On $(C, 1)$ means of sequences

İbrahim Çanak*
Department of Mathematics, Ege University, 35100 İzmir, Turkey

ARTICLE INFO

Article history:

Received 10 June 2011
Accepted 22 August 2011

Keywords:

$(C, 1)$ bounded sequences
$(C, 1)$ summable sequences

A B S T R A C T

Let $\left(s_{n}\right)$ be a sequence of real numbers such that $\lim \sup _{n} \sigma_{n}=\beta$ and $\liminf _{n} \sigma_{n}=\alpha$, where $\sigma_{n}=\frac{1}{n} \sum_{k=1}^{n} s_{k}$ and $\beta \neq \alpha$. We prove that $\lim \sup _{n} s_{n}=\beta$ and $\liminf _{n} s_{n}=\alpha$ if the following conditions hold:

$$
\begin{aligned}
& \liminf _{n} \frac{1}{[\lambda n]-n} \sum_{k=n+1}^{[\lambda n]}\left(s_{k}-s_{n}\right) \geq(\beta-\alpha) \frac{\lambda}{\lambda-1} \quad \text { for } \lambda>1, \\
& \liminf _{n} \frac{1}{n-[\lambda n]} \sum_{k=[\lambda n]+1}^{n}\left(s_{n}-s_{k}\right) \geq(\beta-\alpha) \frac{\lambda}{1-\lambda} \quad \text { for } 0<\lambda<1,
\end{aligned}
$$

where $[\lambda n]$ denotes the integer part of λn.
© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Let $\left(S_{n}\right)$ be a sequence of real numbers, and for each n define the $(C, 1)$ means by

$$
\begin{equation*}
\sigma_{n}=\frac{1}{n} \sum_{k=1}^{n} s_{k} \quad(n=1,2, \ldots) \tag{1.1}
\end{equation*}
$$

A sequence $\left(s_{n}\right)$ is said to be $(C, 1)$ summable to s if $\lim \sigma_{n}=s$. A sequence $\left(s_{n}\right)$ is said to be $(C, 1)$ bounded if $\left(\sigma_{n}\right)$ is bounded. It is well-known [1] that

$$
\begin{equation*}
\liminf _{n} s_{n} \leq \liminf _{n} \sigma_{n} \leq \limsup _{n} \sigma_{n} \leq \limsup _{n} s_{n} \tag{1.2}
\end{equation*}
$$

for any sequence $\left(s_{n}\right)$ of real numbers. If $\left(s_{n}\right)$ is a bounded sequence, then $\lim _{\inf }^{n} s_{n}$ and $\lim \sup _{n} s_{n}$ exist and are finite.
If $\left(s_{n}\right)$ is a bounded sequence, $\left(s_{n}\right)$ is $(C, 1)$ bounded. So $\lim _{\inf }^{n} \sigma_{n}$ and $\lim \sup _{n} \sigma_{n}$ always exist and are finite. That the converse of this implication is not generally true follows from the example of the sequence defined by

$$
s_{n}= \begin{cases}k, & \text { if } n=2 k, k=1,2, \ldots \\ -k, & \text { if } n=2 k-1, k=1,2, \ldots\end{cases}
$$

It is clear that $\liminf _{n} \sigma_{n}=-\frac{1}{2}$ and $\limsup \sup _{n}=0$, but $\liminf _{n} s_{n}=-\infty$ and $\lim \sup _{n} s_{n}=\infty$. The main goal of this paper is to show that if $\left(s_{n}\right)$ is a sequence of real numbers such that $\lim \sup _{n} \sigma_{n}=\beta$ and $\lim _{\inf }^{n} \sigma_{n}=\alpha$, where $\beta \neq \alpha$, then

[^0]$\lim \sup _{n} s_{n}=\beta$ and $\liminf \inf _{n}=\alpha$, provided that
\[

$$
\begin{aligned}
& \lim _{n} \inf \frac{1}{[\lambda n]-n} \sum_{k=n+1}^{[\lambda n]}\left(s_{k}-s_{n}\right) \geq(\beta-\alpha) \frac{\lambda}{\lambda-1} \quad \text { for } \lambda>1, \\
& \lim _{n} \inf \frac{1}{n-[\lambda n]} \sum_{k=[\lambda n]+1}^{n}\left(s_{n}-s_{k}\right) \geq(\beta-\alpha) \frac{\lambda}{1-\lambda} \quad \text { for } 0<\lambda<1,
\end{aligned}
$$
\]

where $[\lambda n]$ denotes the integer part of λn.

2. The main result

Theorem 2.1. For a sequence $\left(s_{n}\right)$ of real numbers, let $\lim \sup \sigma_{n}=\beta$ and $\lim \inf \sigma_{n}=\alpha$, where $\beta \neq \alpha$. If

$$
\begin{equation*}
\liminf _{n} \frac{1}{[\lambda n]-n} \sum_{k=n+1}^{[\lambda n]}\left(s_{k}-s_{n}\right) \geq(\beta-\alpha) \frac{\lambda}{\lambda-1} \quad \text { for } \lambda>1 \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\liminf _{n} \frac{1}{n-[\lambda n]} \sum_{k=[\lambda n]+1}^{n}\left(s_{n}-s_{k}\right) \geq(\beta-\alpha) \frac{\lambda}{1-\lambda} \quad \text { for } 0<\lambda<1, \tag{2.2}
\end{equation*}
$$

where $[\lambda n]$ denotes the integer part of λn, then $\lim \sup _{n} s_{n}=\beta$ and $\liminf _{n} s_{n}=\alpha$.
We note that since $\lim \sup _{n} \sigma_{n}$ and $\liminf _{n} \sigma_{n}$ exist for a $(C, 1)$ bounded sequence, then $\lim \sup _{n} s_{n}$ and $\lim _{\inf }^{n} s_{n}$ exist and are equal to $\lim \sup _{n} \sigma_{n}$ and $\lim \inf _{n} \sigma_{n}$, respectively, provided that (2.1) and (2.2) hold.

Corollary 2.2. Let $\left(s_{n}\right)$ be $(C, 1)$ summable to s. If

$$
\begin{equation*}
\liminf _{n} \frac{1}{[\lambda n]-n} \sum_{k=n+1}^{[\lambda n]}\left(s_{k}-s_{n}\right) \geq 0 \quad \text { for } \lambda>1 \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\liminf _{n} \frac{1}{n-[\lambda n]} \sum_{k=[\lambda n]+1}^{n}\left(s_{n}-s_{k}\right) \geq 0 \quad \text { for } 0<\lambda<1 \tag{2.4}
\end{equation*}
$$

where $[\lambda n]$ denotes the integer part of λn, then $\left(s_{n}\right)$ is convergent to s.
The conditions (2.3) and (2.4) can be replaced by the weaker conditions

$$
\begin{equation*}
\limsup _{\lambda \rightarrow 1^{+}} \liminf _{n} \frac{1}{[\lambda n]-n} \sum_{k=n+1}^{[\lambda n]}\left(s_{k}-s_{n}\right) \geq 0 \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\limsup _{\lambda \rightarrow 1^{-}} \liminf _{n} \frac{1}{n-[\lambda n]} \sum_{k=[\lambda n]+1}^{n}\left(s_{n}-s_{k}\right) \geq 0 \tag{2.6}
\end{equation*}
$$

since they are satisfied for all $\lambda>1$ and all $0<\lambda<1$, respectively.
It is shown by Móricz [2] that the conditions (2.5) and (2.6) are Tauberian conditions for $(C, 1)$ summability.

3. A lemma

For the proof of Theorem 2.1 we need the following lemma.
Lemma 3.1 ([3,4]). Let $\left(s_{n}\right)$ be a sequence of real numbers.
(i) For $\lambda>1$ and sufficiently large n,

$$
\begin{equation*}
s_{n}-\sigma_{n}=\frac{[\lambda n]+1}{[\lambda n]-n}\left(\sigma_{[\lambda n]}-\sigma_{n}\right)-\frac{1}{[\lambda n]-n} \sum_{k=n+1}^{[\lambda n]}\left(s_{k}-s_{n}\right), \tag{3.1}
\end{equation*}
$$

where $[\lambda n]$ denotes the integer part of λn.
(ii) For $0<\lambda<1$ and sufficiently large n,

$$
\begin{equation*}
s_{n}-\sigma_{n}=\frac{[\lambda n]+1}{n-[\lambda n]}\left(\sigma_{n}-\sigma_{[\lambda n]}\right)+\frac{1}{n-[\lambda n]} \sum_{k=[\lambda n]+1}^{n}\left(s_{n}-s_{k}\right) \tag{3.2}
\end{equation*}
$$

where $[\lambda n]$ denotes the integer part of λn.

4. Proof of Theorem 2.1

Assume that $\lim \sup _{n} \sigma_{n}=\beta$ and $\liminf _{n} \sigma_{n}=\alpha$, where $\beta \neq \alpha$. Since

$$
\begin{equation*}
\lim _{n} \frac{[\lambda n]+1}{[\lambda n]-n}=\frac{\lambda}{\lambda-1} \quad \text { for } \lambda>1 \tag{4.1}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
\limsup _{n} \frac{[\lambda n]+1}{[\lambda n]-n}\left(\sigma_{[\lambda n]}-\sigma_{n}\right) \leq(\beta-\alpha) \frac{\lambda}{\lambda-1} \quad \text { for } \lambda>1 \tag{4.2}
\end{equation*}
$$

Taking the lim sup of both sides of (3.1) and using (4.2), we have

$$
\begin{equation*}
\limsup _{n} s_{n} \leq \beta+(\beta-\alpha) \frac{\lambda}{\lambda-1}-\lim _{n} \inf \frac{1}{[\lambda n]-n} \sum_{k=n+1}^{[\lambda n]}\left(s_{k}-s_{n}\right) \tag{4.3}
\end{equation*}
$$

Taking (2.1) into account, we obtain

$$
\begin{equation*}
\limsup _{n} s_{n} \leq \beta \tag{4.4}
\end{equation*}
$$

By (1.2),

$$
\begin{equation*}
\beta \leq \limsup _{n} s_{n} \tag{4.5}
\end{equation*}
$$

Combining (4.4) and (4.5), we have $\lim \sup _{n} s_{n}=\beta$.
Since

$$
\begin{equation*}
\lim _{n} \frac{[\lambda n]+1}{n-[\lambda n]}=\frac{\lambda}{1-\lambda} \quad \text { for } 0<\lambda<1 \tag{4.6}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
\liminf _{n} \frac{[\lambda n]+1}{n-[\lambda n]}\left(\sigma_{n}-\sigma_{[\lambda n]}\right) \geq(\alpha-\beta) \frac{\lambda}{1-\lambda} \quad \text { for } 0<\lambda<1 \tag{4.7}
\end{equation*}
$$

Taking the lim inf of both sides of (3.2) and using (4.7), we have

$$
\begin{equation*}
\liminf _{n} s_{n} \geq \alpha+(\alpha-\beta) \frac{\lambda}{1-\lambda}+\liminf _{n} \frac{1}{[\lambda n]-n} \sum_{k=n+1}^{[\lambda n]}\left(s_{k}-s_{n}\right) \tag{4.8}
\end{equation*}
$$

Taking (2.2) into account, we obtain

$$
\begin{equation*}
\liminf _{n} s_{n} \geq \alpha \tag{4.9}
\end{equation*}
$$

By (1.2),

$$
\begin{equation*}
\liminf _{n} s_{n} \leq \alpha \tag{4.10}
\end{equation*}
$$

Combining (4.9) and (4.10), we have $\lim _{\inf }^{n} s_{n}=\alpha$. This completes the proof of Theorem 2.1.

References

[1] K. Knopp, Theory and Application of Infinite Series, Blackie \& Son, Ltd., Glasgow, 1928.
[2] F. Móricz, Necessary and sufficient Tauberian conditions, under which convergence follows from summability (C, 1), Bull. Lond. Math. Soc. 26 (3)(1994) 288-294.
[3] F. Dik, Tauberian theorems for convergence and subsequential convergence with moderately oscillatory behavior, Math. Morav. 5 (2001) 19-56.
[4] M. Dik, Tauberian theorems for sequences with moderately oscillatory control moduli, Math. Morav. 5 (2001) 57-94.

[^0]: * Tel.: +90 232311 1010; fax: +90 2323426951.

 E-mail addresses: ibrahim.canak@ege.edu.tr, ibrahimcanak@yahoo.com.

