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Abstract

We define and study a new class of matroids: cubic matroids. Cubic matroids include, as a particular case, all affine cubes over
an arbitrary field. There is only one known orientable cubic matroid: the real affine cube. The main results establish as an invariant
of orientable cubic matroids the structure of the subset of acyclic orientations with LV-face lattice isomorphic to the face lattice of
the real cube or, equivalently, with the same signed circuits of length 4 as the real cube.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper we define and study a new class of matroids: cubic matroids. Cubic matroids are matroids over a 2n

element set, standardly over Cn = {0, 1}n, that include all affine cubes, i.e. all matroids of affine dependencies of Cn

over an arbitrary field F.
The main results concern orientability of matroids in this class. We only know (up to isomorphism) one orientable

cubic matroid: the real affine cube. Moreover, we only know one class of orientations of this matroid. The problem we
are considering is the following:

Problem 1. Is the real affine cube the unique orientable cubic matroid?

A positive answer to Problem 1 leads to a purely combinatorial characterization of the real affine (and linear)
dependencies of Cn meaning, in particular, that in the class of cubic matroids orientability implies parallelism and
symmetry.

Problem 1 is closely related with the following conjecture of Las Vergnas:

Las Vergnas Cube Conjecture (Las Vergnas et al. [10]). The real affine cube has a unique class of orientations.

This conjecture says that somehow the orientation of the real affine cube is encoded in the underlying matroid. If
both problems have a positive answer then it seems likely that they will be solved together.
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Problem 1 and Las Vergnas Conjecture have a positive answer for n�7 (in [13] we sketch a proof of both). Las
Vergnas Conjecture was first verified computationally by Bokowski et al. [4].

Generalizing those proofs to higher dimensions involves the possibility of an explicit description of the real cube
matroid (not necessarily purely combinatorial) which is a difficult theoretical and computational problem. For small
dimensions exhaustive enumeration of the hyperplanes of the real cube has been carried out computationally up till
dimension 8 by Aischolzer and Aurenhammer [1].

A recursive algorithm to generate hyperplanes of the real affine cube is described in [12].
For relevant information on the asymptotic behaviour of the real linear (and affine) dependencies of random sets of

(0, 1) vectors we refer the reader to the papers of Komlós [8], Odlyzco [11], Khan et al. [7]. We mention, in particular,
that the probability of a random (0, 1) matrix being singular is asymptotically zero [8,7]. It is conjectured [11,7]
that this probability is dominated by the probability that the rows/columns of the matrix contain a circuit of rank 3
(length 4).

Our results are presented in three sections. In the next section we define and establish the main properties of cubic
matroids. As a main result of this section we refer to Proposition 6 where we prove that the operation of pulling a
vertex onto a hyperplane leaves the class of cubic matroids invariant. We use this operation to construct examples (see
Example 1) of cubic matroids which are not representable (over any field).

The operation of pulling a vertex onto a hyperplane does not, in general, preserve orientability. A characterization
of pairs hyperplane/element for which orientability is preserved under this operation was given by Fukuda and Tamura
[6]. The existence of such a pair in the real affine cube would imply a negative answer to both Problem 1 and Las
Vergnas Conjecture as is briefly pointed out in the Final remarks.

The main results of the paper concern orientability of cubic matroids and are obtained in Section 3. Theorems 1 and
2 establish an invariant of orientable cubic matroids. More precisely they say that given an orientable cubic matroid
M of rank (n + 1), every orientation class of M has a subset of exactly n + 1 acyclic orientations with LV-face lattice
isomorphic to the face lattice of the real n-dimensional cube and whose structure is independent of the orientation
class; in other terms, every arrangement of 2n pseudohyperplanes representing an oriented cubic matroid has exactly
2(n + 1) topes isomorphic to the n-cross polytope and their relative position within the hyperplane arrangement is
independent of the orientation class.

A direct consequence of Theorems 1 and 2 is Corollary 1 which leads to a reformulation of Problem 1 as a recon-
struction problem: Can the real affine cube be reconstructed from its rank 3 circuits and orientability?

Note that a positive answer to this question seems implicit in the above mentioned conjecture [7,11] on the probability
of a (0, 1) matrix being singular.

The last result of this section, Theorem 3, is a direct application of Theorems 1 and 2 to obtain non-orientability
results. It says that affine cubes of rank �p + 2 over a field of prime characteristic p are not orientable. This result,
implicit in the original paper [3] of Bland and Las Vergnas, is obtained here with a very short proof (see also (1)) of
the Final remarks.

We assume the reader is acquainted with matroids and oriented matroids. As general references on matroids we
suggest [14,15]. As a general reference on oriented matroids the reader may consult [2].

1.1. Preliminaries and notation

Cubic matroids are matroids over a 2n element set, standardly defined as matroids over Cn := {0, 1}n.
Given a matroid M = M(E) over a set E we denote by H(M), C(M), C⊥(M), or simply H, C, C⊥, its families

of, respectively: hyperplanes, circuits and cocircuits. The rank and closure of a subset A of E are denoted: rM(A) and
clM(A).

Orientations of a matroid M are described in terms of signatures of the circuits or cocircuits of M. To denote the
signed circuits, resp. signed cocircuits of an orientation M of M (i.e. of an oriented matroid M whose underlying
matroid is M) we use the same letters C, C⊥. The families of circuits and cocircuits of the underlying matroid are
then denoted by C and C⊥. Recall that to each circuit, X ∈ C, of the underlying matroid corresponds a unique pair of
opposite signed circuits ±X ∈ C of the oriented matroid.

In what follows we will work with subsets and signed subsets of Cn as well as with elements of Cn which we identify
with “signed” subsets of [n] := {1, . . . , n}. We define the terminology and notation.

Notation: Subsets and signed subsets of Cn will always be denoted by capital Latin letters.



3576 I.P.F. da Silva / Discrete Mathematics 308 (2008) 3574–3585

A signed subset X = (X+, X−) of Cn is an ordered pair of disjoint subsets of Cn. The support of the signed set X
is the set X := X+ ∪ X−.

Given A ⊆ Cn we denote by −AX the signed subset obtained from X reversing signs on A, i.e. the signed subset
−AX=(X+\A∪(X− ∩A), X−\A∪(X+ ∩A)). The signed subset −CnX=(X−, X+) is the opposite of X=(X+, X−)

and is denoted −X. Given a family of signed subsets V of Cn, −AV := {−AX : X ∈ X}.
Subsets of [n] will always be denoted by Greek letters, �, �, . . . . Given two sets �, � ⊆ [n], ��� denotes its

symmetric difference, i.e. ��� := �\� ∪ �\�.
The support of an element v ∈ Cn is the set v := {i ∈ [n] : v(i) = 1}. Given a subset � ⊆ [n], v(�) denotes the

restriction of v to �, and �v denotes the element of Cn obtained from v interchanging 1 ↔ 0 on the entries indexed in
�, i.e. �v(i) = 1 − v(i) for i ∈ � and �v(i) = v(i) for i /∈ �. Remark that the support of �v is �v = v��.

The opposite of an element v is v∗=[n]v. The supports of v∗ and v are complementary subsets: v∗ = [n]\v. Given
A ⊆ Cn, A∗ := {v∗ ∈ Cn : v ∈ A}.

When �, � ⊆ [n] are disjoint subsets of [n], to simplify the notation, we use �� instead of �∪� in variables depending
on subsets of [n]. For instance, given v ∈ Cn we write ��v instead of (�∪�)v and if � = {j} we write �j v.

2. Cubic matroids

We recall (see, for instance [14]) that a partial partition of [n] is a partition of a subset of [n] into disjoint subsets,
denoted � = {�1, . . . , �k}, with

⋃
i �i ⊆ [n]. The subsets �i are the blocks of �. The lattice of partial partitions of [n],

denoted Qn, is the poset of partial partitions of [n] with the order �1 ��2 iff every block of �2 is a union of blocks of
�1.

To each partial partition � = {�1, . . . , �k} of [n] corresponds the partition �̃ = {�1, . . . , �k, �} of [n + 1], where

� := [n + 1]\
k⋃

i=1
�i . This correspondence defines an isomorphism between the lattice Qn and the lattice Pn+1 of

partitions of the set [n + 1].

Definition 1 (Subcubes of Cn). Given v ∈ Cn and a partial partition �={�1, . . . , �k} ∈ Qn the subcube of Cn defined
by v and � is the subset C(v; �) := {w ∈ Cn : w(�j )=v(�j ) or w(�j )=v∗(�j ), ∀j =1, . . . , k}. If we want to specify
the partition � we write C(v; �1, . . . , �k).

A subcube C(v; �) of Cn is called a k-subcube of Cn if � has k blocks. The family of all the k-subcubes of Cn,
k = 1, . . . , n, will be denoted Ck .

The poset of all subcubes of Cn, ordered by set inclusion is denoted Cub(n). Cub(n) has a maximal element: Cn. The
minimal elements of Cub(n) are the elements of Cn. By adding ∅ to Cub(n) we obtain the lattice ˆCub(n) of subcubes
of Cn.

The next proposition lists properties of the poset Cub(n) derived directly from the definition:

Proposition 1. (1) For every v, w ∈ Cn and every � ∈ Qn, C(v; �) = C(w; �) iff w ∈ C(v; �).
(2) For every v ∈ Cn and every �1, �2 ∈ Qn, C(v; �1) ⊂ C(v; �2) iff �2 < �1 in Qn.
(3) For every v ∈ Cn the interval [v, Cn] of ˆCub(n) is antiisomorphic to the lattice Qn, or equivalently is isomorphic

to the dual lattice Q
op
n .

2.1. Rectangles, facets and skew facets of Cn

A 2-subcube or rectangle of Cn is a subset C(v; �, �)={v, �v, ��v, �v}, with �, � two disjoint subsets of [n]. The
pairs {v, �v}, {�v, ��v}, {��v, �v} and {v, �v} are the edges of the rectangle, and the pairs {v, ��v}, {�v, �v} are the
diagonals of the rectangle.

The (n − 1)-subcubes of Cn correspond to partial partitions of [n] into n − 1 blocks. These partitions are of two
types, those in which each block is a single element and those in which a block has two elements. The (n−1)-subcubes
defined by partitions of the first type will be called facets of Cn and the (n − 1)-subcubes defined by partitions of the
second kind will be called skew facets of Cn.
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Thus, the facets of Cn are the subsets of the form: H 0
i := {v ∈ Cn : v(i) = 0} or H 1

i := {v ∈ Cn : v(i) = 1}, for
1� i�n. The skew facets of Cn are the subsets of the form H 0

ij := {v ∈ Cn : v(i) − v(j) = 0} or H 1
ij := {v ∈ Cn :

v(i) + v(j) = 1}, for 1� i < j �n.
If H ⊆ Cn is a facet (resp. skew facet) then H ∗ = Cn\H is also a face (resp. skew facet), the opposite facet (resp.

skew facet).

Definition 2 (Cubic matroids over Cn. Cubic matroids). A cubic matroid over Cn is a matroid M = M(Cn) over the
set Cn, whose families of hyperplanes and circuits, H,C, satisfy the following conditions:

(C1) The facets and skew facets of Cn are hyperplanes of M: Cn−1 ⊆ H.
(C2) The rectangles of Cn are circuits of M: C2 ⊆ C.

A Cubic matroid is a matroid isomorphic to a cubic matroid over Cn.
Clearly, for every field F, the matroid of the affine dependencies of Cn ⊆ Fn over F, denoted AffF (Cn), is a cubic

matroid. We refer to these cubic matroids as affine cube matroids. In particular AffR(Cn) is the real affine cube.

The next two propositions establish general properties of cubic matroids.

Proposition 2. Let M = M(Cn) be a cubic matroid over Cn.

(1) For n = 1, 2 M = AffR(Cn).
(2) Every subcube C(v, �) of Cn is a flat of M.
(3) Let �1, �2 ∈ Qn be such that �2 covers �1 in Qn, then for every v ∈ Cn the subcube C(v, �1) covers the subcube

C(v, �2) in the lattice of flats of M.
(4) Every k-subcube C(v, �) of Cn is a flat of M of rank k + 1, in particular r(M) = r(Cn) = n + 1.
(5) For every n�2, the restriction M(H), of M to a facet or skew facet H ∈ Cn−1, is isomorphic to a cubic matroid

over Cn−1.

Proof. (1) Is trivial.
(2) For every v ∈ Cn and � ∈ Qn the subcube C(v, �) is clearly an intersection of (n − 1)-subcubes of Cn which

are hyperplanes of M, therefore C(v; �) is a flat of M.
(3) Consider a partial partition �1 = {�1, . . . , �k} ∈ Qn. A partial partition �2 ∈ Qn covers �1 iff �2 is obtained

from �1 in one of the following ways: (i) deleting a block form �1 or (ii) replacing two blocks of �1 by their union. We
may consider w.l.o.g. that in case (i) �2 ={�1, . . . , �k−1} and that in case (ii) �2 ={�1, . . . , �k−1 ∪ �k}. To simplify, let
v ∈ Cn and set C1 := C(v; �1), C2 := C(v; �2). Consider C′

2 := C(�k
v; �2). Observe that, in both cases, C1 =C2 ∪C′

2
and so C1 covers C2 iff C′

2 ⊆ clM(C2 ∪ �k
v).

To prove this inclusion consider w′ ∈ C′
2\(C2 ∪ �k

v) then �k
w ∈ C2 and R := {v, �k

v, w′, �k
w′} is a circuit of M

with R\w′ ⊆ C2 ∪ �k
v, implying that w′ ∈ clM(C2 ∪ �k

v).
(4) Consider a k-subcube C(v, �) of Cn (i.e. � has k blocks). Let � : � < �k−1 < · · · �2 < 1̂ be a maximal chain

of Qn between � and the maximal element 1̂ = {[n]}. By definition of Qn, � has length k. By (2) and (3) the chain:
∅ < v =C(v, [n]) < · · · < C(v, �k−1) < C(v, �) is a maximal chain of length k + 1 in the lattice of flats of M, therefore
rM(C(v, �)) = k + 1.

(5) Left to the reader. �

Proposition 3. Let M = M(Cn) be a cubic matroid over Cn. Then every subset A ⊆ Cn such that |A|�2n−1 + 1
satisfies rM(A) = n + 1.

Proof. The proof is by induction on n. The cases n = 1, 2 are trivial. For the induction step observe that given a subset
A ⊆ Cn such that |A|�2n−1 + 1 and a pair, H, H ∗, of opposite facets of Cn the intersections A0 := A ∩ H and
A1 := A ∩ H ∗ must be both nonempty and one of them, say A0, must verify |A0|�2n−2 + 1. By Proposition 2(5)
M(H) is isomorphic to a cubic matroid over Cn−1, the induction assumption implies that clM(A0)=H . Since A1 = ∅,
clM(A) = clM(A0 ∪ A1) = Cn, i.e. rM(A) = rM(Cn) = n + 1. �
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Fig. 1.

Proposition 4 (Elimination properties for rectangles). Let M = M(Cn) be a cubic matroid over Cn. Consider two
rectangles, R and R′, of M, such that R ∩ R′ = {v, �v}.

(1) If {v, �v} is an edge of both R and R′ then we have R = {v, �v, ��v, �v} and R′ = {v, �v, ��v, �v}, for some
subsets �, � ⊂ [n] such that � ∩ (� ∪ �) = ∅. In this case the rectangle C(v; �, ���) = R�R′ = {�v, ��v, ��v, �v} is
the unique circuit of M contained in (R ∪ R′)\v.

(2) If {v, �v} is a diagonal of both R andR′ then we have R = {v, �v, �v, �\�v} and R′ = {v, �v, �v, �\�v}, for
some subsets �, � ⊂ �. In this case the rectangle C(�v; ���, (�\�)��) = R�R′ = {�\�v, �v, �v, �\�v} is the unique
circuit of M contained in (R ∪ R′)\{v}.

Proof. The two situations are pictured in Fig. 1A and B, where the rectangles R and R′ are marked with a thin line
and the rectangle R�R′ with a thick line. The proof is straightforward since by Proposition 2(4) a rectangle is a flat of
rank 3 of M. �

We conclude this section describing a “local” operation on matroids: pulling an element onto a hyperplane. This
operation is a non-oriented version of the operation with the same name introduced by Fukuda and Tamura in [6] for
oriented matroids (see e.g. [2]).

Although our operation does not in general preserve orientability it transforms a cubic matroid into a new cubic
matroid. We exemplify its use by constructing examples of non-representable cubic matroids.

Definition 3. Let M = M(E) be a matroid of rank r over a set E. A pair (H, e) ∈ H × E of a hyperplane H and an
element e of M is said to be in general position in M if for every hyperline L contained in H the subset HL := L ∪ e is
a hyperplane of M.

Proposition 5. Let M = M(E) be a matroid of rank r over a set E, with no loops or coloops.
Assume that there is a hyperplane G and an element e /∈ G such that the pair (G, e) ∈ H × E is a pair in general

position in M. Denote by G (resp. X) the collections of hyperplanes (resp. circuits) of M defined by

G := {H ∈ H : H ⊆ G ∪ e},

X := {C ∈ C : |C| = r + 1 and |C ∩ (G ∪ e)| = r}.

Then

(1) HG,e := H\G∪ {G ∪ e} is the collection of hyperplanes of a new matroid of rank r over E, the matroid obtained
from M pulling the element e onto the hyperplane G, denoted MG,e = MG,e(E).

(2) The family of circuits, CG,e, of the matroid MG,e is given by CG,e := C\X ∪ {C ∩ (G ∪ e) : C ∈ X}.
(3) For every n�3 if M = M(Cn) is a cubic matroid then MG,e = MG,e(C

n) is a cubic matroid.
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Proof. (1) Verifying that HG,e is the family of hyperplanes of a matroid is a routine checking of the axioms for
hyperplanes of a matroid:

(H1) H1, H2 ∈ HG,e and H1 ⊆ H2 �⇒ H1 = H2.
(H2) If H1, H2 ∈ HG,e are two distinct hyperplanes of HG,e then for every x /∈ H1 ∪ H2 there is H3 ∈ HG,e such

that (H1 ∩ H2) ∪ x ⊆ H3.

(H1) Let H1, H2 ∈ HG,e, with H1 ⊆ H2. Since (G, e) is a pair in general position, no hyperplane H ∈ H\G is
contained in G ∪ e, therefore either H1 = H2 = G ∪ e or H1, H2 ∈ H\G. In this case they are both hyperplanes of M
implying that H1 = H2.

(H2) Consider two distinct hyperplanes H1, H2 ∈ HG,e and x /∈ H1 ∪H2. We consider separately the two cases: (1)
H1, H2 ∈ H\G and (2) H1 ∈ H\G and H2 = G ∪ e.

Case 1: If H1, H2 ∈ H\G there is a hyperplane H3 ∈ H satisfying (H2). If H3 ∈ H\G then H3 ∈ HG,e satisfies
(H2), if H3 ∈ G then H3 ⊂ G ∪ e and H ′

3 = G ∪ e ∈ HG,e satisfies (H2).
Case 2: Consider H1 ∈ H\G and H2 = G ∪ e. Note that in this case x /∈ G ∪ e. Observe that if e /∈ H1 then

H1 ∩ (G∪ e)=H1 ∩G is a subset of some hyperline L of M contained in G. Since the pair (G, e) is in general position
and x = e we conclude that H3 := clM(L ∪ x) is a hyperplane of H\G satisfying (H2). In the case e ∈ H1, H1 ∩ G

is a subset of some flat F of rank r − 3 of M and the fact that (G, e) is in general position and x /∈ G ∪ e implies that
H3 := clM(F ∪ {e, x}) is a hyperplane of H\G satisfying (H2).

(2) We leave the proof to the reader.
(3) Let M = M(Cn) be a cubic matroid with rank greater or equal to 4 (n�3). Assume that (G, v) ∈ H × Cn is a

pair in general position in M. Observe that from (2) we conclude that every circuit of M with rank smaller or equal to
r − 1 is a circuit of MG,e, therefore forr �4 every rectangle of Cn is a rectangle of MG,e. We are left with proving that
every facet and skew facet of Cn is a hyperplane of MG,e.

Note that given a facet or a skew facet H of Cn for every element w /∈ H , i.e. w ∈ H ∗ there is a rectangle R such
that w ∈ R and |R ∩ H | = |R ∩ H ∗| = 2. This implies that for r �4 the pair (H, w) is not a pair in general position in
M. Note also that for r �4, M(H) has no coloops, therefore H is not contained in G ∪ e and consequently it must be a
hyperplane of MG,e. �

Example 1 (Non-representable cubic matroids). Consider M = AffR(Cp+1) where p is a prime number. Let G =
{e1, . . . , ep+1} be the hyperplane of M whose elements are the vectors of the canonical basis of Rp+1 and let u=∑p+1

i=1 ei.
The pair (G, u) is in general position in M since the hyperplanes contained in G ∪ u are the following: G := {v ∈ Cn :
v.(

∑p+1
i=1 ei) = 1} and G\ei ∪ u := {v ∈ Cp+1 : v.hi = 1} where hi = ∑p+1

j=1,j =iej − (p − 1)ei, all having exactly n
elements. By Proposition 6 the matroid M ′ := MG,u, obtained from M pulling u onto G, is a cubic matroid. Next we
prove that M ′ contains two minors one of them M ′

1, representable only over fields of characteristic p, the other M ′
2, not

representable over fields of characteristic p. Since representability is hereditary for minors we conclude that M ′ is not
representable.

Consider M ′
1 := M ′(G ∪ G∗ ∪ u) and M ′

2 := M ′\u. M ′
1 is a Lazarson matroid (see [14,3, p. 141]) which is

representable only over fields of characteristic p. M ′
2, is representable over R (observe that M ′

2 = Aff R(Cp+1\u)) but
not over a field of characteristic p since it contains as a minor the uniform matroid Up+2,2. Note that Up+2,2 = M ′

2/L

where L is the hyperline of M ′
2 defined as the intersection of the facet H 0

p+1 of Cp+1 with the affine hyperplane of

Rp+1 defined by H : x.h = 0, with h = −e1 + ∑p+1
i=2 ei. The hyperline L is contained in exactly p + 2 hyperplanes

of M ′
2, namely the hyperplanes H 0

p+1 : x.ep+1 = 0 and Hj : x.hj = 0, where hj = −e1 + ∑p

i=2ei − jep+1, for
j = −1, 0, . . . , p − 1. This implies that M ′

2/L = Up+2,2.

3. Orientability of cubic matroids

We recall that a matroid M is orientable if there is an oriented matroid M whose underlying matroid is M.
Two orientations M and M′ of the same matroid M = M(E) are in the same class iff one is obtained from the

other reversing signs on a subset A ⊆ E, i.e. if C(M′)=−AC(M) and/or C⊥(M′)=−AC
⊥(M). In this case we write

M′=−AM.
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The orientation class of an oriented matroid M=M(E), denoted O(M), is the set of all orientations obtained from
M reversing signs on a subset of E: O(M) = {−AM : A ⊆ E}.

Acyclic orientations of a matroid play a central role in oriented matroid theory. They are abstract convex polytopes
having a well behaved face lattice. This lattice, introduced in [9], is known ([2]) as the Las Vergnas face lattice, or
simply the LV-face lattice, of the (acyclic) orientation.

We recall that given a subset E of Rn the order of R induces a canonical orientation of the matroid AffR(E), denoted
Aff(E). This orientation is always acyclic and the LV-face lattice of this acyclic orientation is isomorphic to the face
lattice of the polytope conv(E) of Rn.

On the other hand, via Folkman–Lawrence Topological Representation Theorem for oriented matroids [5], each
acyclic orientation in a orientation class O(M) is represented by a pair of opposite maximal regions (topes) of the cell
decomposition of the unit sphere Sr(M)−1 of Rr(M) determined by a signed arrangement of pseudospheres, representing
an oriented matroid in this class. Topes are PL-balls whose face lattice is dual to the LV-face lattice of the corresponding
acyclic orientation (see e.g. [2]).

Throughout this section we will make extensive use of orthogonality between signed circuits and signed cocircuits
of an oriented matroid. We recall that two signed subsets X = (X+, X−) and Y = (Y+, Y−) of a set E are orthogonal
if either X ∩ Y = ∅ or X(X ∩ Y ) = ±Y (X ∩ Y ). The signatures C and C⊥ of the circuits and of the cocircuits of an
oriented matroid are orthogonal and this property is enough to recover one of them given the other.

A consequence of our main results, Theorems 1 and 2, is that we can restate Problem 1 and Las Vergnas Conjecture
(see Remark 2) as problems about whether or not the oriented matroid Aff(Cn) can be reconstructed from its signed
circuits of length 4 or, equivalently, from its signed cocircuits of length 2n−1. These partial lists of signed circuits, resp.
signed cocircuits, of the oriented real cube matroid Aff(Cn) are denoted R, resp. F̃ and play a central role in what
follows. We precise the definition and notation.

3.1. The families F, F̃ and R

Let Aff(Cn) be the oriented matroid of affine dependencies of Cn over R and denote by F (resp. F̃) its family
of signed cocircuits complementary of the facets (resp. facets and skew facets) of Cn and by R its signed rectangles
(circuits of rank 3). We have:

F := {±X0
i , ±X1

i : X0
i := (H 1

i , ∅), X1
i := (H 0

i , ∅)}i∈[n],

F̃ := F ∪ {±X0
ij , ±X1

ij : X0
ij := (H 0

i ∩ H 1
j , H 1

i ∩ H 0
j ), X1

ij := (H 0
i ∩ H 0

j , H 1
i ∩ H 1

j )}1� i<j �n,

R = {R(v; �, �) = ({v, ��v}, {�v �v}) = v+
�v−

��v+
�v− : v ∈ Cn, � � � ⊆ [n]}.

Our first theorem says that every orientation class of an orientable cubic matroid of rank (n + 1) contains at least
(n + 1) acyclic orientations whose LV-face lattice is isomorphic to the face lattice of the n-dimensional real cube.

Theorem 1. Let M = M(Cn) be an orientable cubic matroid and M an orientation of M. Then:

(1) There is a unique orientation M0 ∈ O(M) such that F̃ ⊂ C⊥(M0) and R ⊆ C(M0).
(2) Let M0 be the orientation of M defined in (1). M0 is acyclic and its LV-face lattice is isomorphic to the face lattice

of the n-dimensional cube. Moreover, for every i ∈ [n] the orientation −Hi
M0(=−H−i

M0) is also an acyclic
reorientation of M with LV-face lattice isomorphic to the face lattice of the n-dimensional cube.

We divide the proof of Theorem 1 in several lemmas.

Lemma 1. Let M = M(Cn) be an orientable cubic matroid. Let M be an orientation of M then the following three
conditions are equivalent:

(1) F ⊆ C⊥.
(2) F̃ ⊆ C⊥.
(3) R ⊆ C.
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Proof. (1) �⇒ (2) Given a skew facet H there are two facets G, G′ such that the intersection L = H ∩ G ∩ G′ is an
LV-face of corank 2 of the orientation M and Cn = H ∪ G ∪ G′. The signed cocircuit complementary of H is then
directly obtained by elimination between the modular pair of positive signed cocircuits complementary of the facets G
and G′.

(2) �⇒ (3) and (3) �⇒ (1) are direct consequences of the orthogonality between signed circuits and signed cocircuits
of an oriented matroid. �

Lemma 2. Let M be an orientation of a (orientable) cubic matroid M(Cn). Assume that M satisfies the following
two conditions:

(i) For some i ∈ [n], the signed sets X0
i = (H 1

i , ∅), X1
i = (H 0

i , ∅) are signed cocircuits of M.
(ii) There exists a signed rectangle R(v; �, i) = v+

�v−
�iv+

iv− which is a signed circuit of M.

Then the following conditions are satisfied:

1. For every w ∈ Cn and every pair of disjoint subsets �, � ⊆ [n]\i the signed rectangle R(w; �, �i) = w+
�w−

��iw+
�iw− is a signed circuit of M.

2. F̃ ⊂ C⊥(M) and R ⊆ C(M).

Remark 1. First observe that by orthogonality with the signed cocircuits X0
i and X1

i , every rectangle C(w; �, �i),
� � � ⊆ [n]\i, must be signed in M in one of the following two ways: either as ±R(w; �, �i) where R(w; �, �i) =
w+

�w−
��iw+

�iw− or as ±R′(w; �, �i) where R′(w; �, �i) = w+
�w−

��iw−
�iw+.

Proof. (1) First we consider the case w = v, where v is an element of a rectangle R(v; �, i) in condition (ii) of the
lemma, and then the general case.

Case 1: w = v. This case is proven by contradiction. Assume that for some � � � ⊆ [n]\i, the signed rectangle
R(v; �, �i)=v+

�v−
��iv+

�iv− is not a signed circuit ofM. Then, by Remark 2,R′=R′(v; �, �i)=v+
�v−

��iv−
�iv+

is a signed circuit of M.

If �=∅, i.e. if R′=v+
�v−

�iv−
iv+, consider the signed circuit R=v+

�v−
�iv+

iv− ofM satisfying condition (ii)
of the lemma. Since iv has different signs in R and R′, elimination for signed circuits implies that there is a signed circuit
S of M such that S+ ⊆ (R+ ∪ R

′+)\ iv and S− ⊆ (R− ∪ R
′−)\ iv. On the other hand, the rectangles R and R′ have

the edge {v, iv} in commun therefore by Proposition 4(1) S must be the signed rectangle: S=−�v−
�iv+

�iv−
�v−.

This signed set is not orthogonal to one of the positive cocircuit X0
i or X1

i , a contradiction.
If � = ∅ and R′ = R′(v; �, �i) = v+

�v−
��iv

−
�iv

+ is a signed circuit of M then, by the case � = ∅ we know that

R = R(v; ��, i) = v+
��v−

��iv+
iv− is a signed circuit of M. R and R′ have the diagonal {v, ��iv} in commun.

Eliminating ��iv between R and R′ we conclude, by Proposition 4(2) that the signed rectangle S=�v−
��v−

�iv−
iv+

is a signed circuit of M. This circuit is not orthogonal to one of the positive cocircuits X0
i , X

1
1, a contradiction.

Case 2: The general case is now obtained as a consequence of Case 1. Consider w=�v ∈ Cn, � = ∅. If i /∈ �
then, by Case 1, R(v; �, i) = R(w; �, i) is a signed circuit of M and (2) holds in this case. If i ∈ � then, by Case
1,R(v; �\i, i) = R(w; �\i, i) is a signed circuit of M and condition (ii) of the lemma is verified replacing the given
circuit by R(w; �, i) implying that in this case the result also follows from Case 1.

(2) By Lemma 1 it is enough to prove that F ⊆ C⊥(M). We prove that for every j ∈ [n]\i, X0
j = (H 1

j , ∅) and

X1
j = (H 0

j , ∅) are signed cocircuits of M. We consider the case X0
j , the other being similar. Consider j ∈ [n]\i

and v ∈ H 1
j . Let Yj = (Y+

j , Y−
j ) be the signed cocircuit of M with support Yj = H 1

j such that v ∈ Y+
j . Consider

another element w=�v of H 1
j (note that certainly j /∈ �). If i /∈ � then, by (1), we know that R = R(v; �, ij) is a signed

circuit of M, moreover R ∩ Yj = {v, w}. Since v and w have different signs in R, we conclude that w ∈ Y+
j . If

i ∈ �, using the same argument with R = R(v; �, j), we also conclude that w ∈ Y+
j . Therefore Yj is the positive

cocircuit X0
j . �
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Lemma 3. Let M be an orientation of a (orientable) cubic matroid M(Cn), satisfying the condition:

(i) X0
i = (H 1

i , ∅), X1
i = (H 0

i , ∅) ∈ C⊥.

Then one of the following conditions is satisfied:

(1) F̃ ⊂ C⊥ and R ⊆ C,
(2) −H 0

i
F̃ ⊂ C⊥ and −H 0

i
R ⊆ C.

Proof. Let C = C(v; �, i) be a rectangle of M. Condition (i) of the lemma (see Remark 2) implies that either R =
R(v; �, i) or R′ = R′(v; �, i) is a signed rectangle of M. In the first case Lemma 2 implies that F̃ ⊂ C⊥ and R ⊆ C.
In the second case Lemma 2 implies that R′ = R′(v; �, i) is a signed rectangle of M for every v ∈ Cn and � ⊆ [n]\i.
Arguing by contradiction, as in Lemma 2 we conclude that for every w ∈ Cn and every disjoint subsets �, � ⊆ [n]\i the
signed rectangle R′(w; �, �i) is a signed rank 3 circuit of M, therefore −Hi

R ⊆ C. By orthogonality with the signed
rectangles of −Hi

R we conclude that −Hi
F̃ ⊂ C⊥. �

Proof of Theorem 1. Consider and oriented cubic matroid M.
(1) Let Y = (Y+, Y−) and Z = (Z+, Z−) be the signed cocircuits of M complementary of the facets H 0

n and H 1
n ,

respectively. Since Cn = H 0
n � H 1

n there are exactly two acyclic reorientations of M containing the positive signed
cocircuits X0

n=(H 1
n , ∅) and X1

n=(H 0
n , ∅) namely the orientationsM′:=−B1M andM′′:=−B2Mwhere B1 := Y−∪Z−

and B2 := Y+ ∪ Z− (observe that B2 = B1�H 0
n ). By Lemma 3 exactly one of these two orientations, say M′, satisfies

the condition F̃ ⊂ C⊥(M′) and R ⊆ C(M′) and the other the condition −HnF̃ ⊂ C⊥(M′′) and −HnR ⊆ C(M′′).
(2) Let M0 be the orientation in O(M) satisfying the condition F̃ ⊂ C⊥(M0) and R ⊆ C(M0). It is clear that

M has LV-face lattice isomorphic to the face lattice of the n-dimensional cube. For every i ∈ [n] the reorientation
Mi :=−H 0

i
M0 is an orientation in the class O(M) and clearly −H 0

i
F̃ ⊂ C⊥(Mi ) and −H 0

i
R ⊆ C(Mi ), implying that

Mi is an acyclic orientation of M with LV-facets: H 0
i , H 1

i and H 0
ij , H

1
ij for every j ∈ [n]\i. Therefore the LV-face

lattice of Mi is isomorphic to the face lattice of the n-dimensional cube. �

Theorem 1 says that every orientation class of an orientable cubic matroid contains, at least, (n+1) acyclic orientations
whose LV-face lattice is isomorphic to the face lattice of the n-dimensional cube. Topologically, via Folkman–Lawrence
Topological Representation Theorem, each orientation M = M(Cn) of a cubic matroid is represented by a signed
arrangement of 2n pseudohyperplanes of the unit sphere Sn ⊆ Rn+1. This arrangement of pseudospheres determines
a cell decomposition �(M) of the unit sphere Sn whose maximal cells correspond to the acyclic reorientations in the
same orientation class.

From this point of view Theorem 1 says that for every orientation M of a cubic matroid the corresponding cell
decomposition �(M) contains at least 2(n + 1) maximal topes, bounded by the 2n hyperplanes and whose face lattice
is isomorphic to the face-lattice of the n-cross polytope.

The next theorem, Theorem 2, is more precise. It says that no other tope of �(M) has this property, moreover it
specifies the relative position of these 2(n + 1) topes within the cell complex.

Theorem 2. Let M=M(Cn) be an orientable cubic matroid. Every orientation class,O(M) of M satisfies the following
two, equivalent, conditions:

(1) O(M) contains exactly (n + 1) acyclic orientations, M0,M1, . . . ,Mn whose LV-face lattice is isomorphic to the
face lattice of the n-dimensional cube. Moreover, given two orientations M,M′ ∈ {M0,M1, . . . ,Mn} there is a
unique pair of opposite LV-facets, {H, H ∗}, of both M and M′ such that M′=−HM (=−H ∗M).

(2) Let �(M) denote the cell decomposition of the unit sphere Sn ⊆ Rn+1 determined by the signed arrangement of
pseudohyperplanes representing an orientation M ∈ O(M). �(M) has exactly 2(n + 1) topes, ±T0, ±T1 . . . ±
Tn, whose face lattice is isomorphic to the face lattice of the n-cross-polytope. Moreover, given two topes
T , T ′ ∈ {±T0, ±T1 . . . ± Tn} such that T ′ = −T , T and T ′ have exactlyone vertex (signed cocircuit) in
commun.
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Fig. 2.

Proof. The equivalence between (1) and (2) is standard (see [5,2]). We just prove (1). In order to do so we must prove
that, given an orientation M of M, apart from the (n + 1) acyclic reorientations described in Theorem 1 as having
LV-face lattice isomorphic to the face lattice of the n-dimensional cube no other acyclic reorientation in the same class
has this property.

This is a consequence of the next two lemmas. Lemma 4 saying that the LV-facets of such an acyclic orientation
must be facets or skew facets of Cn and Lemma 5 saying that such an acyclic orientation always contains as LV-facets
a pair {H 0

i , H 1
i } of opposite facets of Cn.

Lemma 3 and Theorem 1 then imply that, being M0 the unique acyclic orientation of O(M) satisfying the condition
F̃ ⊆ C⊥(M0), the other n acyclic orientations with LV-face lattice isomorphic to the face lattice of the n-dimensional
cube must be Mi=−H 0

i
M. Observe that M0 and Mi have in commun the pair of LV-facets {H 0

i , H 1
i } and Mi and Mj

have in commun the pair of LV-facets {H 0
ij , H

1
ij }, for every 1� i < j �n. �

Lemma 4. If M = M(Cn) is an orientable cubic matroid over Cn then every subset A of Cn such that |A| = 2n−1 and
r(A)�n is a facet or a skew facet of Cn.

Proof. Note that, by Theorem 1, we may consider w.l.o.g. that M is oriented with an orientation M satisfying the
condition F̃ ⊆ C⊥. The proof then follows by induction on n. For n = 1, 2 the result is trivial since in these cases
AffR(Cn) is the unique cubic matroid over Cn. For the induction step, let A be a subset of Cn in the conditions of the
lemma. If A is one of the facets of Cn there is nothing to prove, otherwise consider the intersections A0 := A∩H 0

n and
A1 := A ∩ H 1

n . By Propositions 3(5) and 4, we must have |A0| = |A1| = 2n−2 and induction implies that A0, resp. A1,
must be a facet or a skew facet of the (n − 1)-cube H 0

n , resp. H 1
n . If A0 is a facet of H 0

n , i.e. A0 = H 0
n ∩ H �

i ∩ H �
in for

some i ∈ [n−1], �, � ∈ {0, 1} then A0 is a LV-face of corank 2 of M and the contraction M/A0 must be the real acyclic
geometry of rank 2 with three points depicted in Fig. 2A. The hypothesis r(A)�n implies that in this case A must be
either the facet H �

i or the skew facet H �
in. If A0 is a skew facet of H 0

n , then A0 = H 0
n ∩ H �

jk for some j, k ∈ [n − 1],
� ∈ {0, 1}. In this case M/A0 must be the real geometry of rank 2 with 4 points. Fig. 2B depicts this case, where the
thin vectors corresponding to the partition of H 1

n ∩ H 1−�
jk into positive and negative elements of the signed cocircuit

complementary of H �
jk . Since |A| = 2n−1 and r(A)�n we conclude that, in this case, A must be the skew facet H �

jk of
Cn. �

Lemma 5. Let M be an acyclic orientation of a cubic matroid M = M(Cn) whose LV-face lattice is isomorphic to
the face lattice of the n-dimensional cube. If a skew facet H �

ij of Cn is a LV-facet of M then one and only one of the
following conditions is satisfied:

(1) H 0
i , H 1

i is a pair of LV-facets of M.
(2) H 0

j , H 1
j is a pair of LV-facets of M.

Proof. Assume that H 0
ij is a LV-facet of M. Let L and L′ be the flats of corank 2 defined by L := H 0

ij ∩ H 0
i ∩ H 0

j and

L′ := H 0
ij ∩ H 1

i ∩ H 1
j . The contractions M/L and M/L′ are real rank 2 geometries with three points, containing the
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positive cocircuit Xij = (H 1
ij , ∅) of M and therefore acyclic. One of the extreme points of M/L is H 0

ij\L , the other

one must be, either H 0
i \L or H 0

j \L, implying, respectively, that H 0
i or H 0

j is a LV-facet of M. Similarly, one of the

extreme points of M/L′ is H 0
ij\L′ , the other is one of the other two points: H 1

i \L′ or H 1
j \L′ implying that either H 1

i

or H 1
j is a LV-facet of M

To conclude the proof of the lemma we prove, by contradiction, that H 0
i and H 1

j cannot be both LV-facets of M
(this is enough since, by hypothesis, the face lattice of M is isomorphic to the face lattice of the n-dimensional cube).
Assume that H 0

i and H 1
j are both facets of M. Let v be an element of H 0

ij and consider the rectangle C = C(v; i, j)

of M. By the hypothesis of the lemma H 0
ij and H 1

ij are LV-facets of M. Orthogonality with the corresponding positive
signed cocircuits of M implies that either R = v+

iv−
ij v−

j v+ or R′ = v+
iv+

ij v−
j v− is a signed circuit of M.

But R is not orthogonal to the positive cocircuit X0
i = (H 1

i , ∅) of M and R′ is not orthogonal to the positive cocircuit
X1

j = (H 0
j , ∅) of M, leading the contradiction. �

Note that from Lemma 4 we conclude that every orientable cubic matroid must have the same family of cocircuits
with 2n−1 elements. The next corollary extends this result to the family of circuits with four elements.

Corollary 1. Every orientable cubic matroid M = M(Cn) satisfies the following conditions:

(1) The hyperplanes of M with 2n−1 elements are the facets and skew facets of Cn.
(2) The circuits of length 4 of M are the rectangles of Cn.
(3) Every class of orientations of M contains a unique acyclic orientation whose signed circuits of length 4 and/or

signed cocircuits of length 2n−1 are signed as in Aff(Cn).

Proof. (1) was proved in Lemma 4.
(2) The proof is by induction on n. Assume that C = {u, v, w, z} is a circuit of rank 3 of M. By Lemma 4 either C is

contained in a facet or skew facet, and in this case induction implies that either C is a rectangle, or |C ∩H |=2 for every
facet or skew facet H of Cn. In this case assume w.l.o.g. that v=�u for some � strictly contained in [n]. If |�| < n − 1
then for every i, j ∈ [n]\� C is contained in a skew facet Hij . If |�| = n − 1 then, for n�4, there is i, j ∈ � such that C
is contained in a skew facet Hij . We are left with the case n = 3 in this case, by Lemma 4, C must be a rectangle of C3.

(3) is an immediate consequence of (1), (2) and Theorem 1. �

Remark 2. Corollary 1 together with Theorems 1 and 2 leads to the following reformulation of Problem 1 and Las
Vergnas Conjecture as reconstruction problems:

Problem 1. Can the real affine cube AffR(Cn) be reconstructed from orientability and its circuits with 4 elements
or/and hyperplanes with 2n−1 elements?

Las Vergnas Conjecture. The oriented matroidAff(Cn) can be reconstructed from its underlying matroid, AffR(Cn),
and its signed rectangles or/and its positive cocircuits.

The next theorem is a direct application of Theorems 1 and 2 to obtain non-orientability results about cubic matroids.

Theorem 3 (Implicit in Bland and Las Vergnas [3]). Let F be a field of prime characteristic p. Then for every n�p+1
the affine cube over F, AffF (Cn), is not orientable.

Proof. Since orientability is hereditary for minors it is enough to prove the theorem for n=p+1. Set M :=AffF (Cp+1)

and assume that M is orientable. Let M be an orientation of M satisfying the conditions of Theorem 1. The subset
C = {e1 . . . ep+1, u} where ei is the point represented by the ith vector of the canonical basis and u = ∑p+1

i=1 ei must be
a circuit of M because F has characteristic p.

For every positive cocircuit X0
i = (H 1

i , ∅) of M we have C ∩ H 1
i = {ei, u} therefore the signature of the circuit C

in M must be ±C where C = ({e1, . . . , ep+1}, u). This implies that u is not an extremal point of M in contradiction
with the assumption that M satisfies theconditions of Theorem 1. �
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4. Final remarks

(1) The short proof of Theorem 3 extends to the following generalized version of Theorem 3 which also applies to
the cubic matroids of Example 1:

Theorem 3′. Let M = M(Cn) be a cubic matroid, n�3. If M contains a pair hyperplane/element (G, u) in general
position in M satisfying the following condition: G has a basis B = {e1, . . . , en} such that for every facet Hi(u) of Cn

containing u, B ∩ Hi(u) = {ei}, then the matroid MG,e, obtained from M by pulling u onto G, is not orientable.

An alternative proof of Theorem 3′ consists in observing that the matroid MG,e contains, as a minor, the minor
minimal non-orientable matroid Mn of Bland and Las Vergnas [3].

(2) The operation of pulling an element onto a hyperplane defined in Section 2 when applied to an oriented matroid
does not, in general, preserve orientability. Fukuda and Tamura proved [6] that orientability is preserved when the
element and the hyperplane are not only in general position in the matroid but also near each other in the oriented
matroid.

Roughly speaking a pair (G, e) of a hyperplane and an element are near each other in an oriented matroid M(E)

if the pair (G, e) is in general position in the underlying matroid and all the hyperplanes of M contained in G ∪ e

determine the same partition of the complement, E\(G ∪ e), in the oriented matroid.
If an oriented matroid M contains a pair (G, e) of a hyperplane and an element near each other then M induces not

only a canonical orientation MG,e of the matroid MG,e obtained by pulling e onto G, but also a new orientation MeGe

of the matroid M, obtained by pulling the element e across the hyperplane G (see [6]).
From this point of view an answer to the next question is relevant for a complete understanding of orientable cubic

matroids:

Question 1. Does the oriented real affine cube Aff(Cn) contain a pair (G, e) of a hyperplane and an element near
each other?

Observe that if such a pair (G, e) does exist then we, immediately, conclude that Problem 1 and Las Vergnas
Conjecture have a negative answer. Since Las Vergnas Conjecture is true for n�7 [4,13] the existence of such a pair
requires n > 7.
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