine. 

If Fine c fin 93, the condition in Proposition 4.4(b) again amounts to b 2 %* T, 

where b is the T-coreflector to fin 9% 

5. Largest spanning and cospanning classes 

Given ti, 3 c Unif, let max ~2 = {A E d 1 (VA’ E ~4) (A G A’+ A = A’)}, and dually, 

min 53 = 1 B E 53 1 (VB’ E 93) (B s B’J B = B’)}. For general SQ, %‘, these would appear 
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to be uninteresting. Also, for general &, 3, it is exceptional when iti is bireflective, 

or when Ta is coreflective. So the following indicates how special are the classes 

range F, for T-sections F. 

5.1. Proposition. Let F be a T-section. Then, 

(1) range F={XEUniflX=FTX}. 

(2) &range F = {X E Unif 1 X s FTX}, and 

Trange F = {X E Unif 1 X 3 FTX}. 

(3) range F = maxi range F = min? range F. 

(4) &range F is T-reflective, and Trange F is T-corejlective. 

Proof. (1) is clear. 

(2) YGX = FTXjFTY = FTX = X 2 Y; the reverse is clear. The statement 

about t is dual. 

(3) If FTX=X<X’s Y= FTY, th en FTX = FTY, whence X = X’; the reverse 

holds by definition. The statement about t is dual. 

(4) Let X E init J, range F. Then there is an initial source (6 :X + q)jsJ with 

q E J range F, i.e. Y, G FT?. This gives hj : FTk; + y with Tn, = 1. Then 

(h, 0 fl4 : FTX + k;)jE, is a source whose T-image coincides with that of the given 

initial source. It follows that X G FTX, i.e. X E & range F. Thus & range F is initially 

closed, hence bireflective. It is T-reflective because 0, = FO E 1 range F. Dually, t range 

F is finally closed, hence coretlective; it is T-coreflective because it clearly contains 

Fine. 0 

5.2. Definition. Let F be a T-section. We shall denote by CY~ the T-rejector onto 

1 range F, and by wF the T-corejlector onto 1 range F. 

5.3. Proposition. Let F be a T-section. Then, for each X E Unif, we have 

c-u,X = X A FTX and wFX = X v FTX. 

Proof. We show that X H X A FTX is the reflector for & range F. Clearly, X A FTX E 

J range F, and clearly X = X A FTXQ X E J range F. Now consider the uniform 

mapi,:X+XAFTXwithTi,=lTx, and any uniform g : X + Y with Y = Y A FTY. 

Then we have the map g : X A FTX + Y A FTY = Y with g 0 ix = g. Uniform con- 

tinuity of g follows from that of g and of FTg. 

Dually, wFX = X v FTX. Note wFX 2 FTX 2 %* TX. q 

5.4. Proposition. Let F be a T-section. Then, 

(a) F = CY+~; whenever a is a T-rejector with F = up, then a s czF. 

(b) F = oF%; whenever b is a T-corejlector with F = b%* and b 2 %” T, then @F s b. 

We have WF 3 %*T. 
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Proof. (a) By Proposition 5.3, cvFrpX = cpX A FTpX = cpX A FX = FX. We have 

cr,Y= YAFTY= YAacpTYzaYAacpTY=aY, since l>a and cpT>a. 

(b) is dual, with %‘* in place of cp. 0 

5.5. Corollary. Let F be a T-section. Then, 

(1) For any T-reflector a, we have 

F=acp@pPFsaca,. 

(2) [3,4] J range F is the largest class that spans F. 

In contrast, we can only say that init range F is the smallest bireflective class that 

spans F, and that fin range F is the smallest coreflective class that spans F. 

The dual of Corollary 5.5(l) follows in Corollary 6.3 below. 

5.6. Corollary. (a) Let tic Unif with 0, E init d, and let F = (sQ. Then, i range F 

= & init d, and range F = max J init d. 

(b) Let 93 c Unif with Finec 93, and let also B 2 %*TB for every BE 9% Let 

F=[C&‘]. Then, Trange F=Tfin 93, and range F=minTfin 93. 

Proof. (a) Observe range F = init ~4 by Proposition 3.2. Then use Proposition 5.4 

(or Corollary 5.5) and Proposition 5.1(3). 

(b) Almost dual. 0 

5.7. Corollary. Let F be a T-section, let a be the T-reflector onto init d, and let b be 

the T-corefector onto fin 93, and assume b 2 %*T. Then, 

(a) It is equivalent to say: F =(&); F = acp; .j. range F = J init d; range F = 

max J init d. 

(b) It is equivalent to say: F = [a]; F = b%:“; t range F =t fin 933; range F = 

min t fin d. 

5.8. Proposition. Let a be any T-rejector, let b be a T-coreflector with b 2 %“T, and 

assume that 

F=acp=b%‘*. 

Then, 

ab = ba = FT. 

Proof. From Propositions 3.7, 5.3, 5.4 we observe: 

Clearly, the relation G is preserved under composition with a or b, both on the left 

and on the right. Thus, from a s FT one has ab s FTb = FT, and from b 2 FT one 

has ab 2 aFT = a(acp) T = a*pT = acpT = FT. The proof of ba = FT is dual, with %* 

in room of p. 0 
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5.9. Remark. Familiar occurrences of our special bireflectors and coreflectors are: 

&* = (Y<g* = p, Kq = WV = cpT, and (Ye = lUnif. We shall see in 7.13 below that pa < c < 

(Y%. See also Remark 7.14(2). 

6. Coreflectors that crash through the tech layer 

The category Unif is rich in T-coreflectors (see Example 2.2 above). However, 

most of the examples which have been studied fail the condition b 2 %* T, which 

fact undeniably complicates the analysis of the associated T-section b%*. 

6.1. Examples. (1) The T-coreflector s to the subfine spaces (Example 2.2 above) 

has [Subfine] = [$3uhfine] but s 8 %?* T To see this, observe that each precompact 

space is subfine (its completion is compact). Hence s%* = %?*, whence by Proposition 

3.2(b) [Subfine] = %‘*. Further, T Suhfine 3 t Precpt =Unif, so that [t Suhfine] = %*. 

However, there exists a precompact X with SX = X < %‘* TX. 

(2) Let $??I be the class of metric-fine spaces and let b be the T-coreflector to 3 

(see [15]). Then, [%I] # [TS] and b? %‘*T. 

Proof: Let D be an uncountable set with the coarsest uniformity admitted by the . 

discrete topology (i.e. the uniformity induced by the one-point compactification). 

By [15,3.1], DE %‘. But %*TD has the uniformity whose base consists of all finite 

covers. So %*TD > D = bD, and b ? %* T. Further, by [15,2.4], b%*TD has base 

of all countable covers. Also, TX = TD+X 2 DJX E T%. Now, by Proposition 

3.2, [%I = b%*, and also [?a] = b,%*, where b, is the T-coreflector onto t3; it 

exists by Proposition 4.2. Since %*TD E ?%I, we have [tB]TD = b,%*TD = %*TD. 

But [B] TD = b%*TD is not precompact, from above. So [?ZI] # [TB]. 

6.2. Proposition. Let b be any T-corejlector. Then, b’X = bX v %*TX defines a T- 

corejlector b’ with b’%‘* = b%” and with range b’ = (range b) n (t range %*). 

(We omit the easy proof.) 

This provides a dual to Corollary 5.5(l) above. 

6.3. Corollary. Let F be a T-section, b any T-corejlector, and b’= b v %‘“T. Then, 

F=b%*ewwFSbb’SKF. 

7. T-reflectors and T-sections versus completion 

Many results are known about the interaction of bireflectors in Unif with the 

completion reflector y; see e.g. [26-29,24,25]. The interaction of T-sections with 

y has been studied in [6, 7, 81. Our present purpose is to indicate a connection 

between the two kinds of interaction. The key to the connection is given by the 

T-reflectors pF and (Ye. 
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7.1. We take Hausdorff separation as part of the definition of completeness for 

uniform spaces. We regard the completion reflector as an endofunctor y : Unif + Unif 

and denote the reflection maps by n x :X + yX. Every nx is a dense initial map; it 

is an embedding if and only if TX is Hausdorff. Whenever f: X+ Y is a dense 

initial map with Y complete, there is a unique uniform isomorphism h : yX + Y 

with ham =j (The reader who trusts this only when TX is Hausdorff, may verify 

our statement by composing with the uniform separated reflection.) The following 

lemma is well known for the special cases of products and embeddings. 

7.2. Lemma. If (A : X -+ E;).jeJ is an initial source in Unif, so is (yA : yX -+ yq)jsJ. 

Proof. There is no loss of generality in assuming that the class J is a set. Let 

(UX, SX) be the uniform TO-reflection of X. There is an initial map e : X + 17yE; 

with mje = ~~4 (all jg J), and an embedding 2: SX + IIyY, with &rx = e. Then 

2 = ke^ where e^ is an embedding and k is the inclusion map of the closure of e(SX) 

as uniform subspace of I7yY,. Since &r x is a dense initial map of X into a complete 

space, there is a uniform isomorphism h with hnX = &rx. We have y& = n;kh. Hence 

(Yh)jc.l is an initial source. q 

We now summarize some results from [8] in 7.3-7.6 below. 

7.3. [8]. Let F be any T-section. The subcategory F-‘(Complete) consisting of all 

X in Creg for which FX is complete, is an epireflective subcategory of Tych. 

(Tych = Tychonoff spaces.) We call F completion-true if yF = Fr for some endofunc- 

tor r of Creg. Then r = TyF and TyF is the reflector of Creg onto F-‘(Complete). 

Examples of completion-true F are; 

(1) F = %‘*; then F-‘(Complete) = Compact (the term compact for us includes 

Hausdorff) and TyF = p, the Stone-Tech reflector. 

(2) F = SC?; then F-‘(Complete) = Realcompact and TyF = v, the Hewitt realcom- 

pact reflector. 

(3) F = cp; then F-‘(Complete) = Topcpl, the topologically complete spaces, and 

TyF = 6, the Dieudonne reflector. 

For any T-section F, F-‘(Complete) lies between Compact and Topcpl. Every 

epireflective subcategory of Tych between Compact and Topcpl is of the form 

F-‘(Complete) for some (in general more than one) completion-true T-section F. 

There is an example in [8] of a T-section F for which TyF is not idempotent, 

hence not the reflector onto F-‘(Complete). Such F is not completion-true. 

Completion-truth of F clearly means yF = FTyF. Hence the interest of the 

following result proved in [8]. 

7.4. Lemma (H.-P.A. Kiinzi). For every T-section F, 

yF b FTyF. 
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7.5 [8]. For a T-section F, the following conditions are equivalent: 

(1) F is completion-true; 

(2) F is spanned by some class of complete untform spaces; 

(3) y (range F) c range F; 

(4) y(range F) = J range F. 

7.6. [8]. The T-section F is called strongly completion-true if y(& range F) c & range 

F. The functor %’ is not strongly completion-true. Examples of strongly completion- 

true T-sections are %Y*, cp and, for each infinite cardinal m, the functor %?z spanned 

by 9(m), the m-precompact spaces (see Examples 4.3: one has 1 range %$ = 9(m)). 

7.7. Definition. Let d be a reflective (or coreflective) subcategory of Unif, with 

reflector (or coreflector) a. We call & completion-stable if y&c &, where y& = 

{ yX ] X E &}. The same term is then applied to the functor a. 

The following result is essentially folklore. 

7.8. Proposition. Let .& be a birejlective subcategory of Unif with birejlector a. The 

following are equivalent: 

(1) a is completion-stable; 

(2) ya = aya; 

(3) (ya)‘= ya; 
(4) ya is a reflector; 

(5) yd = d n Complete; 

(6) sd is the initial hull of some class of complete spaces; 

(7) d=init yd. 

Proof. (l)+(7) because the unit nx. .X-+ yX is initial; (7)=+(6) is trivial; (6)+(l) 

by Lemma 7.2. For (3)j(2) it helps if one realizes that the equality sign stands for 

a canonical natural isomorphism given by composition of units. The other implica- 

tions are obvious. 0 

7.9. The T-section F is strongly completion-true if and only if the bireflector (Ye is 

completion-stable. This is immediate from Definitions 7.6 and 7.7 (since czF corre- 

sponds to & range F), but has to be savored with the following result. 

7.10. Theorem. For a T-section F, the following are equivalent; 

(1) F is completion-true; 

(2) The T-reflector or is completion-stable; 

(3) Some T-reflector in [pr, ar] is completion-stable; 

(4) yF = ayFfor some T-reflector a in [or, (~~1; 

(5) yF = ayF for every T-rejector a in [or, ar]. 
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Proof. (l)-(2): Recall from Definition 3.6 that pF reflects to init range E Let X E 

init range E Then there is some initial source (J : X + FAj)jG,. By Lemma 7.2 the 

source (rfj : 7X + yFAj)jeJ is initial. Assuming F completion-true, we have yFAj = 

FTyFAj, so that yFA, E range F. Thus yX E init range F, and pF is completion-stable. 

(2)+(3): Trivial. 

(3)*(4); Let a E [PF, (~~1 be completion-stable. Thus F = acp and ya = aya. Then 

yacp = ayacp, i.e. yF = ayF. 

(4)-(l): Let yF = ayF, a E [pr, ar]. Since (Ye < FT by Proposition 5.3, we have 

yF s FTyF. Then, by Kiinzi’s Lemma 7.4, yF = FTyF. 

(l)+(5); Let F be completion-true. Since (1) implies (2), ypF = pFypF. Putting 

p on the right gives yF = pFyF. Further by 7.5 we have y(range F) c & range F, 

which means yF = aFyF. Thus yF = p,yF = a,yF and, if pF s a s err, it follows 

that yF = ayF. 

(5)+(4): Trivial. 0 

Given any class {dj 1 j E J} of completion-stable bireflective subcategories, we have 

its bireflective supremum init lJjEJ dj which is again completion-stable, an easy 

consequence of Proposition 7.8. The following result gives one such supremum more 

explicitly. 

7.11. Theorem. Let F be a completion-true T-section. There is a finest completion-stable 

T-rejector in [pF, cur]. We shall denote it by rr. We have: 

range rF = init (Complete n 4 range F), 

and this is the largest completion-stable birejective subcategory of Unif which spans F. 

Proof. Denote JtF := & range E By Proposition 7.8, init (Complete n dIF) is comple- 

tion-stable, and by 7.5 it spans F. Let d be any completion-stable bireflective 

subcategory of Unif which spans F. Then y&c & c AF (see Corollary 5.5). Thus 

ys8 c Complete n AF. But d = init y& by Proposition 7.8, whence d c init (Com- 

plete n A,). 0 

7.12. Corollary. The T-section F is strongly completion-true if and only if F is comple- 

tion-true with r, = aF. 

Recall the T-reflector c to init( with V = cqo. 

7.13. Example. pw < c =S rw < ay. 

Proof. We have pu < c by Remark 3.8, c < 7% since c is completion-stable by 

Proposition 7.8(6), and TV < LY% by 7.6 and Corollary 7.12. 

7.14. Remarks. (1) We have already observed that pv* = LY%* is the precompact 

reflector p. It seems desirable to have conditions for pF and (Ye to coincide, and for 

pF and TV to coincide. 
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(2) The familiar relationships between the compact topological spaces, the functor 

%* and the precompact uniform spaces are imitated to some extent when one 

changes %?* to some other completion-true T-section F. Say F = V Then the compact 

reflector p = Ty%* becomes the realcompact reflector II = Ty%?. Various equivalent 

characterizations of precompactness have analogues-which need no longer be 

equivalent among themselves-in the bireflective subcategories corresponding to 

pw, c, TV, LX%. Any one of these classes has some claim to the term “prerealcompact”; 

for instance, Alo and Shapiro [l] gave this name to the class init {W,} which 

corresponds to c. The imitation becomes better when F is strongly completion-true. 

For instance, the Samuel compactification yp has the two analogues ‘ypF and yap 

which are reflectors when F is completion-true; but yaF is a reflector precisely 

when F is strongly completion-true (by Proposition 7.8 and 7.9). 

(3) We leave aside the question whether there are T-reflectors a other than the 

identity which satisfy the strong property ya = ay (see [24]). However, if ya = ay, 

then the T-section F = acp is completion-true and TyF is the reflector to the 

topologically complete spaces. 

Proof: We have yucp = aycp = a& from 7.3(3). Thus yF = F6, and TyF = 6. 

(4) Much is known about T-coreflectors versus completion; see e.g. [13-15, 17, 

26-29, 251. A basic result is that every T-coreflector is completion-stable [26,17]. 

So one considers T-coreflectors with the stronger property yb = by. Several T- 

coreflectors are known to have this property, e.g. those that preserve initial maps, 

in particular the subfine and the locally fine coreflectors [23, p. 1271, and those 

given in [17, 5.41. One has: 

7.15. Proposition. If the T-coreflector b satisfies yb = by, then 6%‘” = V”. 

Proof. Ty(b%*X) = Tby%PX = Ty%‘*X, since Tb = T. Thus Ty(b%*X) is compact, 

and so 6%*X is precompact. Hence 6%:*X s %*T(bV*X) = %?*X, and since b > 1, 

6%*X = V*X. 

Correction added in proof. Example 3.8(2): The argument in parentheses has to be 

modified by taking h(x,) = a: with g(u,) =x,,. 
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