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Abstract miRNAs regulate gene expression by inhibiting trans-
lation or by targeting messenger RNA (mRNA) for degradation
in a post-transcriptional fashion. In the present study, we show
that ectopic expression of miR-34a reduces both mRNA and pro-
tein levels of cyclin D1 (CCND1) and cyclin-dependent kinase 6
(CDK6). We also demonstrate that miR-34a targets the 3 0-
untranslated mRNA region of CCND1 as well as CDK6, which
in turn interferes with phosphorylation of retinoblastoma. In
addition, we show that overexpression of miR-34a induces a sig-
nificant G1 cell-cycle arrest in the A549 cell line. Taken to-
gether, our data suggest that the effects of miR-34a on G1 cell
cycle arrest are through the down-regulation of CCND1 and
CDK6, which is associated with other targets of miR-34a either
additively or synergistically.
� 2008 Federation of European Biochemical Societies. Pub-
lished by Elsevier B.V. All rights reserved.
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1. Introduction

Neoplasia is considered to be the result of dysregulation of

the cell cycle machinery. Studies on cell cycle regulation and

cancer genetics have revealed that multiple cell cycle regulatory

proteins play key roles in oncogenesis. In the G1/S phases of

the cell cycle, cyclin-dependent kinase 4/6 (CDK4/6) in com-

plex with cyclin D1 phosphorylate the Rb family [1–4].

Phosphorylated pRb then loses the repressive activity for the

E2F transcription factor. The activated E2F complexes, as

transcriptional activators, work on the target genes whose

products regulate both the G1/S transition and DNA replica-

tion [5,6]. Loss of regulation at the G1/S transition appears

to be a common event among virtually all types of human tu-

mor. According to recent in-depth investigation on microRNA

(miRNA) functions, proteins involved in cell cycle progression
Abbreviations: miRNA, microRNA ; 3 0-UTR, 30-untranslated region;
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and cell survival increasingly represent good candidate targets

of miRNAs.

miRNAs are a non-coding family of genes involved in post-

transcriptional gene regulation [7,8]. In general, miRNAs neg-

atively regulate the stability and translation of target messen-

ger RNAs (mRNAs) at the 3 0-untranslated region (3 0-UTR)

and are involved in diverse processes, such as cell-cycle con-

trol, apoptosis and carcinogenesis [9,10]. Emerging evidence

suggests that several miRNAs target genes that are involved

in cell cycle progression and cellular proliferation [11]. For

example, miR-221 and miR-222 repress the expression of the

cell cycle regulator p27Kip1 in glioblastoma cells [12]. More

recent studies suggest that miR-16 family directly regulates cell

cycle progression by controlling the G1 checkpoint. As a re-

sult, over-expression of miR-16 family leads to G1 arrest in

cultured human tumor cells [13].

Recently, some reports have revealed that abnormal miR-

34a is involved in different types of cancer. For example, aber-

rant expression of the precursors of miR-34a has been found in

malignant lymphomas [14]. Chang et al have shown that miR-

34a is frequently absent in pancreatic cancer cells [15]. Tazawa

et al have shown that down-regulation of miR-34a may be in-

volved in human colon cancer development [16]. Furthermore,

the biological functions and targets of miR-34a have been re-

ported. Recent studies have identified miR-34a as a miRNA

component of the p53 network and shown that it can be di-

rectly transactivated by p53 [15,17]. Further evidence has re-

vealed that miR-34a induces G1 arrest by regulation of

several cell cycle genes, including cyclin E2 (CCNE2), CDK4

and hepatocyte growth factor receptor (MET) [18]. Because

G1 arrest is a multi-protein regulated process and one miRNA

could target multiple genes, it remains unclear whether there

are other G1/S transition genes regulated by miR-34a besides

CCNE2, CDK4 and MET.

Here we report that miR-34a directly regulates the expres-

sion of cyclin D1 (CCND1) and CDK6, affecting G1 arrest

in A549 cells. Taken together, these results suggest that miR-

34a triggers G1 arrest by regulating multiple downstream effec-

tors including CCND1 and CDK6.
2. Materials and methods

2.1. Cell culture, reagents and antibodies
Non-small cell lung cancer A549 cells were cultured in DMEM sup-

plemented with 10% heat-inactivated FBS and 100 lg/mL penicillin/
streptomycin at 37 �C in a humified atmosphere of 5% CO2. Nocod-
azole was purchased from Sigma–Aldrich. Monoclonal antibodies
blished by Elsevier B.V. All rights reserved.
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against CCND1 (Code No. K0062-3), CDK6 (Code No. K0066-3),
CCND3 (Code No. K0013-3), and CDC25A (Code No. K0072-3) were
purchased from MBL Monoclonal Antibody. Polyclonal antibody
against pRb (Phospho-Ser795, # 11130) was purchased from Signal-
way Antibody. Polyclonal antibody against Rb (10048-2-Ig) was pur-
chased from Proteintech Group, Inc. Polyclonal antibodies against
Actin (sc-1616) was purchased from Santa Cruz Biotechnology Inc.
2.2. Plasmids and transfection
Firefly luciferase reporter vectors were constructed by the following

methods. Wild-type 3 0-UTRs containing predicted miRNA target sites
were amplified by PCR from HepG2 cell genomic DNA. Mutant 3 0-
UTRs were generated by overlap-extension PCR method. Both wild-
type and mutant 3 0-UTRs were cloned downstream of firefly luciferase
coding region between the XbaI and NdeI sites of a modified pGL3-
control plasmid (Promega), as described before [19]. Specific fragments
including miR-34a targeting site of CCND1 and CDK6 3 0-UTRs were
generated by the following primers: CCND1-UTR (forward) 5 0-ACG
TCT AGA TGA CCT GTT TAT GAG ATG CTG-3 0, CCND1-UTR
(reverse) 5 0-GAT CAT ATG GGG TCC ACC ATG GCT AAG TGA-
3 0; CDK6-UTR (forward) 5 0-ACG TCT AGA TTT GGC TGT GGT
ACC AAG AGA-30, CDK6-UTR (reverse) 5 0-GAT CAT ATG GAC
AGT GAT ATT TCA ACA CCA-3 0. And CCND1 and CDK6 mutant
3 0-UTRs were generated by the following primers: MuCCND1-UTR
(forward) 5 0-TGT TTT ACA ATG TCA TAT ATA CCT CTG
TAC TAG TTT TAG TTT TC-30, MuCCND1-UTR (reverse) 5 0-
GAA AAC TAA AAC TAG TAC AGA GGT ATA TAT GAC
ATT GTA AAA CA-3 0; MuCDK6-UTR (forward) 5 0-GAA GCA
GTG TGG AAA TTA GGT GAC GGG ACA CAG TCT TAT A-
3 0, MuCDK6-UTR (reverse) 5 0-TAT AAG ACT GTG TCC CGT
CAC CTA ATT TCC ACA CTG CTT C-3 0. The seed region was mu-
tated and marked with underline. For synthetic microRNA transfec-
tion, A549 cells were transfected with miR-34a duplex or control
Luc-siRNA at a final concentration of 50 nM, using Lipofectamine
2000 (Invitrogen, Carlsbad, CA).
2.3. RNA extraction and qRT-PCR
Total RNA was extracted from the cultured cells using Trizol Re-

agent (Invitrogen) according to the manufacturer�s protocol. qRT-
PCR was used to confirm the expression level of mRNAs. cDNA pro-
duced with oligo-dT primers and RT was performed according to the
protocol of Impro-II Reverse Transcriptase (Promega), qPCR was per-
formed as described in the method of SYBR premix Ex Taq (TaKaRa)
with Mx 3000p (Stratagen) supplied with analytical software. GAPDH
mRNA levels were used for normalization. The oligonucleotides used
as PCR primers were: CCND1 (forward) 5 0-CGT GGC CTC TAA
GAT GAA GG-30, CCND1 (reverse) 5 0-CTG GCA TTT TGG
AGA GGA AG-3 0; CDK6 (forward) 5 0-TGC ACA GTG TCA
CGA ACA GA-3 0, CDK6 (reverse) 5 0-ACC TCG GAG AAG CTG
AAA CA-3 0; GAPDH (forward) 5 0-TCA GTG GTG GAC CTG
ACC TG-3 0, GAPDH (reverse) 5 0-TGC TGT AGC CAA ATT CGT
TG-3 0.
2.4. Luciferase assays
For luciferase analysis, A549 cells were transfected with the firefly

luciferase reporter vectors in 24-well plates by using Lipofectamine
2000 (Invitrogen). The transfection mixtures contained 100 ng of firefly
luciferase reporter plasmid and 50 nM of synthetic miR-34a duplex.
pRL-TK (Promega) as a normalization control was also transfected
into A549 cells. Cells were collected 48 h after transfection, and lucif-
erase activity was measured using a dual-luciferase reporter assay sys-
tem (Promega). Cells were transfected in duplicated wells and such
experiments were repeated three times.
Fig. 1. miR-34a target site resides at 3 0-UTR of the CCND1, CDK6,
CDC25A and CCCND3. Sequence inspection by bioinformatics
revealed that target site for miR-34a resides in the 3 0-UTR of the
CCND1, CDK6, CDC25A and CCND3 transcripts, including the
theoretical miRNA:mRNA duplex pairing.
2.5. Western blot analysis
Cells were lysed in RIPA lysis buffer (50 mM Tris/HCl, pH 8.0,

250 mM NaCl, 1% NP40, 0.5% (w/v) sodium deoxycholate, 0.1% so-
dium dodecylsulfate, complete mini protease inhibitors (Roche)). Ly-
sates were sonicated and centrifuged at 12,000 r/min at 4 �C for
10 min. Per lane 40 lg of whole cell lysate was separated using 10%
SDS–acrylamide gels, and transferred on Immobilon Hybond-C mem-
branes (Amersham Biosciences). For immunodetection membranes
were incubated with specific antibodies. Signals from HRP (horse-rad-
ish-peroxidase)-coupled secondary antibodies were generated by expo-
sure to the film (Kodak).

2.6. FACS analysis
A549 cells were transiently transfected with luciferase siRNA GL-3

or miR-34a duplex at a final concentration of 50 nM using Lipofect-
amine 2000 (Invitrogen). Synthetic miRNA duplexes were as follows
(sense/antisense): miR-34a,50-UGG CAG UGU CUU AGC UGG
UUG UU-3 0/5 0-CAA CCA GCU AAG ACA CUG CGA AA-3 0; con-
trol-Luc-siRNAs,5 0-CUU ACG CUG AGU ACU UCG ATT-3 0/5 0-
UCG AAG UAC UCA GCG UAA GTT-30; siRNA against Cyclin
D1, 5 0-GGA GAA CAA ACA GAU CAU CTT-3 0/5 0-GAU GAU
CUG UUU GUU CUC CTC-3 0; siRNA against CDK6,5 0-GAU
GUU GAU CAA CUA GGA ATT-3 0/5 0-UUC CUA GUU GAU
CAA CAU CTG-3 0. A549 cells were treated with nocodazole
(100 ng/mL) 24 h post transfection and monitored for cell cycle dis-
tribution 16–20 h after nocodazole treatment. The cells (including
the floating cells) were collected, washed with PBS, fixed in ethanol
at �20 �C. The cells were washed with PBS, rehydrated and resus-
pended in 0.2 mL of RNase A (1 mg/mL) in PBS buffer at 37 �C
for 30 min. The cells were stained with 0.3 mL propidium iodide
(60 lg/mL) in a solution containing 0.1% Triton X-100, 0.1 mM
EDTA. The stained cells (1 · 105) were then analyzed for DNA con-
tent with a flow cytometer (FACScaliber, Becton–Dickinson).
3. Results

3.1. miR-34a downregulates CCND1 and CDK6 proteins

Several genes involved in controlling the cell cycle have been

found to be regulated by miR-34a, including CCNE2, CDK4

and MET [18]. However, a bioinformatic analysis (http://

www.targetscan.org/) revealed that putative miR-34a target

sites were harbored in the 3 0-UTRs of many other cell cycle

genes including CCND1, CCND3, CDK6 and CDC25A and

others (Fig. 1). In addition, these cell cycle genes are involved

in regulation of G1/S transition. To analyze whether these cell

cycle genes were regulated by miR-34a we transfected A549

cells with synthetic miR-34a duplex. The results show that

overexpression of miR-34a leads to a significant decrease in

endogenous CCND1 and CDK6 proteins but has no effects

on the expression levels of CCND3 and CDC25A (Fig. 2a).

Meanwhile, we detected the mRNA levels of CCND1 and

CDK6 by qRT-PCR. The results show that overexpression

http://www.targetscan.org/
http://www.targetscan.org/


Fig. 3. 3 0-UTRs of CCND1 and CDK6 are direct targets of miR-34a.
(a) The effects of miR-34a on expression of CCND1 by using luciferase
assays. (b) The effects of miR-34a on expression of CDK6 by using
luciferase assays. Cells were cotransfected with 50 nM synthetic miR-
34a duplex (black bar) or luciferase siRNA control (grey bar) with
wild-type CCND1/CDK6 3 0-UTR and their own different mutants of
3 0-UTR, respectively. Luciferase activities were normalized by the ratio
of firefly and Renilla luciferase activities. Each bar represents values
from three independent experiments with duplicated samples in each
experiment (n = 6). Values in both (a) and (b) are means of three
separated experiments ± S.E. *P < 0.01.

Fig. 2. miR-34a regulates CCND1 and CDK6 expression at the post-
transcriptional level. (a) CCND1, CDK6, CDC25A and CCND3
proteins in A549 cells were measured by Western blot at 48 h post-
transfection. A549 cells transfected with synthetic miR-34a duplex
(50 nM) or luciferase siRNA as control. b-Actin was used as an
internal loading control. (b) The effectiveness of miR-34a on CCND1
and CDK6 mRNA was analyzed by qRT-PCR. The mRNA levels
of the CCND1 and CDK6 were shown and normalized against that of
GAPDH. Data are means of three separated experiments ± S.E. *P
< 0.01.
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of miR-34a in A549 cells leads to a corresponding decrease in

endogenous CCND1 and CDK6 mRNAs (Fig. 2b). These

observations indicate that miR-34a downregulates the expres-

sions of CCND1 and CDK6 at the translational level, and re-

duces mRNA stability simultaneously.

3.2. CCND1 and CDK6 are direct targets of miR-34a

To validate whether miR-34a directly recognized the 3 0-

UTRs of CCND1 and CDK6 transcripts, we cloned the frag-

ments containing presumed target sites into the 3 0-UTR of the

luciferase gene. Transient transfection of A549 cells with syn-

thetic miR-34a duplex and the pGL-3M-CCND1-3 0-UTR-re-

porter construct, leads to a significant decrease of reporter

activity as compared with the control (Fig. 3a). However, the

activity of the reporter construct mutated at the specific

miR-34a target site is unaffected (Fig. 3a). Similar results were

obtained with cotransfection of pGL-3M-CDK6-3 0UTR and

miR-34a duplex (Fig. 3b). These data suggest that CCND1

and CDK6 are direct functional targets of miR-34a in cultured

A549 cells.

3.3. miR-34a induces G1-arrest in A549 cell line

miR-34a as key target of p53 transcriptional factor is capa-

ble of regulating cell cycle progress and cell proliferation. Since

miR-34a could downregulate expression of multiple cell-cycle

related proteins, we asked whether it could change down-

stream biological effects of cell cycle. Ectopic miR-34a delivery

decreases the level of phosphorylated retinoblastoma gene

product (Fig. 4a and b), which is consistent with silencing

activity of both CCND1 and CDK6. CCND1 siRNA had

stronger inhibition effectiveness on CCND1 but weaker effects

on phosphorylation of Rb when compared with miR-34a.

These results suggest that CCND1 is only one of the targets
regulated by miR-34a in controlling cell cycle progression

and some other targets of miR-34a simultaneously regulate

G1/S transition. To further study the function of miR-34a in

G1 arrest we transfected A549 cells with synthetic miR-34a du-

plex and siRNAs against CCND1 and CDK6. We examined

the cell cycle distribution of the transfected cells treated with

nocodazole by flow cytometry. The results show that miR-

34a triggers more accumulation of cells at the G1 stage,

whereas the number of cells in S-phase and G2/M-phase de-

crease (Fig. 4c). Silencing of these selected miR-34a targets

by siRNAs leads to a substantial arrest in G1 (Fig. 4c). These

results indicate miR-34a contribute to induction of G1-arrest

in A549 cells, which is partially through down-regulation of

CCND1 and CDK6.
4. Discussion

Recent studies have shown that miR-34a possesses anti-pro-

liferative potential and regulates cell cycle transition from G1

to S [20,21]. In addition, emerging findings provide evidence

that the gene encoding miR-34a is a direct transcriptional tar-

get of p53. Transcriptional activation of miR-34a causes dra-

matic reprogramming of gene expression and contributes to

p53-mediated apoptosis [15,17]. Moreover, miR-34a mediates

such functions through additive or synergistic effects of multi-

ple targets, including CCNE2, CDK4 and MET [18]. In this

study, our data demonstrates that CCND1 and CDK6 that

are important for G1 cell cycle arrest are direct targets of

miR-34a.

Summarizing the results from other laboratories and ours,

miR-34a is involved in cell cycle progression and cellular pro-

liferation in coordination with regulating multiple proteins

(Fig. 5). Tumor development and progression have been

shown to be dependent on cellular accumulation of various ge-

netic and epigenetic events, including alterations in the cell-cy-

cle machinery at G1/S checkpoint [22,23]. The G1/S phase

transition is regulated primarily by D-type cyclins (D1, D2,

or D3) in complex with CDK4/CDK6, and E-type cyclins



Fig. 4. Ectopic miR-34a induces G1 arrest. (a) A549 cells were transfected with CCND1 siRNA, or miR-34a duplex at a final concentration of 50 nM
using Lipofectamine 2000 (Invitrogen). Luciferase siRNA (luc-si) was used as the RNA transfection control. The levels of CCND1 and
phosphorylated Rb were examined with Western blot. b-Actin was used as the loading control. (b) A549 cells were transfected with CDK6 siRNA, or
luc-si or miR-34a duplex at a final concentration of 50 nM using Lipofectamine 2000 (Invitrogen). The levels of CDK6 and phosphorylated Rb were
examined with Western blot. (c) Cell cycle distribution of A549 cells transfected with miR-34a duplex or Luc-siRNA or CCND1 siRNA or CDK6
siRNA. 2N: cells have diploid DNA content; 4N: cells have tetraploid DNA content.

Fig. 5. A model of the miR-34a in regulating cell proliferation and cell
cycle progression. miR-34a induces a G1-arrest through negative
effects on cell cycle related proteins, including CCND1, CDK4, CDK6
and CCNE2. miR-34a also regulates cell proliferation by downregu-
lating antiapoptotic factor Bcl-2, transcription factor E2F3 and
hepatocyte growth factor receptor (MET).
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(E1, or E2) in complex with CDK2. Cyclin D and its associ-

ated kinases are responsive to mitogenic signals and uniquely

positioned to regulate cell cycle progression. Specific miRNAs

regulate both cell-cycle progression and apoptosis, which re-

veals a new layer of complexity in the cell cycle regulation

[24,25]. It is sufficiently demonstrated that miR-34a through
additive or synergistic effects of multiple targets mediates neg-

ative regulation of cellular growth and proliferation. On the

other hand, miR-34a maps to a region on chromosome 1p36,

which is commonly deleted in neuroblastoma and other tu-

mors [26]. In addition, ectopic miR-34a reduces the levels of

E2F3 by targeting its mRNA [26]. The anti-apoptotic protein

BCL2 is downregulated by miR-34a in several cell types, which

is consistent with a role for miR-34a in p53-mediated apopto-

sis [27]. Furthermore, MET, the receptor for hepatocyte

growth factor, is also regulated by miR-34a. Taken together,

miR-34a might be the key effector of cell cycle and cell prolif-

eration regulation, and its inactivation might contribute to the

development of certain cancers.

In conclusion, our results reveal that miR-34a negatively

regulates CCND1 as well as CDK6 expression and promotes

G1 arrest. In fact, miR-34a triggers G1 arrest by regulating

multiple downstream effectors including CCND1, CDK6 and

other cell cycle genes. miR-34a could negatively regulate sev-

eral oncogenes overexpressed in the development of a subset

of human cancers, and thus has a strong rationale for cancer

therapy in the future [28–30]. It is affirmative that the rationale

for targeting miRNAs is superior to that for antisense mRNAs

and RNAi as tools in studying gene functions and in some

cases of gene therapy [31]. Monitoring miR-34a in human tu-

mors and induction of it may thus facilitate better cancer diag-

nosis and cancer therapy.
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