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Abstract The entry of substrate into the active site is the first
event in any enzymatic reaction. However, due to the short time
interval between the encounter and the formation of the stable
complex, the detailed steps are experimentally unobserved. In
the present study, we report a molecular dynamics simulation
of the encounter between palmitate molecule and the Toad Liver
fatty acid binding protein, ending with the formation of a stable
complex resemblance in structure of other proteins of this family.
The forces operating on the system leading to the formation of
the tight complex are discussed.
� 2007 Federation of European Biochemical Societies. Pub-
lished by Elsevier B.V. All rights reserved.
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1. Introduction

The interaction of substrate with the active site has been, for

years, the ‘Holy Grail’ of Enzymology. As previous studies

were focused on the interactions between the substrate and

the active site, they were mostly concerned with the ligand–site

interactions rather than with the dynamics of entry. In many

enzymes, the binding site is not fully exposed to the bulk, thus

rendering the entry reaction an intricate waltzing motion of the

two partners that ends with the nesting of the substrate in the

site. Such motions necessitate a coordinated flexing of the sub-

strate molecule together with conformational fluctuations of

the protein; both are driven by the free energy gradient along

the reaction coordinate. The substrate entry is too fast to be

experimentally recorded and bears no clear detectable signal.

For this reason, we applied in the present study a computa-

tional approach, carrying out a molecular dynamics (MD) sim-

ulation of a medium-sized substrate molecule (palmitate), and

followed its penetration into a specific cavity, identified as the

binding site by published crystallographic studies. Unlike pre-

vious study, that attempted to simulate ligand exchange with

external bias [1], our simulation was carried out under no

external force, with explicit water and in the presence of phys-
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iological ionic strength solution, thus suggesting that the sce-

nario is compatible with the in vivo process.

Fatty acids (FAs) are a major energy source and are struc-

tural elements of the phospholipids. Yet, due to their deter-

gent-like properties, they should be avoided in the

cytoplasm. For this reason, free FA transfer is executed by a

widely-distributed protein family called ‘Fatty Acid Binding

Proteins’ [2–5]. These proteins share a ‘b-clam’ structure made

of a b-barrel and capped by two a-helices. The b strands

are linked each to the other by hydrogen bond, except for

b-strands D and E, creating a flexible section proposed to

function as the portal region, through which the fatty acids

penetrate into the binding cavity [6].

Crystallization of these proteins, either with native sub-

strates or with substrate analogs indicated that the fatty acids

are embedded inside the protein in two main configurations. In

one case, the aliphatic tail is inserted into the site, while the

carboxylate is exposed to the bulk [2,3,7]. In the other config-

uration, the carboxylate moiety is embedded inside the protein,

being stabilized by a combination of hydrogen bonds and elec-

trostatic interactions, while its hydrophobic tail protrudes

towards the bulk through the portal region [2–5,8].

The lack of direct observations as to how the substrate pen-

etrates the protein had led to the application of MD simula-

tions of the protein–water–substrate system [9–13]. The

strategy adopted in the present study was to simulate the pro-

tein in explicit water and physiological ionic strength, and to

monitor the interactions between a few palmitate molecules

added to the system with the protein. The selected protein,

Toad liver fatty acid binding protein (L-FABP, PDB code

1P6P), was chosen because the crystal structure of the apo-pro-

tein retains the binding site that is partially exposed to the bulk

[14]. We have carried out extensive MD simulations, accumu-

lating more than 250 ns of independent runs that lasted 8–

20 ns each. In all these cases, the encounter of the fatty acids

with the protein led to a rapid adsorption to the surface of

the protein, mostly in the vicinity of the portal region. The ad-

sorbed palmitate molecules were noticed to scan the surface of

the protein, with many attempts of penetration. In most cases,

the penetration was only partial, where either the carboxylate

moiety or most of the aliphatic tail was exposed to the bulk. In

this report, we describe a case in which the palmitate anion

penetrated deep into the protein, reaching a configuration sim-

ilar to those determined by X-ray crystallography of other

members of the family; as the adipocyte lipid binding protein

(PDB codes: 1LIE, 1LIC, 1LID) and proteins from other tis-

sues (PDB codes: 1B56, 1HMS, 1FE3), where crystallographic
blished by Elsevier B.V. All rights reserved.
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studies revealed that the negatively charged carboxylate was

located inside the cavity and stabilized by salt bridges and

hydrogen bonds.

The ability to follow, in silico, the penetration event enables

the observation of the intricate motions of the reactants and to

gauge the contribution of the various forces, namely the elec-

trostatic interactions, Lennard-Jones (LJ) attraction and solva-

tion.

A detailed report, summing many simulations will be pub-

lished elsewhere (Tsfadia, manuscript in preparation).
2. Methods

2.1. Molecular dynamics simulations
The MD simulations were performed using the GROMACS 3.2.1

software [15–17], with the GROMOS 53A6 force field [18]. The calcu-
lations were carried out using the structure of the Toad basic liver fatty
acid binding protein (PDB code 1P6P) [14], that was downloaded from
the PDB [19]. The simulations were carried out in 100 mM NaCl solu-
tion and 4 palmitate anions to facilitate the encounter between the sub-
strate and the protein. The palmitate molecules were randomly placed
within the water box, but care was taken to ensure that the initial posi-
tion of the palmitate molecules was out of the protein structure. The
formal concentration of the palmitate was 22 mM, well above the
CMC of this compound (5.8 mM) [20]; indeed in few of the simula-
tions, an initiation of micelle formation were noticed. Still, as the sur-
face provided by the protein exceeds that of the fatty acids, in most
cases the adsorption of the ligands to the protein was faster than their
self aggregation. The protein and the ligands were embedded in a trun-
cated octahedral box containing SPC model water [21] that extended to
Fig. 1. Snapshots taken during the entry of a palmitate anion to the cavity of
MD simulation at 200, 450, and 8000 ps. Frame D is the crystal structure of
palmitate anion. In this structure, the a carbon trace is in blue. Lower panel:
acids at the portal region. Frames E–H were taken, respectively, at 600, 730, 8
the distance between them is measured in Å.
at least 1.5 nm between the protein and the edge of the box. The total
number of water molecules was approximately 104; 16 Na+ and 20 Cl�

ions were added to the system by replacement of water molecules in
random positions, thus making the whole system neutral. A PDB file
of the palmitate molecule and the partial charges of the atoms are pro-
vided in Supplementary material.

Prior to the dynamics simulation, the internal constraints were re-
laxed by energy minimization, followed by 40 ps equilibration under
position restraints of the carbon backbone atoms through a harmonic
forces constant of 1000 kJ nm�2. The first 200 ps of the unrestrained
simulations were not used for the analysis. During the MD runs, the
LINCS algorithm [22] was used to constrain the lengths of covalent
bonds; the waters were constrained using the SETTLE algorithm
[23]. The time step for the simulations was 2 fs. The simulations were
run under constant pressure and temperature, using Berendsen’s cou-
pling algorithm [24] (P = 1 bar, sP = 0.5 ps; T = 300 K; sT = 0.1 ps).
VDW forces were treated using a cutoff of 1.2 nm. Long range electro-
static forces (r > 1.2 nm) were treated using the particle mesh Ewald
method [25]. The duration of the simulations varied between 8 and
20 ns. The simulations differed in the initial location of the palmitate
molecules and in the seed number, ensuring that each run was an inde-
pendent calculation.

2.2. Visual presentation
The figures were created by the VMD program [26].
3. Results and discussion

3.1. Dynamic observations of palmitate entry into the protein

Fig. 1 presents two sets of snapshots taken during the entry

of a single palmitate ion to the protein. The upper frames is a
the Toad-liver FABP. Upper panel: the frames A–C were taken from a
the adipocyte lipid binding protein (ALBP) that was crystallized with

a closer look at the interaction between the carboxylate with the amino
50 and 1550 ps. The b strands D and E are colored with opaque purple;
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sequence of snapshots, where four palmitate molecules were

added, at random locations in the bulk some 7 Å from the pro-

tein’s surface (for sake of clarity all other palmitate molecules

are not presented). Within the first 200 ps of the simulation

(A), one of the fatty acid molecules diffused and adsorbed onto

the protein’s surface at the vicinity of the portal region, repre-

sents the beginning of the binding process. At t = 450 ps (B),

the palmitate is already wedging itself into a cleft between

the b strands D and E and the helix that caps them. The ali-

phatic section seems to pry the cleft open, while the carboxyl-

ate moiety retains a full contact with the water matrix. The

penetration process lasted for about 1 ns, and at t � 1600 ps

the complex between the protein and the palmitate molecule

reached a stable conformation, which remains almost invari-

able until the end of the simulation at t = 8 ns (C). This final

configuration, is comparable to the crystal structure (1LIE)

of the Holo-protein of the adipocyte lipid protein (D) [27].

During the simulation of the penetration process, we have no-

ticed an impressive decrease of the number of water molecules

present inside the cavity, from �25 molecules at the starting

point down to 12–14 molecules at the final state with the

bound ligand, in accordance with experimentally estimations

[3].

The lower row of frames (E–H) presents a detailed view of

the penetration process, revealing how a sequence of electro-

static interactions coupled with the random motion of the res-

idues drives the entry of the carboxylate headgroup into the

cavity. At t = 610 ps (E), the carboxylate head group of the

palmitate interacts with Q56 at the surface of the protein

through a hydrogen bonding, in accordance with the path de-

duced from experimental results [2]. Some 90 ps later

(t � 700 ps, F), the carboxylate is pulled deeper into the cavity

and stabilized both by Q56 and H58. At �850 ps (G), new
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Fig. 2. Quantitative description of the reaction between the palmitate anion a
between the substrate and the protein, is presented by the short range Coulom
simulation time. (B) The progression of the reaction with time, depicted as
(black line with the scale on the left ordinate). The grey line (right ordinate) r
(C) The stabilization of the system as a function of the reaction coordinate
number of water molecules that form a hydrogen bond with the carboxylate
hydrogen bonds are formed; one with the backbone NH group

of M73 (2.82 Å) and the second one with the OH moiety of S72

(2.63 Å), both on b-strand E. Please note that these steps are

associated with a widening of the cleft between strands D

and E. The last structure, detailed in frame H (t-1600 ps), is

of an apparent stable configuration, where negatively charged

oxygens are stabilized by hydrogen bonds with H58 on strand

D and with S72 and M73 on strand E. The distance between

the strands forming the portal region had been closed to

7.5 Å. The O1 atom of the carboxylate also forms a hydrogen

bond through a water molecule (O fi H2O 2.77 Å) to NH2 of

R120 (H2O fi NH2 3.04 Å, not shown).

This shape set of hydrogen bond interactions is comparable

to the interactions recorded for the crystal structure of the

palmitate-ALBP (PDB code: 1LIE), where the carboxylate

interacts with the hydroxyl of Y128 (2.69 Å), the NH2 of

R126 (2.98 Å) and through a water molecule (O fi H2O

2.92 Å) with the NH2 atom of R106 (H2O fi N 2.81 Å). It

must be recalled that the two proteins are not identical in

sequence, yet one can find similarity between the interactions

in the case of the complex at 8 ns of the simulation and those

of the Holo-protein ALBP in its crystalline form. On the basis

of this similarity, we concluded that, at the end of the simula-

tion time, the binding of the palmitate to Toad L-FABP resem-

bles the crystal structure of Holo ALBP.

3.2. The driving forces for the binding

The penetration of the substrate protein was followed up by

calculating the electrostatic and LJ potentials for the sub-

strate–protein interactions, as presented in Fig. 2A. A short

time after the initiation of the simulation, the system gains

stability due a rapid decrease of the LJ potential. Only later

(�500 ps after initiation of the simulation), when the LJ
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the variation of reaction coordinate (RCt) versus the simulation time
epresents the number of water molecules 0.4 nm from the carboxylate.
s. The colors of the lines are as in frame A. (D) The variation of the

moiety, presented with respect to the reaction coordinate.
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attraction progressed almost halfway, the electrostatic attrac-

tion comes into play.

Relation of the observed events with the time axis, as in

Fig. 2A, emphasizes the temporal sequentiality of the process.

The reaction was also expressed by an internal frame of refer-

ence (the reaction coordinate), by which the progression is re-

lated with the relative location of the ligand with respect to the

binding site. The reaction coordinate (RCt) is defined as the

average distance between the carboxylate moiety of the palm-

itate and the center of mass of the three residues that tightly

interact with the carboxylate at the later phase of the simula-

tion, namely; H58, S72 and M73. At the early phase

(Fig. 2B), the fatty acid is still at its initial random location,

RCt � 1.7 nm, while in the final one the value RCt � 0.5 nm

remains stable for �6 ns.

Frame C presents the gained stability (electrostatic and LJ

interactions) as a function of the progression along the reac-

tion coordinate. The wobbling lines represent the values of

the electrostatic (black) and LJ (grey) potentials as they vary

when the carboxylate is penetrating into the cavity. The two

traces, appearing in frame C, are very tortuous, thus indicat-

ing that the progression into the protein is a continuous search

in the conformation space. In the early phase, RCt � 1.5 nm,

the palmitate molecule is still out of the protein and samples

the space by a Brownian motion that drives the substrate to-

wards contact with the protein. During this phase, there is

hardly a change in the system’s energy. The next phase of

the reaction is steady progression towards RCt � 0.8 nm,

which is mostly driven by the steady decrease of the LJ poten-

tial. At this phase the aliphatic tail penetrates the hydrophobic

cavity, while the carboxylate retains a full state of solvation

(see also Fig. 1B). The reaction then proceeds by another wob-

bling phase, where RCt varies around 0.7 nm, that ends by a

significant increase in the electrostatic potential, correspond-

ing to the entry of the carboxylate into the protein, along with

a subsequent reduction of the number of water molecules sol-

vating the carboxylate from 6 to 4 ( Fig. 2B and 2D, grey).

Finally, there is a convergence of both electrostatic and LJ

potentials into a time invariant value that lasts until the end

of the simulation time, with no progression along the reaction

coordinate (RCt = 0.5 ± 0.05 nm). At that phase of the reac-

tion, the carboxylate had lost most of its solvation water. This

phase is associated with a very minor molecular motion, thus

representing optimization of the stabilizing energy through lo-

cal rearrangements of the atoms near the carboxylate’s bind-

ing site.

In general, the insertion of a negative charge (carboxylate) to

the low dielectric constant matrix is associated with a penalty

of the Born energy and the loss of the solvation shell of the

charge. The penetration can be made feasible by compensating

interactions, such as electrostatic interactions, with charged

residues inside the protein or by retaining some of the solva-

tion water molecules, as in the present case. To facilitate the

insertion, the carboxylate moiety retains its solvation shell as

it progresses along the reaction coordinate, lowering it to only

two water molecules, when the system appears to reach its

apparent stable configuration. This feature is depicted in

Fig. 2 frame B, grey line, and frame D, where the number of

water molecules that are in hydrogen bond with the carboxyl-

ate is related to the propagation in time and along the RCt.

The two water molecules that solvate the carboxylate in its fi-

nal stage of penetration differ in their interaction with the car-
boxylate; one of them is bridging, by hydrogen bond, the

carboxylate with the positive charge of R120. This water mol-

ecule exhibits a very slow exchange with other water molecules,

having a residence time longer than 2000 ps. The other water

molecule is less dedicated to the site and is routinely replaced

by other water molecule present inside the protein.

The interaction of the ligand with the protein is much more

complex than that expressed by the electrostatic and LJ

potentials. The actual DG is affected by many other terms like

DGsolvation, and the TDS terms for the protein, the ligand and

the solvent. For these reasons, the energy terms appearing in

Fig. 2 reflect the trends in the operating forces, rather than

the sole contributors of the free energy of the reaction. The

interplay between the two potentials reveals how the charged

and aliphatic domains of the ligand contribute, each at a time

to the penetration into the binding cavity.

This study reports, for the first time, how a large fully-sol-

vated substrate enters a specific binding site located inside a

protein molecule, driven by intricate random walk and steering

forces that operate almost simultaneously. From the present

simulation, and others that will be reported elsewhere, it

appears that the reaction consists of three sequential steps;

the first is a diffusive search in the solution, ending by an

encounter the protein’s surface. Following the adsorption,

the ligand is probing the surface of the protein, and the third

step is a fruitful penetration. The rate-limiting step of the reac-

tion under physiological conditions, where the concentration

of the free fatty acids is low, is probably the encounter step.

Under conditions in which the adsorption prevails, the search

for the open portal state and getting to a proper orientation

of the ligand with respect to the site can lead to a series of

abortive entry attempts. However, once the conditions are

proper, the entry itself is a very rapid event.
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Supplementary data associated with this article can be

found, in the online version, at doi:10.1016/j.febslet.
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