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Abstract

We study the asymptotic behavior of linear evolution equations of the type ∂t g = Dg + Lg − λg, where L is the fragmentation
operator, D is a differential operator, and λ is the largest eigenvalue of the operator Dg + Lg. In the case Dg = −∂xg, this
equation is a rescaling of the growth-fragmentation equation, a model for cellular growth; in the case Dg = −∂x(xg), it is known
that λ = 1 and the equation is the self-similar fragmentation equation, closely related to the self-similar behavior of solutions of
the fragmentation equation ∂t f = Lf .

By means of entropy–entropy dissipation inequalities, we give general conditions for g to converge exponentially fast to the
steady state G of the linear evolution equation, suitably normalized. In other words, the linear operator has a spectral gap in the
natural L2 space associated to the steady state. We extend this spectral gap to larger spaces using a recent technique based on a
decomposition of the operator in a dissipative part and a regularizing part.
© 2011 Elsevier Masson SAS. All rights reserved.

Résumé

Nous étudions le comportement asymptotique d’équations d’évolution linéaires du type ∂t g = Dg + Lg − λg, oú L est l’opé-
rateur de fragmentation, D est un opérateur differentiel, et λ est la plus grande valeur propre de l’opérateur Dg + Lg. Dans le cas
Dg = −∂xg, cette équation est obtenue par changement d’échelle à partir de l’équation de croissance-fragmentation, un modèle
pour la croissance cellulaire ; dans le cas Dg = −∂x(xg), il est connu que λ = 1 et cela correspond à l’équation de fragmentation
autosimilaire, étroitement reliée au comportement autosimilaire des solutions de l’équation de fragmentation ∂t f = Lf .

Au moyen d’une inégalité d’entropie–dissipation d’entropie, nous donnons des conditions générales pour que g tende exponen-
tiellement vite vers l’état stationnaire G de l’équation d’évolution linéaire, avec la normalisation appropriée. En d’autres termes,
l’opérateur linéaire admet un trou spectral dans l’espace L2 naturel associé à l’état stationnaire. Nous étendons ce résultat de trou
spectral à un espace plus grand en utilisant une technique utilisant la décomposition de l’opérateur en une partie dissipative et une
partie régularisante.
© 2011 Elsevier Masson SAS. All rights reserved.
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1. Introduction and main results

In this work we study equations which include a differential term and a fragmentation term. These equations are
classical models in biology for the evolution of a population of cells, in polymer physics for the size distribution of
polymers, and arise in other contexts where there is an interplay between growth and fragmentation phenomena. The
literature on concrete applications is quite large and we refer the reader to [7,12] as general sources on the topic, and
to the references cited in [3,8,13] for particular applications. We deal with equations of the following type:

∂tgt (x) + ∂x

(
a(x)gt (x)

) + λgt (x) = L[gt ](x), (1a)

gt (0) = 0 (t � 0), (1b)

g0(x) = gin(x) (x > 0). (1c)

The unknown is a function gt (x) which depends on the time t � 0 and on x > 0, and for which an initial condition
gin is given at time t = 0. The quantity gt (x) represents the density of the objects under study (cells or polymers)
of size x at a given time t . The function a = a(x) � 0 is the growth rate of cells of size x. Later we will focus on
the growth-fragmentation and the self-similar fragmentation equations, which correspond to a(x) = 1 and a(x) = x,
respectively.

Most importantly, we pick λ to be the largest eigenvalue of the operator g �→ −∂x(ag) + Lg, acting on a function
g = g(x) depending only on x; see below for known properties of this eigenvalue and its corresponding eigenvector.

The fragmentation operator L acts on a function g = g(x) as

Lg(x) := L+g(x) − B(x)g(x), (2)

where the positive part L+ is given by:

L+g(x) :=
∞∫

x

b(y, x)g(y) dy. (3)

The coefficient b(y, x), defined for y > x > 0, is the fragmentation coefficient, and B(x) is the total fragmentation
rate of cells of size x > 0. It is obtained from b through

B(x) :=
x∫

0

y

x
b(x, y) dy (x > 0). (4)

1.1. Asymptotic behavior

As said above, we pick λ to be the largest eigenvalue of the operator g �→ −∂x(ag)+ Lg. Under general conditions
on b and a, it is known [3,8] that λ is positive and has a unique associated eigenvector G (up to a factor, of course),
which in addition is nonnegative; i.e., there is a unique G solution of,(

a(x)G(x)
)′ + λG(x) = L(G)(x), (5a)

a(x)G(x)|x=0 = 0, (5b)

G � 0,

∞∫
0

G(x)dx = 1. (5c)

The associated dual eigenproblem reads:

−a(x)∂xφ + (
B(x) + λ

)
φ(x) = L∗+φ(x), (6a)

φ � 0,

∞∫
G(x)φ(x)dx = 1, (6b)
0



336 M.J. Cáceres et al. / J. Math. Pures Appl. 96 (2011) 334–362
where

L∗+φ(x) :=
x∫

0

b(x, y)φ(y) dy, (7)

and we have chosen the normalization
∫

Gφ = 1. This dual eigenproblem is interesting because φ gives a conservation
law for (1):

∞∫
0

φ(x)gt (x) dx =
∞∫

0

φ(x)gin(x) dx = Cst (t � 0). (8)

The eigenvector G is an equilibrium of Eq. (1) (a solution which does not depend on time) and one expects that the
asymptotic behavior of (1) be described by this particular solution, in the sense that

gt → G as t → ∞, (9)

with convergence understood in some sense to be specified, and g normalized so that
∫

φ(x)g(t, x) dx = 1.
Furthermore, one expects the above convergence to occur exponentially fast in time; this is,

‖gt − G‖ � C‖gin − G‖e−βt , (10)

for some β > 0, in some suitable norm. This latter result has been proved in some particular cases which are essentially
limited to the case of B constant [13,6]. In this paper we want to prove this result for more general B , which we do by
using entropy methods. In order to describe our results, we need first to describe the entropy functional for this type
of equations.

1.2. Entropy

The following general relative entropy principle [9,10] applies to solutions of (1):

d

dt

∞∫
0

φ(x)G(x)H
(
u(x)

)
dx

=
∞∫

0

∞∫
y

φ(y)b(x, y)G(x)
(
H

(
u(x)

) − H
(
u(y)

) + H ′(u(x)
)(

u(y) − u(x)
))

dx dy, (11)

where H is any function and, where here and below,

u(x) := g(x)

G(x)
(x > 0). (12)

When H is a convex function, the right-hand side of Eq. (11) is nonpositive, and in the particular case of
H(x) := (x − 1)2 we have:

d

dt
H2[g|G] = −Db[g|G] � 0, (13)

where we define:

H2[g|G] :=
∞∫

0

φG(u − 1)2 dx, (14)

and

Db[g|G] :=
∞∫ ∞∫

φ(x)G(y)b(y, x)
(
u(x) − u(y)

)2
dy dx. (15)
0 x
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Since

H2[g|G] =
∞∫

0

(g − G)2 φ

G
dx = ‖g − G‖2

L2(φG−1 dx)
(16)

we see that proving H2(g(t)|G) → 0 implies that the long time trend to equilibrium (9) holds, and proving the
entropy–dissipation entropy inequality,

H2[g|G] � 1

2β
Db[g|G], (17)

implies that the exponentially fast long time trend to equilibrium (10) holds for the same β > 0 and for the norm
‖ · ‖ = ‖ · ‖L2(φG−1 dx).

The main purpose of our work is precisely to study the functional inequality (17) and establish it under certain
conditions on the fragmentation coefficient b. We notice that, while some results on convergence to equilibrium for
Eq. (1) are available, no inequalities like (17) were known, so one of the main points of our work is to show that the
entropy method is applicable, in certain cases, to give a rate of convergence for this type of equations.

We focus on the two remarkable cases a(x) = 1, which corresponds to the so-called growth-fragmentation equa-
tion, and a(x) = x, which gives the self-similar fragmentation equation. There are several reasons for restricting our
attention to them, the main one being that they are the ones most extensively studied in the literature due to their appli-
cation as models in physics and biology. Also, the inequality (17) depends on the particular properties of the solution
φ to the dual eigenproblem (6) and the equilibrium G. The existence and properties of these have been studied mainly
for the above two particular cases, and are questions that require different techniques and deserve a separate study.
One of our main results gives general conditions under which the entropy–entropy dissipation inequality (17) holds,
and this may be applied to cases with a more general a(x), once suitable bounds are proved for the corresponding
profiles φ and G.

In order to understand our two model cases, let us describe them in more detail and give a short review of previously
known results for them.

1.3. The growth-fragmentation equation

The growth-fragmentation equation is the following [6]:

∂tnt + ∂xnt = Lnt , (18a)

nt (0) = 0 (t � 0), (18b)

n0(x) = nin(x) (x > 0). (18c)

Here, nt (x) represents the number density of cells of a certain size x > 0 at time t > 0. The nonnegative function nin

is the initial distribution of cells at time t = 0. Eq. (18) models a set of cells which grow at a constant rate given by
the drift term ∂xn, and which can break into any number of pieces, as modeled by the right-hand side of the equation.
The quantity b(x, y), for x > y > 0, represents the mean number of cells of size y obtained from the breakup of a cell
of size x. If one looks for solutions of (18a)–(18b) which are of the special form nt (x) = G(x)eλt , for some λ ∈ R,
one is led to the eigenvalue problem for the operator −∂x + L and its dual eigenvalue problem, given by Eqs. (5)
and (6), respectively. It has been proved [3,8] that quite generally there exists a solution to this eigenvalue problem
which furthermore satisfies λ > 0 and G > 0.

For this particular λ, we consider the change:

gt (x) := nt (x)e−λt . (19)

Then, n satisfies the rescaled growth-fragmentation equation, which is the particular case of Eq. (1) with a(x) = 1.
The long time convergence (9) or (10) means here that the generic solutions asymptotically behave like the first
eigenfunction G(x)eλt (with same φ moment).

Let us give a short review of existing results on the asymptotic behavior of Eq. (1) for constant a(x). In [9,10] the
general entropy structure of Eq. (1) and related models was studied, and used to show a result of convergence to the
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equilibrium G without rate for quite general coefficients b, but under the condition that the initial condition be bounded
by a constant multiple of G [10, Theorem 4.3]. Some results were obtained later for the case of mitosis with a constant
total fragmentation rate B(x) ≡ B , which corresponds to the coefficient b(x, y) = 2δy=x/2: this was studied in [13],
where exponential convergence of solutions to the equilibrium G was proved. Similar results were obtained for the
mitosis case when B(x) is bounded above and below between two positive constants (i.e., for b(x, y) = 2B(x)δy=x/2).
An exponential speed of convergence has also been proved in [6] allowing for quite general fragmentation coefficients
b, provided that the total fragmentation rate B(x) is a constant. Of course, in the above results existence of the
equilibrium G and the eigenfunction φ were also proved as a necessary step to study the asymptotic behavior of
Eq. (1). The problem of existence of these profiles was studied in its own right in [3,8], where results are obtained for
general fragmentation coefficients b, without the restriction that the total fragmentation rate should be bounded.

1.4. The self-similar fragmentation equation

The fragmentation equation is

∂tft = Lft , (20a)

f0(x) = fin(x) (x > 0), (20b)

which models a set of clusters undergoing fragmentation reactions at a rate b(x, y). In the study of the asymptotic
behavior of ft , one usually restricts attention to fragmentation kernels which are homogeneous of some degree γ − 1,
with γ > 0:

b(rx, ry) = rγ−1b(x, y) (r > 0, x > y > 0), (21)

so B(x) = B0x
γ for some B0 > 0. Then one looks for self-similar solutions, this is, solutions of the form,

ft (x) = (t + 1)2/γ G
(
(t + 1)1/γ x

)
, (22)

for some nonnegative function G. Observe that f0 = G in this case. We omit the case γ = 0, as self-similar solutions
have a different expression in this case, and the asymptotic behavior of the fragmentation equation is also different,
and must be treated separately. Such a remarkable function G is called a self-similar profile and is solution to the
eigenvalue problem (5) with a(x) = x and λ = 1. In this case one can easily show that in fact λ = 1 is the largest
eigenvalue of the operator g �→ −∂x(xg) + Lg. Existence of solutions G of Eq. (5) in this setting has been studied in
[4] and also in [3]. The corresponding dual equation (6) is explicitly solvable in this case, with φ(x) = Cx for some
normalization constant C.

The above suggests to define g through the following change of variables:

ft (x) = (t + 1)2/γ g

(
1

γ
log(t + 1), (t + 1)1/γ x

)
(t, x > 0), (23)

or, writing gt in terms of f ,

gt (x) := e−2t f
(
eγ t − 1, e−t x

)
(t, x > 0). (24)

Then, gt satisfies the self-similar fragmentation equation:

∂tgt + x∂xgt + 2gt = γ Lgt , (25a)

g0(x) = fin(x) (x > 0). (25b)

We may redefine b(x, y) to include the factor γ in front of Lgy , and omit γ in the equation. Then, this equation is
of the form (1) with a(x) = x and λ = 1. The long time convergence (9) or (10) means here that generic solutions
asymptotically behave like the self-similar solution (t + 1)2/γ G((t + 1)1/γ x).

The problem of convergence to self-similarity for the fragmentation equation (20) was studied in [4], and then
in [10]. Results on existence of self-similar profiles and convergence of solutions to them, without a rate, are available
in [4, Theorems 3.1 and 3.2] and [10, Theorems 3.1 and 3.2], and are obtained through the use of entropy methods.
To our knowledge, no results on the rate of this convergence were previously known.
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1.5. Assumptions on the fragmentation coefficient

We turn to the precise description of our results, for which we will need the following hypotheses.

Hypothesis 1.1. For all x > 0, b(x, ·) is a nonnegative measure on the interval [0, x]. Also, for all ψ ∈ C0([0,+∞)),
the function x �→ ∫

[0,x] b(x, y)ψ(y)dy is measurable.

Hypothesis 1.2. There exists κ > 1 such that
x∫

0

b(x, y) dy = κB(x) (x > 0). (26)

Hypothesis 1.3. There exist 0 < Bm � BM and γ > −1 (for growth-fragmentation) or γ > 0 (for self-similar frag-
mentation) such that

Bmxγ � B(x) � BMxγ (x > 0). (27)

Hypothesis 1.4. There exist μ,C > 0 such that for every ε > 0,
εx∫

0

b(x, y) dy � CεμB(x) (x > 0).

Hypothesis 1.5. For every δ > 0 there exists ε > 0 such that
x∫

(1−ε)x

b(x, y) dy � δB(x) (x > 0). (28)

Both Hypotheses 1.4 and 1.5 are “uniform integrability” hypotheses: they say that the measure b(x, y) dy is not
concentrated at y = 0 or y = x, in some quantitative uniform way for all x > 0. For some parts of our results we will
also need the following hypothesis:

Hypothesis 1.6. The measure b(x, ·) is (identified with) a function on [0, x], and there exists PM > 0 (actually, it must
be PM � 2 due to the definition of B) such that

b(x, y) � PM

B(x)

x
(x > y > 0). (29)

Hypothesis 1.7. There exists Pm > 0 such that

b(x, y) � Pm

B(x)

x
(x > y > 0). (30)

We list the above hypothesis in a rough order of least to most restrictive. When taken all together they can be
summarized in an easier way: Hypotheses 1.1–1.7 are equivalent to assuming Hypotheses 1.1, 1.2 and that there exists
0 < Bm < BM satisfying,

2Bmxγ−1 � b(x, y) � 2BMxγ−1 (0 < y < x), (31)

for some γ > −1, or γ > 0 in the case of growth-fragmentation. We give Hypotheses 1.1–1.7 instead of this simpler
statement for later reference: some of the results to follow use only a subset of these hypotheses, and it is preferable
not to use the more restrictive conditions where they are not needed.

As an example of coefficients which satisfy all Hypotheses 1.1–1.7 we may take b of self-similar form, i.e.,

b(x, y) := xγ−1p

(
y

)
(x > y > 0), (32)
x
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where p : (0,1) → (Pm,PM) is a function bounded above and below, and γ within the specified range (for the main
theorem below one must have γ ∈ (0,2] for self-similar fragmentation, and γ ∈ (0,2) for growth-fragmentation).
A bit more generally, one can take

b(x, y) := h(x)xγ−1p

(
y

x

)
(x > y > 0), (33)

with h(x) : (0,+∞) → [Bm,BM ] a function bounded above and below.

1.6. Previous results

We recall the following result, readily deduced from [3, Theorem 1 and Lemma 1] and [4, Theorem 3.1]:

Theorem 1.8. (See [3].) Assume Hypotheses 1.1–1.4. There exists a unique triple (λ,G,φ) with λ > 0, G ∈ L1 and
φ ∈ W

1,∞
loc which satisfy (5) and (6) (in the sense of distributional solutions for (5a), and of a.e. equality for (6a)).

In addition,

G(x) > 0, φ(x) > 0 (x > 0), (34)

for all α > 0, x �→ xαa(x)G(x) ∈ W 1,1(0,+∞). (35)

In the case of the growth-fragmentation equation (a(x) ≡ 1) it holds that φ(0) > 0.
In the case of the self-similar fragmentation equation (a(x) = x), assume in addition that, for some k < 0 and

C > 1,
x∫

0

ykb(x, y) dy � CxkB(x) (x > 0). (36)

Then,
∞∫

0

xkG(x)dx < +∞. (37)

The above result can actually be proved under weaker hypotheses on the fragmentation coefficient b (see [3]) but
we will only use the given version. We note that (37) is derived in [4] under more restrictive conditions on b (in
particular, it is asked there that b is of the self-similar form (32)); however, the same proof can be followed just by
using (36), and we omit the details here.

1.7. Main results

The following theorem gathers our main results in this work.

Theorem 1.9. Consider Eq. (1) in the self-similar fragmentation case (a(x) = x) or the growth-fragmentation case
(a(x) = 1), and assume Hypotheses 1.1–1.7. Also:

• For self-similar fragmentation, assume γ ∈ (0,2].
• For growth-fragmentation, assume γ ∈ (0,2) or alternatively that for some Bb > 0,

b(x, y) = 2Bb

x
(x > y > 0). (38)

Denote by G > 0 the asymptotic profile (self-similar profile in the first case, first eigenfunction in the second case) as
well as by φ the first dual eigenfunction (φ(x) = x in the first case). These equations have a spectral gap in the space
L2(φG−1 dx).
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1. More precisely, there exists β > 0 such that

∀g ∈ X, H2(g|G) � 1

2β
Db(g|G)

(the right-hand term being finite or not), where we have defined:

H := L2(G−1φ
)
, X :=

{
g ∈ H ;

∞∫
0

gφ =
∞∫

0

Gφ = 1

}
.

Consequently for any gin ∈ X the solution g ∈ C([0,∞);L1
φ) to Eq. (1) satisfies,

∀t � 0
∥∥g(t, .) − G

∥∥
H

� e−2βt‖gin − G‖H .

2. For this second part, in the case of growth-fragmentation, we need to assume additionally that γ ∈ (0,1) (no
additional assumption is needed for the self-similar fragmentation case). There exists k̄ = k̄(γ,PM) � 3 and
for any a ∈ (0, β) and any k > k̄ there exists Ca,k � 1 such that for any gin ∈ H := L2(θ), θ(x) = φ(x) + xk ,∫

φgin = 1, there holds:

∀t � 0
∥∥g(t) − G

∥∥
H � Ca,ke

−at‖gin − G‖H.

The main improvement of this result is that it allows us to treat total fragmentation rates B which are not bounded,
for which no results were available. Also, the result is obtained through an entropy–entropy dissipation inequality,
which is not strongly tied to the particular form of the equation, and may be useful in related equations. We also
observe that this is to our knowledge the first result on rate of convergence to self-similarity for the fragmentation
equation.

In our result we include just one case where B is a constant, with b given by the particular form (38) in the case
of growth-fragmentation. The difficulty in allowing for more general b (with B still constant) is not in the entropy–
entropy dissipation inequality, but in the estimates for the solution φ of the dual eigenproblem (6). The estimates in
Section 4.2 are not valid in this case, and in fact one expects that φ should be bounded above and below between two
positive constants. However, we are unable to prove this at the moment, and anyway the estimates of φ are not the
main aim of the present paper. Consequently, we state the result only for the b in (38), for which φ is explicitly given
by a constant. (We notice that for self-similar fragmentation, the estimates on G fail for γ = 0, so this case is not
included.)

On the other hand, the positivity condition (30) is strong, and makes this result not applicable to some cases of
interest, such as the mitosis case mentioned at the end of Section 1. Notice that, as remarked at the end of Section 2
in [6], entropy–entropy dissipation inequalities are actually false in this case, which shows that a different method is
required for this and similar situations where the fragmentation coefficient is “sparse” enough for the inequalities to
fail.

1.8. Strategy

The main difficulty for establishing Theorem 1.9 lies in proving point 1, while point 2 is a consequence of point 1
and of a method for enlarging the functional space of decay estimates on semigroups from a “small” Hilbert space to
a larger one recently obtained in [5].

The strategy we follow to prove inequality (17) is inspired by a paper of Diaconis and Stroock [2] which de-
scribes a technique to find bounds of the spectral gap of a finite Markov process. Eq. (1) can be interpreted as
the evolution of the probability distribution of an underlying continuous Markov process, and as such can be
thought of as a limit of finite Markov processes. The expression of the entropy and entropy dissipation has many
similarities to the finite case, and hence the ideas used in [2] can be extended to our setting. The basic idea is
that one may improve an inequality in the finite case by appropriately choosing, for each two points i and j

in the Markov process, a chain of reactions from i to j which has a large probability of happening, measured
in a particular way. In our case this corresponds to choosing a chain of reactions that can give particles of size
x from particles of size y, and which has a better probability than just particles of size y fragmenting at rate
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b(y, x) to give particles of size x. In fact, we need the additional observation that one can choose many differ-
ent paths from y to x, and then average among them to improve the probability. These heuristic ideas are made
precise in the proof of point 1 in Theorem 1.9, given in Section 2. This suggests that the same techniques may
be applicable to other linear evolution equations which can interpreted as the probability distribution of a Markov
process.

In the context of the Boltzmann equation, an idea with some common points with this one was introduced in [1] to
prove a spectral gap for the linearized Boltzmann operator. However, the inequality needed in that case does not have
the same structure since the linearized Boltzmann operator does not come from a Markov process (it does not conserve
positivity, for instance), and the “reactions” to be taken into account there are not jumps from one point to another,
but collisions between two particles at given velocities, to give two particles at different velocities. Nevertheless, the
geometric idea does bear some resemblance, and the connection to techniques developed for the study of finite Markov
processes seems interesting.

Concerning the proof of point 2, we mainly have to show that the operator involved in the fragmentation equation
decomposes as A + B where A is a bounded operator and B is a coercive operator in the large Hilbert space H.
Then, for a such a kind of operator, the result obtained in [5] ensures that the operator in the large space H inherits
the spectral properties and the decay estimates of the associated semigroup which are true in the small space H . The
additional restriction γ ∈ (0,1) in the extension of the spectral gap comes from the fact that we were unable to prove
the coercivity of the operator B for γ ∈ [1,2).

In the next section we prove the functional inequality (17). In Sections 3 and 4 we prove upper and lower bounds
on the profiles G and φ, solution of the eigenproblem (5)–(6); Section 3 is dedicated to the self-similar fragmentation
equation (the case a(x) = x), while Section 4 deals with the growth-fragmentation equation (the case a(x) = 1).
Finally, Section 5 uses these results and the techniques in [5] to complete the proof of Theorem 1.9.

2. Entropy dissipation inequalities

In order to study the speed of convergence to equilibrium, in terms of the entropy functional, we are interested in
proving the entropy–entropy dissipation inequality (17):

H2[g|G] � 1

2β
Db[g|G].

We begin with the following basic identity:

Lemma 2.1. Take nonnegative measurable functions G,φ : (0,∞) → R+ such that

∞∫
0

φ(x)G(x)dx = 1. (39)

Defining

D2[g|G] :=
∞∫

0

∞∫
x

φ(x)G(x)φ(y)G(y)
(
u(x) − u(y)

)2
dy dx (40)

with u(x) = g(x)
G(x)

, there holds:

H2[g|G] = D2[g|G], (41)

for any nonnegative measurable function g : (0,∞) → R such that
∫

φg = 1.

Proof. With the above notations, by a simple expansion of the squares, we find that

H2[g|G] =
∞∫ (

u(x) − 1
)2

G(x)φ(x)dx =
∞∫

u(x)2G(x)φ(x)dx − 1,
0 0
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while expanding D2[g|G] we find:

D2[g|G] = 1

2

∞∫
0

∞∫
0

G(x)φ(x)G(y)φ(y)
(
u(x) − u(y)

)2
dy dx

= 1

2

(
2

∞∫
0

u(x)2G(x)φ(x)dx − 2

)
,

which gives the same result. �
Taking into account the above result, in order to prove (17) it is enough to prove the following inequality for some

constant C > 0:

D2[g|G] � CDb[g|G]. (42)

Of course, one gets (42) if one assumes that the function appearing below the integral signs in the functional D2[g|G]
is pointwise bounded by the corresponding function in the functional Db[g|G], or more precisely if one assumes
G(x)φ(y) � Cb(y, x) whenever 0 < x < y. However, the range of admissible rates b for which such an inequality
holds seems to be very narrow. For example, for the self-similar rate (32), one must impose γ = 2.

The cornerstone of the proof of the functional inequality (42) lies in splitting D2[g|G] in two terms: one for which
the pointwise comparison holds and one where it does not. In the latter part, called D2,2[g|G] in the next lemma, the
idea is to break u(x) − u(y) into “intermediate reactions” in order to obtain a new expression of D2[g|G] for which
the pointwise estimate applies. The main part of the proof of inequality (42) is then the bound for this second part of
D2[g|G]. And it is just the content of the following result:

Lemma 2.2. Take measurable functions φ,G : (0,+∞) → R+ with
∞∫

0

G(x)φ(x)dx = 1, (43)

and such that, for some constants K,M > 0 and R > 1 and some function ζ : (R,∞) → [1,∞),

0 � G(x) � K (x > 0), (44)
∞∫

Rx

G(y)φ(y) dy � KG(x) (x > M), (45)

1

ζ(y)
φ(y) � Kφ(z)

(
max{2RM,Rz} < y < 2Rz

)
. (46)

Defining:

D2,2[g|G] :=
∞∫

0

∞∫
max{2Rx,2RM}

φ(x)G(x)φ(y)G(y)
(
u(x) − u(y)

)2
dy dx (47)

there is some constant C > 0 such that

D2,2[g|G] � C

∞∫
0

∞∫
max{x,M}

ζ(y)y−1φ(x)G(y)
(
u(x) − u(y)

)2
dy dx, (48)

for all measurable functions g : (0,∞) → R+ (in the sense that if the right-hand side is finite, then the left-hand side
is also, and the inequality holds).

The point of this lemma is that the right-hand side of (48) will be easily bounded by Db[g|G].
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Remark 2.3. Inequality (48) is strongest when ζ(x) ≡ 1. Moreover, we expect (46) to be true when ζ is constantly 1
(for φ the solution of the dual equation (6), under some additional conditions). The reason that we allow for a choice
of ζ is that we are not able to prove that (46) holds with ζ ≡ 1, but only for a function ζ = ζ(x) which grows like a
power xε , with ε as small as desired.

Proof. We will denote by C any constant which depends on G, φ, K , M , or R, but not on g.

First step. The idea is to break u(x)−u(y) into “intermediate reactions”: for y > x and any z ∈ [x, y], one obviously
has:

u(x) − u(y) = u(x) − u(z) + u(z) − u(y).

We then average among a range of possible splittings. More precisely, for y > 2Rx,

u(x) − u(y) = 2R

y

y/R∫
y/(2R)

(
u(x) − u(z) + u(z) − u(y)

)
dz,

and then by Cauchy–Schwarz’s inequality,

(
u(x) − u(y)

)2 � 2R

y

y/R∫
y/(2R)

(
u(x) − u(z) + u(z) − u(y)

)2
dz

� 4R

y

y/R∫
y/(2R)

(
u(x) − u(z)

)2
dz + 4R

y

y/R∫
y/(2R)

(
u(z) − u(y)

)2
dz

=: T1(x, y) + T2(y).

Using this, we have:

D2,2[g|G] �
∞∫

0

∞∫
max{2Rx,2RM}

φ(x)φ(y)G(x)G(y)T1(x, y) dy dx

+
∞∫

0

∞∫
max{2Rx,2RM}

φ(x)φ(y)G(x)G(y)T2(y) dy dx.

We estimate these terms in the next two steps.

Second step. For the term with T1,

∞∫
0

∞∫
max{2Rx,2RM}

φ(x)φ(y)G(x)G(y)T1(x, y) dy dx

= C

∞∫
0

∞∫
max{2Rx,2RM}

φ(x)φ(y)G(x)G(y)
1

y

y/R∫
y/(2R)

(
u(x) − u(z)

)2
dzdy dx

= C

∞∫
0

∞∫
max{x,M}

φ(x)G(x)
(
u(x) − u(z)

)2
2Rz∫

max{2Rx,Rz,2RM}

φ(y)

y
G(y)dy dz dx

� C

∞∫ ∞∫
φ(x)G(x)

(
u(x) − u(z)

)2 1

Rz

∞∫
φ(y)G(y)dy dz dx
0 max{x,M} Rz
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� C

∞∫
0

∞∫
max{x,M}

φ(x)
(
u(x) − u(z)

)2 1

z
G(z)dz dx,

where we have used (45) and the fact that G is uniformly bounded from (44). With this series of inequalities we obtain
that the last one integral is bounded by the right-hand side in (48), as ζ(y) � 1 for all y.

Third step. For the term with T2, we use (43) and (46). Note that (46) was not used before this point in the proof:
ζ(y) � 1 was enough up to now, but this is not the case in the following calculation:

∞∫
0

∞∫
max{2Rx,2RM}

φ(x)φ(y)G(x)G(y)T2(y) dy dx

= C

∞∫
0

∞∫
max{2Rx,2RM}

φ(x)φ(y)G(x)G(y)
1

y

y/R∫
y/(2R)

(
u(z) − u(y)

)2
dzdy dx

= C

∞∫
2RM

y/R∫
y/(2R)

1

y
φ(y)G(y)

(
u(z) − u(y)

)2

y/(2R)∫
0

φ(x)G(x)dx dz dy

� C

∞∫
2RM

y/R∫
y/(2R)

1

y
φ(y)G(y)

(
u(z) − u(y)

)2
dzdy

= C

∞∫
M

2Rz∫
max{2RM,Rz}

ζ(y)

y

φ(y)

ζ(y)
G(y)

(
u(z) − u(y)

)2
dy dz

� C

∞∫
0

2Rz∫
max{2RM,Rz}

ζ(y)

y
φ(z)G(y)

(
u(z) − u(y)

)2
dy dz,

where the last integral is bounded by the right-hand side in (48) and this finishes the proof. �
Once we have controlled the “bad” term in D2[g|G] we can reach the objective of this section: to obtain an

entropy–entropy dissipation inequality. It is shown in the following theorem:

Theorem 2.4. Assume the conditions in Lemma 2.2, and also that the fragmentation coefficient b satisfies, for the
constants K , M , R in Lemma 2.2,

G(x)φ(y) � Kb(y, x)
(
0 < x < y < max{2Rx,2RM}), (49)

ζ(y)y−1 � Kb(y, x) (y > M, y > x > 0). (50)

Then there is some constant C > 0 such that

H2[g|G] � CDb[g|G] (51)

for all measurable functions g : (0,∞) → R+ such that
∫ ∞

0 gφ = 1 (in the sense that if the right-hand side is finite,
then the left-hand side is also, and the inequality holds).

Proof. We split D2[g|G] as

D2[g|G] = D2,1[g|G] + D2,2[g|G],
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with

D2,1[g|G] :=
∞∫

0

max{2Rx,2RM}∫
x

φ(x)G(x)φ(y)G(y)
(
u(x) − u(y)

)2
dy dx

and D2,2[g|G] defined by (47). On the one hand thanks to (49) we have:

D2,1[g|G] �
∞∫

0

max{2Rx,2RM}∫
x

Kb(y, x)φ(x)G(y)
(
u(x) − u(y)

)2
dy dx

� KDb[g|G]. (52)

On the other hand, thanks to inequality (48) in Lemma 2.2 and (50) we have:

D2,2[g|G] � C

∞∫
0

∞∫
max{x,M}

ζ(y)

y
φ(x)G(y)

(
u(x) − u(y)

)2
dy dx

� CK

∞∫
0

∞∫
max{x,M}

b(y, x)φ(x)G(y)
(
u(x) − u(y)

)2
dy dx

� CKDb[g|G]. (53)

We conclude by gathering (52) and (53). �
This result will be the key to prove point 1 in Theorem 1.9, which will be done in Section 5.1. In order to prove that

(44) and (49) hold in our context, we need to establish some upper bounds on G and φ for our model cases. For (45)
and (46) we need to control the asymptotic behavior (bounds from above and below) of the functions G(x) and φ(x)

as x → ∞. These upper and lower estimates on G and φ will be established in the next sections. Finally, condition
(50) simply imposes some restrictions on the fragmentation rate (typically some restrictions on the value of γ for a
self-similar fragmentation rate of the form (32)).

3. Bounds for the self-similar fragmentation equation

In order to apply Theorem 2.4 to the self-similar fragmentation equation (25) we need more precise bounds than
those proved in [4,10,3]; in particular, we need L∞ bounds on the self-similar profile G for condition (44) to hold.
We actually prove the following accurate exponential growth estimate on the profile G.

Theorem 3.1. Assume Hypotheses 1.1–1.5 on the fragmentation coefficient b. Call Λ(x) := ∫ x

0
B(s)

s
ds.

1. For any δ > 0 and any a ∈ (0,Bm/BM), a′ ∈ (1,+∞) there exist constants C′ = C′(a′, δ), C = C(a, δ) > 0 such
that

C′e−a′Λ(x) � G(x) � Ce−aΛ(x) for x > δ. (54)

2. Assume additionally Hypothesis 1.6. Then one may take C independent of δ in (54), i.e.,

G(x) � Ce−aΛ(x) for x > 0. (55)

Remark 3.2. We notice that, due to Hypothesis 1.3, (Bm/γ )xγ � Λ(x) � (BM/γ )xγ , so the bound (54) directly
implies that for any a1 > BM/γ and a2 < B2

m/(γBM) one has:

C′e−a1x
γ � G(x) � Ce−a2x

γ

for x > δ, (56)

and also the corresponding one instead of (55). Note that when BM = Bm the condition on a1, a2 becomes
a2 < BM/γ < a1.
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The goal of this section is to give the proof of the above theorem, which we develop in several steps. We remark
that in the particular case of p constant in (32) (so, p ≡ 2 due to the normalization

∫
zp(z) dz = 1) we can find an

explicit expression for the equilibrium G (i.e., a solution of (5)). Indeed, G(x) = exp(− ∫ x

0
B(s)

s
ds) satisfies (5). As a

consequence, in the case b(x, y) = 2xγ−1 (so B(x) = xγ ), the profile G is e
− xγ

γ for γ > 0. In the general case where
b is not of the form (32) there is no explicit expression available for the self-similar profile G.

Lemma 3.3. Assume that b satisfies Hypotheses 1.1–1.5, and consider G the unique self-similar profile given by
Theorem 1.8. For any 0 < a < Bm/γ there exists a constant Ca such that

∞∫
0

eaxγ

G(x)dx � Ca. (57)

Proof. We denote by Mk the k-th moment of G. Multiply Eq. (5) by xk with k > 1 to obtain:

(k − 1)Mk � (1 − pk)

∞∫
0

xkB(x)G(x)dx, (58)

where we have taken into account that, using Corollary A.4,

∞∫
0

xk

∞∫
x

b(y, x)G(y)dy dx =
∞∫

0

G(y)

y∫
0

xkb(y, x) dx dy � pk

∞∫
0

ykB(y)G(y)dy.

By Hypothesis 1.3, and as pk < 1 for k > 1, (58) implies that

(k − 1)Mk � (1 − pk)BmMk+γ , or Mk+γ � k

Bm(1 − pk)
Mk.

Applying this for integer � � 1 and k := 1 + �γ ,

M1+(�+1)γ � C�M1+�γ , where C� := 1 + γ �

Bm(1 − p1+γ �)
.

Solving the recurrence relation,

M1+�γ � Mγ+1

�−1∏
i=1

Ci (� � 1). (59)

With this,

∞∫
0

eaxγ

G(x)dx =
∞∑
i=0

∞∫
0

ai

i! xγ iG(x)dx =
∞∑
i=0

ai

i! Mγi � M0 + Mγ + M1+γ

∞∑
i=1

ai

i!
�−1∏
i=1

Ci.

The last expression in the sum is a power series in a, with radius of convergence equal to Bm/γ . This can be checked,
for example, by noticing that

C�

� + 1
→ γ

Bm

as � → +∞,

which corresponds to the quotient of two consecutive terms in the power series. This proves the lemma. �
With this result we can now prove Theorem 3.1.
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Proof of Theorem 3.1. Taking δ > 0, we give the proof in several steps.

First step (upper bound for x ��� δ). From (5), we calculate as follows:

∂x

(
x2eaΛG

) = xeaΛ(2G + x∂xG) + aBxeaΛG = xeaΛLG + aBxeaΛG

= xeaΛ

∞∫
x

b(y, x)G(y)dy + (a − 1)BxeaΛG. (60)

Let us show that for a < 1 this expression is integrable. For the first term,

∞∫
0

xeaΛ(x)

∞∫
x

b(y, x)G(y)dy dx

=
∞∫

0

G(y)

x∫
0

eaΛ(x)b(y, x) dx dy �
∞∫

0

yeaΛ(y)G(y)B(y)dy � BM

∞∫
0

yγ+1e
aBM

γ
yγ

G(y)dy < +∞,

where the last inequality is due to Lemma 3.3, since yγ+1e
aBM

γ
yγ

� Cebyγ
, where a < b < Bm

γ
and C is a constant

depending on a, b and γ (recall that a < Bm/BM ). For the same reason, the last term in (60) is integrable. Therefore,
since ∂x(x

2eaΛ(x)G(x)) is bounded in L1, we deduce that

x2eaxγ

G(x) ∈ BV(0,∞) ⊂ L∞,

and in consequence

G(x) � C1
ae−aΛ(x) for x � δ.

Second step (lower bound for x > δ). Writing Eq. (60) for a = 1 gives that x �→ x2eΛ(x)G(x) is a nondecreasing
function, so

x2eΛ(x)G(x) � δ2eΛ(δ)G(δ) (x > δ),

which implies the lower bound in (54) for any a < 1. Notice that G(δ) > 0 by Theorem 1.8.

Third step (upper bound for x < δ). As x �→ x2exγ /γ G(x) has bounded variation, it must have a limit as x → 0.
As x �→ xG(x) is integrable, it follows that this limit must be 0. Hence, writing (60) for a = 1, integrating between 0
and z, and using Hypothesis 1.6,

z2ezγ /γ G(z) =
z∫

0

xeaΛ

∞∫
x

b(y, x)G(y)dy dx

� CBM

z∫
0

xeaΛ

∞∫
x

yγ−1G(y)dy dx � C′
z∫

0

xexγ /γ dx � C′z2ezγ /γ ,

which implies G(z) � C′ for all z > 0. This is enough to have (55) for x < δ. We have used above that the mo-
ment of G of order γ − 1 is bounded, as given by Theorem 1.8, taking into account that (29) holds and γ > 0, so∫ x

0 yγ−1b(x, y) dy � (C/γ )xγ−1. �
4. Bounds for the growth-fragmentation equation

In this section we present some estimates by above and below for the functions G and φ, solutions to the eigenvalue
problem (5) and (6). The aim, as in the previous section, is to obtain bounds which are accurate enough to apply
Theorem 2.4, and then prove Theorem 1.9.
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The main additional difficulty as compared to the self-similar fragmentation equation from previous section is that
the dual eigenfunction φ is in general not explicit, which makes it necessary to have additional estimates for it.

In the rest of this section we will give the proof of the following result:

Theorem 4.1. Assume Hypotheses 1.1–1.5. Call

Λ(x) := λx +
x∫

0

B(x)dx.

1. For any a ∈ (0,Bm/BM) there exists Ka > 0 such that

∀x � 0 G(x) � Kae
−aΛ(x). (61)

If we also assume Hypothesis 1.6 and γ > 0, then this can be strengthened to,

∀x � 0 G(x) � Ka min{1, x}e−aΛ(x). (62)

2. For any δ > 0 there exists Kδ > 0 such that

∀x � δ G(x) � Kδe
−Λ(x). (63)

3. Assume additionally that

B(x)

xμ+1
→ 0 and B(x) → +∞ as x → +∞. (64)

(Here μ is the one in Hypothesis 1.4.) There exist C0,C1 ∈ (0,∞) and for any k ∈ (0,1) there exists Ck ∈ (0,∞)

such that

∀x � 0 C0 + Ckx
k � φ(x) � C1(1 + x). (65)

Remark 4.2. With (61), (63) and (27), in the case γ > 0 it is easy to see that for any δ > 0, a1 > BM/(γ + 1) and
a2 < B2

m/(BM(γ + 1)) there exist C1,C2 > 0 such that

C1e
−a1x

γ+1 � G(x) � C2e
−a2x

γ+1
(x > δ). (66)

In the case γ = 0, from (61) and (63) one sees that for any δ > 0 and a > 1 there exist C1,C2 > 0 such that

C1e
−(λ+BM)x � G(x) � C2e

−a(λ+Bm)x (x > δ). (67)

4.1. Bounds for G

Lemma 4.3. Assume Hypotheses 1.1–1.5. Call

Λm(x) := λx + Bm

γ + 1
xγ+1.

For each a < 1,

∞∫
0

eaΛm(x)G(x)dx < +∞. (68)

Proof. We will first do the proof for γ > 0, and leave the case −1 < γ � 0 for later. Multiply Eq. (5) by xk with
k > 1, and integrate to obtain:

kMk−1 − λMk +
∞∫

G(y)

y∫
xkb(y, x) dx dy −

∞∫
B(x)xkGdx = 0,
0 0 0
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which gives, using (92) and then (27) (noting pk < 1 for k > 1),

(1 − pk)BmMγ+k � kMk−1 − λMk � kMk−1. (69)

Applying this for k = �(γ + 1) − γ , with � � 2 an integer,

M�(γ+1) � C�M(�−1)(γ+1), with C� := �(γ + 1) − γ

(1 − p�(γ+1)−γ )Bm

.

Solving this recurrence relation gives, for � � 2,

M�(γ+1) � Mγ+1

�∏
i=2

C� (� � 2).

Now, following an analogous calculation to the one in Lemma 3.3,
∞∫

0

eaxγ+1
G(x)dx � M0 + Mγ+1

∞∑
i=2

ai

i!
�∏

i=2

C�. (70)

Again as in Lemma 3.3, one can check that the above power series in a has radius of convergence Bm/(γ + 1) (using
that pk → 0 when k → +∞, from Corollary A.4 in Appendix A). This proves the lemma for γ > 0 (note that the
dominant term in Λ in this case is xγ+1, as then x � Cε + εxγ+1 for any ε > 0 and some Cε > 0).

When γ = 0, from (69) we obtain:(
(1 − pk)Bm + λ

)
Mk � kMk−1 (k > 1).

We can then follow the same reasoning as above, with the only difference that now,

C� := k

(1 − p�)Bm + λ
(� � 2).

Now the power series in (70) has radius of convergence Bm + λ, which proves the lemma also in this case.
In the case γ ∈ (−1,0), from (69) we obtain the inequality,

∀k > 1 Mk � k

λ
Mk−1,

from which we deduce thanks to an iterative argument as before that

∀k ∈ N
∗ Mk � k!

λk
(λM1).

Hence, for a < 1,
∞∫

0

eaλxG(x)dx = M0 +
∞∑

k=1

akλk

k! Mk � M0 + λM1

∞∑
k=1

ak < +∞.

The dominant term in Λ in this case is λx, so this finishes the proof. �
Proof of points 1–2 in Theorem 4.1. With the previous lemma we are ready to prove our bounds on G.

First step (upper bound). Take 0 � a � 1, and calculate the derivative of G(x)eaΛ(x):(
GeaΛ

)′ = (a − 1)(B + λ)GeaΛ + eaΛL+(G). (71)

For a < 1 one can see that the right-hand side is integrable on (0,+∞): for the last term,
∞∫

0

eaΛL+(G) =
∞∫

0

L∗+
(
eaΛ

)
G =

∞∫
0

G(x)

x∫
0

eaΛ(y)b(x, y) dy dx

�
∞∫

G(x)eaΛ(x)

x∫
b(x, y) dy dx = κ

∞∫
B(x)G(x)eaΛ(x) dx < +∞,
0 0 0
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where we have used (26). The last expression is finite for a < Bm/BM due to Lemma 4.3 and the fact that

Λ(x) = λx +
x∫

0

B(y)dy � λx + BM

x∫
0

yγ dy

= λx + BM

γ + 1
xγ+1 � BM

Bm

(
λx + Bm

γ + 1
xγ+1

)
= BM

Bm

Λm(x),

using the upper bound in (27). The other term in (71) is also integrable for similar reasons, and we deduce that
eaΛG ∈ BV(0,∞) ⊂ L∞, which proves (61).

In order to get (62) we need to prove that additionally, G(x) � Cx for x small (say, x � 1). For this it is enough
to notice that G(0) = 0 due to the boundary condition (5b), and also that the right-hand side of (71) is bounded for
x ∈ (0,1), as B and eaΛG are, and

L+(G) =
∞∫

x

b(y, x)G(y)dy � C

∞∫
0

yγ−1G(y)dy < +∞,

due to Hypotheses 1.6 and 1.3. The last integral is finite because γ > 0 and we already know G is bounded. This
finishes the proof.

Second step (lower bound). Writing Eq. (71) for a = 1 we obtain:(
GeΛ

)′ = eΛL+(G) � 0,

and hence

G(x)eΛ(x) � G(δ)eΛ(δ) (x � δ).

This proves the result, as G(δ) > 0 by Theorem 1.8. �
4.2. Bounds for φ

First, in the case B(x) = B constant, the first eigenvalue λ of the operator −∂x + L is explicitly given by
λ = B(κ − 1) (under Hypotheses 1.1–1.2), and φ(x) = C constant is a solution of (6), for some appropriate C > 0
determined by the normalization (6b).

In general the solution φ of the eigenproblem (6) is not explicit, and for its study we will use the following truncated
problem: given L > 0, consider,

−∂xφL + (
B(x) + λL

)
φL(x) = L∗+(φL)(x) (0 < x < L), (72a)

φ � 0, φL(L) = 0,

L∫
0

G(x)φL(x)dx = 1. (72b)

This approximated problem is slightly different from the one considered in [3], in that we are considering the first
eigenvector G in the normalization (72b), and not an approximation GL obtained by solving a similar truncated
version of Eq. (5). However, this modification is not essential, and the results in [3] show the following (see also the
truncated problems in [8,12]):

Lemma 4.4. Assume Hypotheses 1.1–1.4. There exists L0 > 0 such that for each L � L0 the problem (72) has a
unique solution (λL,φL), with λL > 0 and φL ∈ W

1,∞
loc . In addition,

λL
L→+∞−−−−−→ λ, (73)

for every A > 0, φL
L→+∞−−−−−→ φ uniformly on [0,A), (74)

where (λ,φ) is the unique solution of (6).

In the rest of this section we always consider L � L0, so that Lemma 4.4 ensures the existence of a solution.
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4.2.1. Upper bounds
In order to obtain bounds for φ we use a comparison argument, valid for each truncated problem on [0,L], and

then pass to the limit, as the bounds we obtain are independent of L. Let us do this. The function φL is a solution of
the equation,

SφL(x) = 0
(
x ∈ (0,L)

)
,

where S is the operator given by,

Sφ(x) := −φ′(x) + (
λL + B(x)

)
φ(x) −

x∫
0

b(x, y)φ(y) dy, (75)

defined for all φ ∈ W 1,∞(0,L), and for x ∈ (0,L). The operator S satisfies the following maximum principle:

Definition 4.5. We say that w ∈ W 1,∞(0,L) is a supersolution of S on the interval I ⊆ (0,L) when

Sw(x) � 0 (x ∈ I ).

Lemma 4.6 (Maximum principle for S ). Assume Hypothesis 1.1. Take A � 1/λL. If w is a supersolution of S on
(A,L), w � 0 on [0,A] and w(L) � 0 then w � 0 on [A,L].

Proof. We will prove the lemma when w ∈ C 1([0,L]), and then one can prove it for w ∈ W 1,∞(0,L) by a usual
approximation argument. Assume the contrary: there exists x0 ∈ (A,L) such that w(x0) < 0 and w(x)/x attains a
minimum, i.e.,

w(x0) < 0, (76)
w(x0)

x0
� w(x)

x

(
x ∈ (0,L)

)
. (77)

Then, because of (77), we have w′(x0) = w(x0)/x0 and hence

S(x0) = −w(x0)

x0
+ (

λL + B(x0)
)
w(x0) −

x0∫
0

b(x0, y)w(y)dy

� −w(x0)

x0
+ (

λL + B(x0)
)
w(x0) − w(x0)

x0

x0∫
0

b(x0, y)y dy

= w(x0)

(
λL − 1

x0

)
< 0,

which contradicts that w is a supersolution on (A,L). �
One can easily check that v(x) = x is a supersolution of S on (1/λL,L). A useful variant of that fact is the

following:

Lemma 4.7. Assume Hypotheses 1.1–1.4, and also that

B(x)

xμ+1
→ 0 as x → +∞, (78)

where μ is that in Hypothesis 1.4. Take a smooth function η : [0,+∞) → [0,1], with compact support contained on
[0,R]. Then, there exists A > 0 and L∗ > A such that the function

v(x) = x + η(x)

is a supersolution of S on (A,L) for any L > L∗.
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Proof. We calculate, using (4),

Sv(x) = −1 + λLx − η′(x) + (
λL + B(x)

)
η(x) −

x∫
0

b(x, y)η(y) dy,

which for x > R becomes,

Sv(x) = −1 + λLx −
R∫

0

b(x, y)η(y) dy � −1 + λLx − CRμ B(x)

xμ+1
,

as η is bounded by 1, and using Hypothesis 1.4. Due to (78), this is positive for all x greater than a certain number
A which depends only on λL. As λL → λ when L → +∞ (see Lemma 4.4), one can choose A to be independent
of L. �
Proposition 4.8. Assume the hypotheses of Lemma 4.7. The solution φ of (6) satisfies,

φ(x) � C(1 + x) (x � 0), (79)

for some C > 0.

Proof. Due to the uniform convergence (74) we have the bound,

φ(x) � K(A)
(
x ∈ [0,A]), (80)

for some constant K = K(A) which does not depend on L. This proves the bound on (0,A] for a fixed A.
To prove the bound on all of (0,+∞) consider the function v(x) = x + η(x) from Lemma 4.7 with η = 1[0,1],

which is a supersolution on (A,L) for some A > 0. Then, for any C > 0, the function

w(x) := Cv(x) − φ(x)

is a supersolution on (A,L). Since φ is bounded above on (0,A) by (80), uniformly in L, we may choose
C � ‖φ‖L∞(0,A) independently of L, such that

φ(x) � Cv(x)
(
x ∈ [0,A]),

or equivalently w � 0 on [0,A]. As φ(L) = 0, so that w(L) � 0, Lemma 4.6 shows that w � 0 on [0,L], which is the
bound we wanted. �
4.2.2. Lower bounds

Let us look now for subsolutions.

Lemma 4.9. Assume Hypotheses 1.1–1.5, and also that B(x) → +∞ as x → +∞. Let ϕ : (−∞,0) → [0,1] be a
decreasing C 1 function which is 1 on (−∞,−ε), 0 on (−ε/2,0), and satisfies |ϕ′(x)| � 4/ε for x ∈ (−∞,0). Take
0 � k < 1. There is a number A which is independent of L for which v(x) := xkϕ(x − L) is a subsolution of S on
(A,L).

Proof. First, from Corollary A.4 we have:
x∫

0

ykb(x, y) dy � p′
kx

kB(x) (x > 0)

for some p′
k > 1. Hence, by Lemma A.3, we may choose ε∗ > 0 such that

(1−ε∗)x∫
ykb(x, y) dy � Ckx

kB(x) (x � 1), (81)
0
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with Ck > 1. Now, define ϕL(x) = ϕ(x − L). We have, for x > max{Rk, ε/ε∗}, and using (81),

Sv(x) := −kxk−1ϕL(x) − xkϕ′
L(x) + (

λL + B(x)
)
xkϕL(x) −

x∫
0

b(x, y)ykϕL(x) dy

� 4

ε
xk + (

λL + B(x)
)
xk −

x−ε∫
0

b(x, y)yk dy

� xk

(
4

ε
+ λL − B(x)(Ck − 1)

)
,

which is negative for x greater than some number A which depends only on λL and k. In order to be able to apply
(81) we have also used that x − ε � (1 − ε∗)x for x � ε/ε∗. �
Lemma 4.10. Assume Hypotheses 1.1–1.5, and also that B(x) → +∞ as x → +∞. For any 0 � k < 1 there is some
constant Ck > 0 such that

φ(x) � Ckx
k (x > 0).

Proof. Take ϕ as in Lemma 4.9, and let A be the one given there. The function,

w(x) = φL(x) − Cxkϕ(x − L),

is a supersolution on (A,L) for any choice of C > 0. Now, the uniform convergence of {φL} from Lemma 4.4 together
with the positivity of φ from Theorem 1.8 imply that there exists CA such that for L large enough

φL(x) � CA

(
x ∈ [0,A]),

which in turn implies

φL(x) �
(
A−kCA

)
xk

(
x ∈ [0,A]).

With C := A−kCA we have w � 0 on [0,A], w(L) = 0, and we conclude using the maximum principle from
Lemma 4.6, and again the locally uniform convergence of {φL} from Lemma 4.4. �
5. Proof of the main theorem

Finally, we are ready to complete the proof of Theorem 1.9. We give the proof of point 1 in the next subsection,
and that of point 2 in the following one.

5.1. Exponential convergence to the asymptotic profile

Now that the inequality in Theorem 2.4 and the bounds on the profiles G and φ have been shown, we can use them
to prove the first point in Theorem 1.9.

Proof for self-similar fragmentation. Let us show that Eqs. (44), (45), (46), (49) and (50) hold for G, φ. Then, as a
direct application of Theorem 2.4, point 1 of Theorem 1.9 follows.

• The bound (44) is an immediate consequence of (56). With ζ(y) ≡ 1 and whatever M and R be, (46) is satisfied
due to the fact that φ(y) = y for the self-similar fragmentation model.

• Using (56) for any a1 > BM/γ and a2 < B2
m/(γBM) (with 0 < γ � 2) we have for any x � M , R > 1 and for

some constants denoted by C,
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∞∫
Rx

yG(y)dy � C

∞∫
Rx

ye−a2y
γ

dy � C

∞∫
Rx

yγ−1e−a′yγ

dy

= Ce−a′Rγ xγ � Ce−a1x
γ � CG(x),

where we consider a′ such that: a1
Rγ < a′ < a2(< a1) (which is possible since R > 1), and that proves (45).

• We split the proof of (49) in two steps:
– For y < 2RM : On one hand, we have G(x)φ(y) � Cy. On the other hand, Hypotheses 1.7 and 1.3 show that

b(y, x) � Cyγ−1, so for y < 2RM (49) holds, as γ � 2.
– For 2RM � y � 2Rx: We have, again using (56),

G(x)φ(y) � Cye−a2x
γ � Cye−a2y

γ /(2γ Rγ ) � Cyγ−1,

and we conclude as in the previous case, by means of Hypotheses 1.7 and 1.3.
• Finally, considering ζ(y) = 1 and Hypothesis 1.7, we obtain ζ(y)y−1 = y−1 � Cyγ−1 for any y � M because

γ � 0, and therefore (50) holds. �
Proof for growth-fragmentation. As in the self-similar fragmentation case, we only need to show that for growth-
fragmentation model, K , M , R can be chosen appropriately so that Eqs. (44), (45), (46), (49) and (50) hold for G, φ.
In this way, as a direct application of Theorem 2.4, point 1 of Theorem 1.9 holds in that case.

First, for the case b(x, y) = 2Bb/x with Bb > 0 a constant, the bound (67) holds, and φ(x) = Cφ for some constant
Cφ > 0, as remarked at the beginning of Section 4.2. In this simpler case, (44) is a consequence of (61), (45) is
a consequence of (67), and (46) obviously holds with ζ(y) ≡ 1, since φ is a constant. Similarly, (49) is obtained
from (61), and (50) is true with ζ(y) ≡ 1 and K = 2Bb . This allows us to apply Theorem 2.4 and prove point 1 in
Theorem 1.9 in this case.

Let us consider now the case γ > 0. Note that the requirements in Eq. (64) hold, as due to (29) one may take μ = 1
in Hypothesis 1.4, and we have γ ∈ (0,2). Hence, all the bounds in Theorem 4.1 are valid here.

• The bound (44) is an immediate consequence of (61). With ζ(y) = yε , where 0 < ε < 1 and whatever M and R

are, (46) is satisfied due to the fact that φ(y) verifies (65): for Rz < y < 2Rz,

φ(y)

ζ(y)
� C

(
1 + y1−ε

)
� C

(
C0 + Cεz

1−ε
)
� Cφ(z).

• Using (27), (65) and (66) we have for any x � M and for some constants denoted by C,
∞∫

Rx

φ(y)G(y)dy � C

∞∫
Rx

(1 + y)e−a2y
γ+1

dy

� C

∞∫
Rx

yγ e−a′yγ+1
dy = Ce−a′(Rx)γ+1 � CG(x),

which holds by taking 0 < a′ < a2 < (Bm)2/(BM(γ + 1)) and R > 1 such that

a′Rγ+1 >
BM

γ + 1
.

This proves (45).
• As in the self-similar fragmentation case, we split the proof of (49) in two steps:

– On the one hand for y � 2RM and x < y, using (65) and (62) we have G(x)φ(y) � Cy(1 + y) and using
Hypothesis 1.7 one sees (49) holds because 0 < γ � 2.

– On the other hand for y � 2RM and x � y
2R

(which falls in the case max{2RM,2Rx} = 2Rx) we have, again
using (65), (66),

G(x)φ(y) � C(1 + y)e−a2x
γ+1 � Cyγ−1,

and we conclude due to Hypothesis 1.7.
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• Finally, considering ζ(y) = yε with 0 < ε < min{γ,1} and Hypothesis 1.7, we obtain ζ(y)y−1 = yε−1 � Cyγ−1

for any y � M , and therefore (50) holds. �
5.2. Spectral gap in L2 space with polynomial weight

Gathering the first point of Theorem 1.9 with some recent result obtained in [5] (see also [11] for the first results
in that direction) we may enlarge the space in which the spectral gap holds and prove part 2 of Theorem 1.9.

We will make use of the following result:

Theorem 5.1. (See [5].) Consider two Hilbert spaces H and H such that H ⊂ H and H is dense in H. Consider two
unbounded closed operators with dense domain L on H , Λ on H such that Λ|H = L. On H assume that:

1. There is G ∈ H such that LG = 0 with ‖G‖H = 1.
2. Defining ψ(f ) := 〈f,G〉H G, the space H0 := {f ∈ H ; ψ(f ) = 0} is invariant under the action of L.
3. L − α is dissipative on H0 for some α < 0, in the sense that

∀g ∈ D(L) ∩ H0
(
(L − α)g,g

)
H

� 0,

where D(L) denotes the domain of L in H .
4. L generates a semigroup etL on H .

Assume furthermore on H that
5. there exists a continuous linear form Ψ : H → R such that Ψ |H = ψ ;

and Λ decomposes as Λ = A + B with
6. A is a bounded operator from H to H .
7. B is a closed unbounded operator on H (with same domain as D(Λ) the domain of Λ) and satisfying the dissi-

pation condition

∀g ∈ D(Λ)
(
(B − α)g,g

)
H � 0.

Then, for any a ∈ (α,0) there exists Ca � 1 such that for any gin ∈ H there holds:

∀t � 0
∥∥etΛgin − Ψ (gin)G

∥∥
H � Cae

at
∥∥gin − Ψ (gin)G

∥∥
H.

Proof of part 2 in Theorem 1.9. We split the proof into several steps.

Step 1. Under the hypotheses of Theorem 1.9, take G, φ solutions of (5), (6), respectively. We define
H := L2(φG−1 dx) and H := L2(θ dx) with θ = φ(x) + xk , k � 1. Due to the bounds of G and φ proved above, one
can see that H ⊆ H.

We define:

Λg := −a(x)∂xg − (
λ + B(x)

)
g + L+g

on H and L := Λ|H on H . We also define:

Ψ (g) := (g,G)H =
∞∫

0

gφ dx (g ∈ H),

and ψ := Ψ |H . From part 1 in Theorem 1.9 it is clear that L satisfies points 1–4. Moreover, Ψ is correctly defined and
continuous on H as soon as k > 3, so that H ⊂ L1(φ dx) thanks to Cauchy–Schwarz’s inequality. To finish proving
point 5, for given M,R > 0, we define χ := M1[0,R],

(Ag)(x) := g(x)χ(x),

and

Bg := [−gχ − a(x)∂xg − λg
] + [

L+g − B(x)g
] = Λ(g) − gχ,
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so that Λ = A + B and clearly A satisfies point 6. In order to conclude we have to establish that B satisfies point 7 for
some well chosen k, M and R. Let us prove this separately for the cases a(x) = x and a(x) = 1.

Step 2. The self-similar fragmentation equation. For a(x) = x, one has φ(x) = x and we may easily compute,
for m � 1,

(Bg,g)L2(xm dx) = T1 + T2 + T3 + T4 + T5,

with

T1 :=
∞∫

0

(−x∂xg)gxm =
∞∫

0

∂x(x
mx)

2
g2 = m + 1

2

∫
g2xm dx,

T2 :=
∞∫

0

(−2g)gxm = −2
∫

g2xm dx,

T3 := −
∞∫

0

B(x)gxmg � −Bm

∫
g2xm+γ ,

T4 := −
∞∫

0

g2xmχ,

T5 :=
∞∫

0

(L+g)xmg.

Introducing the notation G(x) = ∫ ∞
x

|g(y)|yγ−1 dy, we compute, using (29),

T5 �
∞∫

0

xm
∣∣g(x)

∣∣(PMBM

∞∫
x

∣∣g(y)
∣∣yγ−1 dy

)
dx

= −PMBM

2

∞∫
0

2G G′xm+1−γ dx

= PMBM

2

∞∫
0

G 2∂x

(
xm+1−γ

)
dx.

Thanks to Cauchy–Schwarz inequality we have for any a > 1

G 2(x) �
∞∫

x

y2γ−2+ag2(y) dy

∞∫
x

y−a dy � x1−a

a − 1

∞∫
x

y2γ−2+ag2(y) dy.

We then deduce

T5 � PMBM

2

m + 1 − γ

a − 1

∞∫
0

y2γ−2+ag2(y)

y∫
0

x1−axm−γ dx dy

� ν

∞∫
yγ+mg2(y) dy,
0
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with

ν = ν(a,m) = PMBM

2
μ(a,m), μ(a,m) := (m + 1) − γ

(m + 1) − γ − (a − 1)
× 1

a − 1
,

provided that m + 2 − γ − a > 0. In particular, we notice that for m = 1 and a∗ = 2 − γ /2 ∈ (1,2) we have
ν(a∗,1) = 2PMBM/(2 − γ ), so that for m = 1

T5 � 2PMBM

2 − γ

∞∫
0

x1+γ g2 dx =: C0

∞∫
0

x1+γ g2 dx.

We also need to use the above calculation for m = k. We can find a and k such that

k > 3, 1 < a < k + 2 − γ, ν(a, k) <
Bm

2
.

To see this, take

a = 1 + 2PMBM

Bm

, so that
1

a − 1
� Bm

2pmBM

and then take k large enough so that

k + 1 − γ

k + 1 − γ − a + 1
� 2.

Putting together the preceding estimates we have proved

(Bg,g)H �
∞∫

0

xg2(x)
{−1 − χ + (C0 − 1)xγ

}
dx +

∞∫
0

xkg2(x)

{
k − 3

2
− χ − Bm

2
xγ

}
dx.

Recalling the definition of χ , for any C > 0 we can find R and M large enough so that

(Bg,g)H � −C

∞∫
0

θg2 dx,

and that proves that assumption (7) in Theorem 5.1 is fulfilled with α = C = β . The conclusion of Theorem 5.1
provides the conclusion in Theorem 1.9.

Step 3. The growth-fragmentation equation. In this case we have a(x) = 1 and φ is the solution to the dual eigenvalue
problem (6). We first compute,

(Bg,g)L2(φ dx) = T123 + T4 + T5,

with

T123 :=
∞∫

0

{−∂xg − λg − Bg}gφ

=
∞∫

0

{
1

2
∂xφ − λφ − Bφ

}
g2

= −1

2

∞∫
0

{
λφ + Bφ + L+∗φ

}
g2 � 0,

T4 := −
∞∫

g2χφ,
0
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T5 :=
∞∫

0

(L+g)φg

�
∞∫

0

BMC1(1 + x)
∣∣g(x)

∣∣( ∞∫
x

∣∣g(y)
∣∣yγ−1 dy

)
dx

� C2

∞∫
0

g2xγ (1 + x)dx

� C3

∞∫
0

g2(φ(x) + x1+γ
)
dx,

where as in the previous step we define C2 = (BMC1/2)(μ(a,0) + μ(a,1)) for some 1 < a < 2 − γ (recall that here
we have made the hypothesis γ ∈ (0,1)) and C3 comes from the fact that φ is uniformly lower bounded by a positive
constant. Following the computation of the previous step we easily get an estimate on (Bg,g)L2(xk dx), choosing k as
before. Putting all together we obtain:

(Bg,g)H =
∞∫

0

(Bg)g
(
φ(x) + xk

)
dx

�
∞∫

0

{
C3

(
φ(x) + x1+γ

) − χφ
}
g2 dx +

∞∫
0

{
k

2
xk−1 − (λ + χ)xk − Bm

2
xk+γ

}
g2 dx.

Again, for any C > 0 we can find R and M large enough so that

(Bg,g)H � −C

∞∫
0

θg2 dx,

and we conclude as in the previous step. �
Acknowledgements

The first two authors acknowledge support from the project MTM2008-06349-C03-03 DGI-MCI (Spain) and
the Spanish–French project FR2009-0019. The second author is also supported by 2009-SGR-345 from AGAUR-
Generalitat de Catalunya. The third author acknowledges support from the project ANR-MADCOF. Finally, we wish
to thank the hospitality of the Centre de Recerca Matemàtica, where this work was started, and the Isaac Newton
Institute, where it was finished.

Appendix A

The following results are useful for dealing with weak conditions on the fragmentation coefficient b(x, y).

Lemma A.1. Let {fi}i∈I be a family of nonnegative finite measures on [0,1], indexed in some set I , and take k > 0
fixed. The following two statements are equivalent:

∃ε, δ ∈ (0,1):
∫

[1−ε,1]
fi � δ

∫
[0,1]

fi for all i ∈ I, (82)

∃P ∈ (0,1):
∫

[0,1]
xkfi(x) dx � P

∫
[0,1]

fi for all i ∈ I. (83)
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Proof. First, assume (82) holds for some ε, δ ∈ (0,1). Observe that (82) is easily seen to be equivalent to∫
[0,1−ε)

fi � (1 − δ)

∫
[0,1]

fi for all i ∈ I. (84)

Using this, ∫
[0,1]

xkfi(x) dx =
∫

[0,1−ε)

xkfi(x) dx +
∫

[1−ε,1]
xkfi(x) dx

� (1 − ε)k
∫

[0,1−ε)

fi(x) dx +
∫

[1−ε,1]
fi(x) dx

=
∫

[0,1]
fi(x) dx − (

1 − (1 − ε)k
) ∫
[0,1−ε)

fi(x) dx

�
(
1 − (

1 − (1 − ε)k
)
(1 − δ)

) ∫
[0,1]

fi(x) dx

= (
δ + (1 − δ)(1 − ε)k

) ∫
[0,1]

fi(x) dx, (85)

where (84) was used in the last step. This proves (83) with P := δ + (1 − δ)(1 − ε)k < 1.
Now, let us prove (82) assuming (83) by contradiction. Pick ε, δ ∈ (0,1), and take i ∈ I such that (82) is contra-

dicted for these ε, δ. Then,∫
[0,1]

xkfi(x) dx �
∫

[1−ε,1]
xkfi(x) dx

� (1 − ε)k
∫

[1−ε,1]
fi(x) dx � (1 − ε)kδ

∫
[0,1]

fi(x) dx. (86)

Hence, choosing δ close to 1 and ε close to 0 gives an i ∈ I such that (83) is contradicted. �
Lemma A.2. Let {fi}i∈I be a family of nonnegative finite measures on [0,1], indexed in some set I . The following
two statements are equivalent:

∀δ > 0, ∃ε > 0:
∫

[1−ε,1]
fi � δ

∫
[0,1]

fi for all i ∈ I. (87)

There exists a strictly decreasing function k �→ pk

with 0 < pk < 1, lim
k→+∞pk = 0

and
∫

[0,1]
xkfi(x) dx � pk

∫
[0,1]

fi for all i ∈ I.

⎫⎪⎪⎬
⎪⎪⎭ (88)

Proof. Let us first prove (88) assuming (87). Eq. (85) holds here also, so∫
[0,1]

xkfi(x) dx �
(
δ + (1 − δ)(1 − ε)k

) ∫
[0,1]

fi(x) dx.

Choosing δ small enough, and then k large enough, one can take pk so that (88) holds.
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Now, let us prove the other implication by contradiction. Assume (88) does not hold, so there is some δ > 0 such
that, for every ε > 0, (88) fails at least for some i ∈ I . With the same calculation as in (86), choosing ε = 1− (1/2)1/k ,
we have that for every k � 1 there is some i ∈ I such that∫

[0,1]
xkfi(x) dx � δ

2

∫
[0,1]

fi(x) dx.

This contradicts (88). �
Lemma A.3. Consider a fragmentation coefficient b satisfying Hypotheses 1.1, 1.2 and 1.5, and take 0 � k � 1. For
every δ > 0 there exists an ε > 0 such that

(1−ε)x∫
0

ykb(x, y) dy � (1 − δ)

x∫
0

ykb(x, y) dy (x > 0). (89)

Proof. Equivalently, we need to prove that for every δ > 0 there exists ε > 0 such that
x∫

(1−ε)x

ykb(x, y) dy � δ

x∫
0

ykb(x, y) dy (x > 0). (90)

Using Hypothesis 1.5, take ε > 0 such that (28) holds with δ/κ instead of δ, where κ is the one in Hypothesis 1.2.
Then,

x∫
(1−ε)x

ykb(x, y) dy � xk

x∫
(1−ε)x

b(x, y) dy � xk δ

κ

x∫
0

b(x, y) dy

= xkδB(x) = xkδ

x∫
0

y

x
b(x, y) dy � δ

x∫
0

ykb(x, y) dy. �

Corollary A.4. Consider a fragmentation coefficient b satisfying Hypotheses 1.1, 1.2 and 1.5. Then there exists a
strictly decreasing function k �→ pk for k � 0 with limk→+∞ pk = 0,

pk > 1 for k ∈ [0,1), p1 = 1, 0 < pk < 1 for k > 1, (91)

and such that
x∫

0

ykb(x, y) dy � pkx
kB(x) (x > 0, k > 0). (92)

Also, for each 0 � k < 1 there exists p′
k > 1 such that

x∫
0

ykb(x, y) dy � p′
kx

kB(x)
(
x > 0, k ∈ [0,1)

)
. (93)

Proof. Apply Lemma A.2 to the set of measures {fx}x>0 given by:

fx(z) := b(x, xz)
(
z ∈ [0,1]),

for which Hypothesis 1.5 gives precisely (87). Then, by a change of variables and using Hypothesis 1.2, (88) is
exactly (92).

For the second part, fix 0 � k < 1. Applying Lemma A.2 to the set of measures {zkb(x, xz)}x>0 gives p′
k so that

(93) holds, as this set also satisfies (87) (by Lemma A.3). �
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Remark A.5. One can omit Hypothesis 1.2 in the previous corollary and still get the result for k � 1 by taking
fx(z) := zb(x, xz) in the proof.
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