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a b s t r a c t

Let (sn) be a sequence of real numbers such that lim supn σn = β and lim infn σn = α,
where σn =

1
n

∑n
k=1 sk and β ≠ α. We prove that lim supn sn = β and lim infn sn = α if

the following conditions hold:

lim inf
n

1
[λn] − n

[λn]−
k=n+1

(sk − sn) ≥ (β − α)
λ

λ − 1
for λ > 1,

lim inf
n

1
n − [λn]

n−
k=[λn]+1

(sn − sk) ≥ (β − α)
λ

1 − λ
for 0 < λ < 1,

where [λn] denotes the integer part of λn.
© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Let (sn) be a sequence of real numbers, and for each n define the (C, 1) means by

σn =
1
n

n−
k=1

sk (n = 1, 2, . . .). (1.1)

A sequence (sn) is said to be (C, 1) summable to s if lim σn = s. A sequence (sn) is said to be (C, 1) bounded if (σn) is
bounded. It is well-known [1] that

lim inf
n

sn ≤ lim inf
n

σn ≤ lim sup
n

σn ≤ lim sup
n

sn (1.2)

for any sequence (sn) of real numbers. If (sn) is a bounded sequence, then lim infn sn and lim supn sn exist and are finite.
If (sn) is a bounded sequence, (sn) is (C, 1) bounded. So lim infn σn and lim supn σn always exist and are finite. That the

converse of this implication is not generally true follows from the example of the sequence defined by

sn =


k, if n = 2k, k = 1, 2, . . .
−k, if n = 2k − 1, k = 1, 2, . . . .

It is clear that lim infn σn = −
1
2 and lim supn σn = 0, but lim infn sn = −∞ and lim supn sn = ∞. The main goal of this

paper is to show that if (sn) is a sequence of real numbers such that lim supn σn = β and lim infn σn = α, where β ≠ α, then
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lim supn sn = β and lim infn sn = α, provided that

lim inf
n

1
[λn] − n

[λn]−
k=n+1

(sk − sn) ≥ (β − α)
λ

λ − 1
for λ > 1,

lim inf
n

1
n − [λn]

n−
k=[λn]+1

(sn − sk) ≥ (β − α)
λ

1 − λ
for 0 < λ < 1,

where [λn] denotes the integer part of λn.

2. The main result

Theorem 2.1. For a sequence (sn) of real numbers, let lim sup σn = β and lim inf σn = α, where β ≠ α. If

lim inf
n

1
[λn] − n

[λn]−
k=n+1

(sk − sn) ≥ (β − α)
λ

λ − 1
for λ > 1, (2.1)

and

lim inf
n

1
n − [λn]

n−
k=[λn]+1

(sn − sk) ≥ (β − α)
λ

1 − λ
for 0 < λ < 1, (2.2)

where [λn] denotes the integer part of λn, then lim supn sn = β and lim infn sn = α.

We note that since lim supn σn and lim infn σn exist for a (C, 1) bounded sequence, then lim supn sn and lim infn sn exist
and are equal to lim supn σn and lim infn σn, respectively, provided that (2.1) and (2.2) hold.

Corollary 2.2. Let (sn) be (C, 1) summable to s. If

lim inf
n

1
[λn] − n

[λn]−
k=n+1

(sk − sn) ≥ 0 for λ > 1, (2.3)

and

lim inf
n

1
n − [λn]

n−
k=[λn]+1

(sn − sk) ≥ 0 for 0 < λ < 1, (2.4)

where [λn] denotes the integer part of λn, then (sn) is convergent to s.

The conditions (2.3) and (2.4) can be replaced by the weaker conditions

lim sup
λ→1+

lim inf
n

1
[λn] − n

[λn]−
k=n+1

(sk − sn) ≥ 0 (2.5)

and

lim sup
λ→1−

lim inf
n

1
n − [λn]

n−
k=[λn]+1

(sn − sk) ≥ 0 (2.6)

since they are satisfied for all λ > 1 and all 0 < λ < 1, respectively.
It is shown by Móricz [2] that the conditions (2.5) and (2.6) are Tauberian conditions for (C, 1) summability.

3. A lemma

For the proof of Theorem 2.1 we need the following lemma.

Lemma 3.1 ([3,4]). Let (sn) be a sequence of real numbers.
(i) For λ > 1 and sufficiently large n,

sn − σn =
[λn] + 1
[λn] − n


σ[λn] − σn


−

1
[λn] − n

[λn]−
k=n+1

(sk − sn), (3.1)

where [λn] denotes the integer part of λn.
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(ii) For 0 < λ < 1 and sufficiently large n,

sn − σn =
[λn] + 1
n − [λn]


σn − σ[λn]


+

1
n − [λn]

n−
k=[λn]+1

(sn − sk), (3.2)

where [λn] denotes the integer part of λn.

4. Proof of Theorem 2.1

Assume that lim supn σn = β and lim infn σn = α, where β ≠ α. Since

lim
n

[λn] + 1
[λn] − n

=
λ

λ − 1
for λ > 1, (4.1)

we obtain

lim sup
n

[λn] + 1
[λn] − n


σ[λn] − σn


≤ (β − α)

λ

λ − 1
for λ > 1. (4.2)

Taking the lim sup of both sides of (3.1) and using (4.2), we have

lim sup
n

sn ≤ β + (β − α)
λ

λ − 1
− lim inf

n

1
[λn] − n

[λn]−
k=n+1

(sk − sn). (4.3)

Taking (2.1) into account, we obtain

lim sup
n

sn ≤ β. (4.4)

By (1.2),

β ≤ lim sup
n

sn. (4.5)

Combining (4.4) and (4.5), we have lim supn sn = β .
Since

lim
n

[λn] + 1
n − [λn]

=
λ

1 − λ
for 0 < λ < 1, (4.6)

we obtain

lim inf
n

[λn] + 1
n − [λn]


σn − σ[λn]


≥ (α − β)

λ

1 − λ
for 0 < λ < 1. (4.7)

Taking the lim inf of both sides of (3.2) and using (4.7), we have

lim inf
n

sn ≥ α + (α − β)
λ

1 − λ
+ lim inf

n

1
[λn] − n

[λn]−
k=n+1

(sk − sn). (4.8)

Taking (2.2) into account, we obtain

lim inf
n

sn ≥ α. (4.9)

By (1.2),

lim inf
n

sn ≤ α. (4.10)

Combining (4.9) and (4.10), we have lim infn sn = α. This completes the proof of Theorem 2.1.
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