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We consider solutions of inhomogeneous, reduced hyperbolic equations of 
the second order, with a large parameter multiplying the unknown function. 
These solutions are defined on the m-dimensional region outside a star-shaped 
body. They satisfy an “outgoing” radiation condition at infinity and a Dirichlet 
boundary condition. 

We obtain a priori estimates for these solutions, at every point outside or on 
the surface of a two- or three-dimensional star-shaped body, that hold for 
sufhciently large values of the parameter. We prove that each solution is 
bounded by a linear combination of (i) the maximum norm of its prescribed 
boundary values, (ii) the Lz norm of the prescribed values of its tangential 
derivative, (iii) an L8 norm of the source term. This result is based on similar 
inequalities that we first obtain for a certain L, norm of the gradient, and of the 
normal derivative on the boundary, of each solution defined outside an 
m-dimensional star-shaped body. 

For the special case of the reduced wave equation, Morawetz and Ludwig [l] 
have obtained similar estimates. Just as their results have been used in [3] to 
confirm the geometrical theory of diffraction, the estimates obtained in this 
paper can be used to establish the validity of certain formal asymptotic solutions 
of reduced hyperbolic equations. 

1. INTRODUCTION 

In this paper we establish a priori estimates for solutions of second order, 
uniformly elliptic partial differential equations of the form 

LA24 = (A(x) . V) * vu + a(x) - vu + Au =f(x, A), 

where A(x) is a symmetric matrix. These estimates are for solutions defined 
in the m-dimensional exterior of a smooth star-shaped body, that satisfy the 
radiation condition 
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and which reduce to a prescribed function on the boundary aV of the star- 
shaped body. 

Our estimates are obtained under the hypothesis that 

uniformly, 

where I is the identity matrix, and that 

if r > rl > 1 where C, is a constant, and p > 2. 
Let n be the outward unit normal to the boundary 8 V of the region V where 

the solution U(X) is defined. We establish first that (1 U, 11s” (the L, norm of the 
normal derivative of U(X) on av) and j/ Vu/r /Jr, (the L, norm of Vu/r), are 
bounded from above by a linear combination of Ij Vu - nu, I/at, (the L, norm 
of the tangential derivative of U(X) on av), the L, norm 11 rfllr, , and X 11 u Ilk,, 
(the maximum of X 1 U(X)\ on i3V). The constants in this linear combination 
depend on a(x), A(x), and first derivatives of the elements of A(x), but are 
independent of A. These estimates hold as h -+ cc if 

where V(Y,) = V n {x: [ x ( < rr). (If L,u = f is the reduced wave equation 
for an inhomogeneous medium, i.e., if u(x) = 0 and A(x) = K(X) I, we require 
instead that 

Making use of the estimates for Ij ~,\\a~ and II Vu/r /Iv we subsequently 
obtain an inequality of similar form for A- (l+m)/a j u(x)1 (m = 2, 3) that holds 
as X -+ 00, uniformly on (V U i3V) n {x: I x / < r2 - 8,O < 6 < r,/2} for 
every value of ra such that (x: 1 x j < r,/2} 3 av. 

For solutions of the reduced wave equation our estimates reduce to 
those obtained by Morawetz and Ludwig [l]. They were able to establish 
the mathematical validity of the geometrical theory of optics by using them. 

Our estimates can be applied in a similar way to establish the asymptotic 
character of formal series solutions that depend on X in the same way as the 
expansions of geometrical optics, and also of certain diffraction expansions 
(cf. [2, 31). 
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In Section 3 of this paper we present the inequality that is basic in obtaining 
our estimates for 11 u, I(av and jj VU/Y [Iv. Th is inequality is derived from an 
identity that expresses the divergence of a certain vector with components that 
are quadratic forms in u, and the first derivatives of u, as the sum of quadratic 
forms in these quantities, and the product of L,u with a linear combination 
of u and its first derivatives. The identity is derived in Appendix I. 

In Section 4 we integrate the basic inequality over the region V exterior 
to the star-shaped body. The result is an inequality, which implies that under 
the above conditions (/(n * (A * n))lj2 u, IJav)2 and (11 Vu/r l/y)2 are each 
bounded from above by a linear combination of (11 u llav)a, (11 Vu - nu, )ly)2, 
(II r-b 11~)~ and (II 4~ IIv>~. Th is is true for all sufficiently large h. 

In Section 5 we first establish that the quantity X2()/ U/Y llv)2 is bounded 
from above by a linear combination (with coefficients independent of A) of 
the quantities (II u Ilav)2, (11 Vu - flu, /laY)2, (II &u llv)2, (II(n . (A . w2 % llavJ2, 
and (11 Vu/r )ly)2. The first three of these are known a priori, while the last 
two are not. This result, together with the estimates of Section 4, imply that 
if h is sufficiently large, then both II(n. . (A . n))i12 u, ljav and /I Vu/r jIy are 
bounded from above by a linear combination of quantities that are all known 
a priori, viz., II u llav , II Vu - nun IlaY ad II 4~ IL . 

In Section 6 we derive an estimate for I U(X)/ that holds uniformly on 
(vuav)n(x:IxI < 2 r - 8, 0 < 6 < r,/2}. We establish for m = 2, 3 that 
h(i-)/z 1 u(x)/ is bounded from above by a linear combination of (the known 
quantities) X 1) u l/Qy, 11 Vu - nu, llav , )I rL,u /Iv , and a linear combination of 
(the unknown quantities) P /I u/r jly , X II Vu/r Ilv, 1) Us /jar,. 

Finally, if the estimates of Sections 5 and 6 are combined, the result 
obtained is that h-(1+“)/2 I u(x)1 is bounded from above by a constant 
multiple of the sum of X 11 u ]lky, I/ Vu - nu, j]av and 1) rL,u lIy . The multiple 
is constant with respect to X and depends only on norms of A(x), a(x), and 
first derivatives of the elements of A(x). 

2. GLOSSARY 

Notation 

1. X is a positive real number. 

2. x is an m-dimensional row vector with components x1, x2, x2,.,., P; 

r zcz ] x ) ?zz fj (4” 1’2. 

( 1 i-1 

3. P(X), Y(X), Q% 4% P( 1 x an w x are real valued functions of x. d ( > 
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4. U(X) is a complex valued function of X; 1 u 1 = (uti)l’“. 

5. a(~) and b(x) are row vectors with components al(x), U”(X), u3(x),..., 
P(X) and @(x), b2(x), b”(x) ,..., b”(x) that are real valued functions of X. 

6. I is the m x m identity matrix. A(x) is a matrix with rows 
Al*(x), B*(X),..., A”*(x) and columns A*‘(x), A*2(~),..., A*“(x). The 
elements of A(x) are the real valued functions Ai’( where i, j = 1, 2, 3,..., m. 

7. B(x) is a row vector with components Bl(x), B2(x),..., B”“(x) that are 
m x m matrices. The elements of F(x) are the real valued functions P”(x). 

Operations 

1. If v and w are row vectors with scalar components vi, Us,..., vm and 
wl, w )...) 2 wm, then 

(i) vw = (2)iwj)mxm , 
(ii) v . w = cb, viwi, 

(iii) / z, [ = (zi . 6)r12. 

2. If v is a row vector with components F’l, v2,..., vim that are row 
vectors with scalar components, then 

(9 I v I = I% I vi I , 
(ii) V . v = (Vi . v, V2 * z, ,..., Vm * ZI), 

v . v = (v . v, v * v’2 ,...) v . P). 

3. If M is a matrix with rows Ml*, M2* ,..., Mm*, then 

(i) I M I = (CzT, I Mi* j2)1/2, 
(ii) M * TJ = (Ml* . ZJ, M2* . v ,..., Mm” . v), v . M = c;=, viMi*. 

4. If M is a row vector with matrix components Ml, Mz,..., Mm, then 

6) I M I = CCk I Mk 12Y2 
(ii) v .M = (v * M1,v . M2 ,..., v . M”), 

M . v = (Ml . v, Mz . v ,..., M”” . v). 

5. If S(X) is a complex valued function of X, then VS(X) is a row vector 
with components si(x), s2(x),..., S,(X) where s&) = &(x)/U. 

6. If v(x) is a row vector with components vi(x), G(x),..., V%(X), then 

v * v(x) = 5 Vii(X). 
i=l 

7. If M(x) is a matrix with rows Ml*(x), M2*(x),..., &P*(X), then 

V . M(x) = 2 M:*(x) 
i=l 

and / V - M(x)\ = (2 1 M~*(x)\‘)“~ 
i=l 
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where 

M;*(x) = aM”*(x)/ax’. 

8. If M is a row vector matrix components Mr(x), M2(x),..., M”(x), 
then 

where 

V . M = f Mkk(x), 
k-l 

Mkk(X) = 8Mk(x)/&“. 

9. If F(x) is a complex valued function, a row vector with scalar 
components, a row vector with vector components, a matrix or a row vector 
with matrix components, then 

where D is the closure of D. 

10. If u(x) is a twice differentiable complex valued function of x, then 

L,u = v * (A * Vu) + (-(V * A) + a) * vu + PU. 

3. THE BASIC INEQUALITY 

The a priori estimates derived in this paper are 
inequality: 

based on the following 

- V * Re[((Vu * B) + (--ihp + y) uA) * VG + hz(b/2) [ u [“I 

- ReVu*((yA--uab+V.B-((3+O+V)I).V@). (1) 

Here 

2B” = bA”* + A”*b - b”A. 
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The above inequality holds under the assumption that A is a symmetric 
matrix whence 

Bijk = B’ikc. 

Also 
2d = V . (+) - ya, 
2c = v . (pA) - pa, 
u = (V * b)/2 - y. 

The vector b and the scalars (J and y must be chosen so that 

u >, 2 / c 12. 

Finally, v and TV must be chosen so that 

y-p=-2; 
2’ 

Inequality (I) is derived as follows, from the identity: 

- V * Re[((Vu * B) + (--ihp + y) d) * ‘7~ + X2(6/2) j u I”] 

---Re[b~Vu+(--ihp+y)u]L,I-2Reu(d~V~)+’c~~’z 

c * vu 2 
-(J -- ihu -ReVu*((yA-ub+V*B)*VC). (2) u 

(The derivation of (2) is given in Appendix I.) 
We note first that 

Re[b * Vu + (--ihp + y) u]L,$ 

=Rep -- 
I 
c * vu u iAu L,$+Re 31; ~ ,c, L,iz 1 1 p\ci c-vu --- - 1 

+ Re [ -ft ; ‘) 6 + b] * VuL$ + Re yuL,@ 

The following inequalities hold for the terms on the right side of the 
preceding equation. 

-Re[-wfi+b].VuLg 
c c 

c * vu 
-Rep -- 

[ 
Au L,S 

u I 

< T I c I2 1 c+ - iAu I2 + & 1 L,u 12, 
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Also, if (I > 2 1 c 12, then the last term on the right side of the preceding 
inequality is obviously less than 

2 

&p,c,2 

Consequently, if a > 2 1 c j2, and v - p = -$, we have 

- Re[b . Vu + (-iAp + y) u] L&ii 

< I b I2 + 
[ 

P2 + AP2 + 1) + P2 (b * c) u -- -- 
Q 2w,c,2 ICI2 16v,c,” ,c12p 1 I21 1-Q I2 (3) 

_ Ib*W+ 
2 I c I2 

2(IY; 221) 1 u 1% + p 1 vu 12 + w $1 q - iA24 ia. 

Furthermore, if 0 is any scalar function, and u > 2 ( c 12, we have 

-2Reu(d.VP)~~jula+BIV11[2, 

Ic.VuI2 <l- Ic-vu12 
D ’ 2 ,cp * 

We finally get inequality (1) by using (3) and (4) to estimate the first three 
terms on the right-hand side of identity (2). 

4. INTEGRATION OF THE BASIC INEQUALITY 

Assume now that 

and 

if I > r, > 1, where C, is a constant, and p > 2. Assume also that 

pi A(x) = I, 

uniformly with respect to the angular variables. 
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Suppose that aV is star-shaped, and that the radiation condition 

lim Y 
s I 

~*Vu-iiXu+--2T-U12dS=0 cm- 1) 
r +m T=T- 

is satisfied. 
In (I) we set 

with 
b = XT, 

/ 

r1 + 1 if ro < r < r3, r3 > r1, 

r= -((~)-l)z~‘-l+~‘-l+l if r>,Ya. 

We define y by the equation 

V*b 
u=--y=2~c~2. 

2 

This choice of y is obviously consistent with the requirement that u >, 2 1 c 12. 
Under the assumption that 8V is star-shaped, we have 

Next, we choose the scalar function p so that / c 1-a is uniformly bounded 
on aV v V, and so that, as r -+ cc, we have 

p=r+o - (i), vP=G(l+O(f))' vlvPI=O($), 

uniformly in the angular variables. (See Appendix II, where we show how 
to construct a function p with these properties.) 

As for the remaining scalar functions in (1) we set 

v = c/3+, I9 = v/2, p = (1 + 24/a w = 2. 

Under the above conditions, integration of (1) over aV u V leads to the 
following inequality: 

- 
s [ 

,B,+141W 
av 

(nm@E +141bI~]lV~--~,12dS 

- s [ 3 VP + r>’ , A , _ h2 n;b 1 Iu/2dS 
av -2- (n-b) E (5) 
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<- s ReVu*((yA-uab+V*B-(&+B+v)l)*Vii)dV 
Y 

x [ L,u 12dV. (5) 

Here E is any positive constant less than one. 
To establish (5) we first integrate (1) over the region outside 8V, and inside 

the sphere S,.J = {x: 1 x 1 = r’}. The left side of (1) integrates into the dif- 
ference II - Is , where 

Ij = lsj Re [nj . ( VU . B + (-i+ + y) uA) * Vii + A2 w)] dS, 

with S, = aV, nr = n (outward unit normal to aV); S, = S,e and n2 = x/r. 
Under the conditions imposed above it can be shown that 

lim I2 = 0. 
r’-m 

We get (5) by letting r ’ -+ co, and then making use of the inequality 

- 
s [ 

,B,+141~12 
(6) 

av 
(n . b) E + I A I I b I e] I Vu - wa I2 ds 

- 1 u j2 dS. 

This inequality is obtained in a straightforward way, once it is established 
that 

Ren.((Vu*B)*W) 

= $ n . (A . n) (n . b) 1 u, 12 + n - (A * n) Re ~(tru - nu,) * b 

+ n . [((Vu - nu,) + B) - (Vii - nir,)], 

and that 

Re(--ihp + y) z&4 . VZT) 

= Re(-iAp + y) un * (A * n) 2~~ + Re(--ihp + y) an * (A * (VIT - n&J). 
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We obtain (6) by first integrating both sides of the last two identities over 
8 V, and then making use of the inequalities 

It follows from our assumptions about the asymptotic behavior of A, A, , 
and V . A - a, as r -+ co, and the definition of r, that 

VP c--, lVP12 cr==2~1/2N~, m IVPI~ 
2 

y”-----, 
2 2 

dN-wVP12 
___ = - I VP I (V I VP 117 2 

as ~--too. 

Recalling how we choose p, TV, v and b, we have, as y---f co, 

Y(P2 + 1) - _1_ 
21c]2 2 (m- IW2)37$y 

(P” + 1) qy2), 

I b I2 Y2 

- - 2(1 + r/W) = o(y2), Q 
2 

( 

(b . c) o 
i&pm- 

So the coefficient of j L,u 12 in (5) is O(Y~), as r---t 00. 
Furthermore, as Y -+ co, we have 

Y I c I2 
XP2 + 1) 

,(m-IvPIzHvP12 
16(p2 + 1) 

=0(f), 

I d I2 -~~lvp121vivpI,2=o(~). e 

The coefficient of 1 u j2 in (5) is, therefore, O(l/ra) as r -+ co. 
Finally, it follows directly from (5) that 
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where 

d@ + 1) + ’ 

21c12 V’ 

465 4 = Re 5 * ((+I + V * B - @~-(*+~+~)~)~Z), 

5. ESTIMATESFOR THE NORMS /I ~/r)/~, lIVu/r/), AND IIu, IJav 

In this section we establish that the following inequality holds as h + CO: 

In deriving (8) we obtain similar inequalities for 

viz., (13). 

ll(n * (A * nw2 %I llav and 

The above inequality is derived from (7), and the identity 

V, (-$ v * Vu)) 

=V(~).(A.vu)++4).Vu+$(L,u-aavu-AXPU). (9) 
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The argument we use to derive (8) requires that the coefficient of (11 u/r liv)S 
be positive. In Appendix III we show that this requirement will be satisfied 
if the differential operator L, - a + V is uniformly elliptic, and 

In the special case that A = KI (i.e., ifL,,u = f is the reduced wave equation 
for a nonhomogeneous medium), the coefficient of (11 u/r llv)2 will be positive if 

First, by an argument similar to the one used to derive (5) from (I), we 
obtain from (9) the preliminary result that, as h -+ 00 

cl1311,)24((1 +ti+iib) (II A II;) + II V . A - a II;) (1 G iid2 

+ $ (II & II;,, II A lib ((II u 11~)~ + (II Vu - nu, 11~)“) 

+ + (11 f I\,) (II@ * (A * W2 u, ll~)2 
(12) 

Using (12) to estimate the last term in (7), we find that, as h -+ 00 

(4 - e)lj2 /3l’” jl(n - (A - n))l12 24, IlaY 

--& (gi&rgp(& , ,))1/2 11 F IJy 
r 

’ 21’2 a1’2 II yLAu Ily 

+ P2 (II B lb + f I/ s ii,y + E II A I b I Ilb)1’2 II Vu - nu,, IIw . 

Finally, using (13) to estimate I( Vu/r IIy , and II(n * (A * n))lj2 u, IlaY in (12), 
we obtain (8). 

409/44/z-4 
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6. A POINTWISE ESTIMATEFOR THE SOLUTION 

In this section we obtain the following pointwise estimate for U(X). If 
m=2or3, andh>l, then 

I 44I G o(~‘“-1”2) AV) [ (II-& 11;) (II y&u II v> 

+~2m++gII) 

(II ( 
1 

x c2 AOO(x’) - 7i&) lk,+8,) (II 5 II,) 

( 
Yr2 

x max ( 

44 
lx - x’ ) AOO(x’) - 

+ O(h(m-1)‘2) A@‘(x) [A / $f$$ / (II u Ilid 

(14) 

+ (Ii&Ii;) ((II A - 4liv)U Vu - wz Ilav) + iI@ * (A . N)L’2 %a Ilad] 

Here Am(x) is any positive function in C1( I’ u 8V), 

V(Y2 + 8) = v n (x: ) x 1 < Y, + a}, 

and 0 < 6 < r.42. This inequality holds uniformly on V(Y, - 6) u 8V for 
every value of y2 such that V(r,/2) 3 at’ where 

V(Y, - 6) = V n {x: I x I e r2 - S}. 

If m > 4 a more complicated argument is needed to obtain a pointwise 
estimate for u(x). This is because our derivation of (14) requires the existence 
of the integrals 

11 h(x)/y’ /1V(r,+8) and 11 1 x’ - x 1 Vh(s)/y’ h,+8) , 

where h(x) = h(x, x’) is the fundamental solution of 

(A(x) - V’) . V’h + h2h = 0, 
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that satisfies the same radiation condition as u(x), if A(x) = I. These integrals 
do not exist if m > 4. 

To get (14) we start with the identity 

u(x) -= 
fwx) I V(r,+ls) 

$44 Lg U’ + x2 I,,, *s) 744 (& - A) u dV’ 

+ j,,, +6) 7@‘h(x)) * (-$ - “‘“‘)) * V’u dV 
a A”“(4 

+ j v(r,+6) 

I 1) * V’u dV’ 
A Vb,) 

4 A V(Q) 

- 
s At’&) 

((44 . v’) . 0’4 44 + dV 

where 
dV(Y,) = V(Y, + 6) - V(t;). 

The fundamental solution h(x) = h(x, x’) in (I 5) is given explicitly by the 
equation 

~bla-1)/Z 

h(x, “) = ‘0 [‘jet A(x)]‘/2 [‘((” 
- *) . (&l(x) . (x’ - X)))l/yw/2 

x H&),,(A(X - x) * (n-‘(x) + (x’ - x)y2), (16) 

where A(x) is the diagonal matrix whose entries are the eigenvalues of A(x), 
H’l’ 

(m-Z)/2 is the Hankel function of the first kind of order (m - 2)/2, and 

co = 4(24L/e ’ 

Equation (15) is derived under the assumption that 7 = 7(x, rz) is a 
function in Cz(V(r, + 6) u at’) with the following properties: 7(x, y2) < 1 
if x E V(Y, + 6) U aV, 7(x, y2) = 1 if x E V(+,) U 8V, 77(x, I~), Vq(x, r2) s 0 
if x f S(r, + S) = (x: 1 x j = r2 + 6). 
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If x E V(y2 - 6) u 8V, the preceding identity implies the estimate 

%g d (II T il .(,+J (ii A Ir”(p2+a)) (11 yL#P lb) 

+ F (II Y /Ir(r +J (II y’2 (7k - Y&l ii1-,, +,J e 

+ 201 Y% lKm, (11 F I~,,,,)) /I * 11 

+ (II r’2(44 * w * V’Y llh,)) (-&) (11 y lj4”(l ))] (ii g) 

+ Nil ~~~-~~~il,*+~))(ll,*~‘,li;i-~il:,+,) 

+ (II 7 llv(rp+d)) ((II y’2 P’ * G-1 - 53 lil,,,,) 

+ (II vrl IIh2)) (11 y ll,,(T2)) 

(II ( 
Y’2 --~)ll,“(,,,)l im,, A 

X A00 

+ (II Wllav) (II& II;,) (Ilb * (A * w2 %l llzw 

+ (II A - Ill&) (II Vu - 71% Ilav)) + ( -$& 1 (II W4lla”v) (II 21 Ilivb 

(17) 

It follows in turn from this estimate that, for every x in V(Y~ - 6) U aV, 

gg ,< 44 [ (11 &j /:(r,+a)) (II rJ9 II r) 

+ x2 max (11 yt2 (A - &I II:, +‘g ’ B 

$ II vrl Ilhr,) > f ,g!gm II hi Ilhv,~) n-lax (19 j gig 1) 

x 1 + p2 + q2 + p-2 + q2m1’2 
( x1/2 
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+hmax (ii 
rf2 

( 
A 44 ' --- 

Ix'-xl Am AT4 Ill ~+,+a) ' 

11 rt2 p * (-&) - $iii) ljV(@) ) & II V? llh,') 

x max 1, rr2 
( j/ ( 

-&- - 

+ (II A - 1 lliv) (II Vu - Wad) +h(l~*~~)(ll~!Ii”)] - w 
Here 

44 TV = max 7 
(II II r 9 

&,+a) 

and 

72(4 = max II 4 )I1 ( x av > f II W4lla”v) . 

To derive (14) from (18) we assume X >> 1, and make use of the following 
asymptotic formulas: 

O(1) (det /l(x))-r12 (B(x) I x - x’ 1)-l, 
I h(x’ “)I = IO(l) (det A(x))-‘12 ln(l + (Ml(x) ( x - x’ [)-r12), 

m = 3, 
m = 2, 

1 Vh(x, x’)I = O(1) h(m-1)/2 (det A(x))-1/2 (Ill(x) I x - x’ l)(1--m)‘2 

+ O(1) (det Jx))-~/~ (N(x) 1 x - x’ \)l+, m = 2, 3, 

where 

These inequalities hold uniformly in x and x’, for all x, x’ E I’ u aL’. 
A laborious but straightforward calculation based on these formulas leads 

to the conclusion that, as X -+ co, 

q(x), T2(X) = O(1) h-+-m)‘2, (19) 

uniformly in x, x E T/(r, - 6) U i3V. 

Inequality (14) follows directly from (18) by virtue of (19) as h -+ co. 
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7. CONCLUSION 

Using Inequalities (8) and (13) to estimate the quantities 

II@ * (A - w2 % llav 9 II ulr II” 9 and II W /IV 

in (14), we obtain a linear combination of I( Vu - nu, /jar,, h /j ZL I&, and 
(1 rL,,u /Iv that is greater than A- (1+m)12 1 u(x)1 , for all x E V(Y, - 8) u av. 
Denoting the largest constant in this linear combination by C, we finally 
obtain the pointwise estimate 

I 441 < CA (1+m)‘2(ll rL,u I/Y + h II u ll’av + II vu - n%a Ilav). 
C is independent of A and x. This estimate holds as A+ co, for all 
x E V(r, - 6) u av. 

APPENDIX I 

To establish (2) we remark first that if u(x) E cZ( V u av), and Bdjk = i8ik, 
then 

(I-1) 
= Re f f f (Bfik) k udiij j- Re 5 f 5 2Bi5k@$kUi , 

k=li=O+O i-oj=o k-1 

where u. = u. 
Focusing our attention on the right side of (I.l), we note that 

2 Re f 2 f B%ijkui 
i=Oj=Ok=l 

= 2 Re f 

( 

F1 f (B”ki + glik) qk + Bi%qj us U.2) 
ia0 54 k=j+l 

+ 2 Re f pkii# -j- 2 Re 5 2 Biokiikui , 
k=l i-1 k==l 

and that 

= Re f BP' 1 u I2 + Re %Eo $ k$1 Bzkttiiij + 2 Re f 2 B~ok~$i. 
k-1 d-1 k==l 

(I-3) 
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Turning to the left side of (1.1) we have 

Re 2 (2 f fi~k~@jj 
kl i==oj=o k 

(1.4) 

= Re f $ 2 Bijku& + 2 f Bj%i,u + BOOk 1 u 12 . 
k=l +l j=l 34 k 

We now set 

Biki + Bijk = biAjk (i = 0, 1, 2 ,..., m;j = 1, 2 ,..., m - 1, 

j+ldhBm), 

2B”ii = b’A5i 

2BjOk = (-ihp + y) Akj 

(i = 0, 1, 2 ,..., m; j = 1, 2 ,..., m), 

(i, k = 1, 2 ,..., m), 
(I-5) 

2P” = b’GP (k = 1, 2, 3 ,..., m). 

Assuming that 6i = bi for i = 1, 2,..., m it follows immediately from 
(I.l)-(1.4) and Eqs. (1.5) that 

B%i + (-ihp + y) uAkj iii + bkX2 ( u y/2 
I k 

= Re 2 biui + (-ihp + y) u 
I( 

g f A%ijk + $ 
i=l j=l k-1 j-1 

+ Re F 5 (yAij + f Bz” - b’a3j uigj 
i=lj=l k=l 

g ((-ihp + y) Akj), - (-ihp + y) aj tij 

h2 j u 12. 

In vector notation (cf. glossary) this becomes 

(1.6) 

V * Re[(Vu * B + (-ihp + y) “2) . Va + Pb I u 12/2] 

= Re(b . Vu + (-iXp + y) u) L$i + 2 Re u( -ihc + d) * Vti 

+ReVu~((yA-ub+V~B)~ViQ+X2u)~j2. 

(1.7) 
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If u is positive, then (1.7) can be rewritten as (2). For if u is positive, then 

2 Re u(--ihc + d) * VG + PO 1 u I2 
(1.8) 

=- “‘~‘2+2Reu(d.V~)+oj~--ihu/2. 

Finally, the equations for the Biik have the solution 

2B” = bAk* + Ak*b - bkA, K = 1, 2 ,..., m. (1.9) 

APPENDIX II 

Our choice of p is motivated by the fact that 

where 

and 

x2(y) = W)IIr(V -A - 4l;cq) + (1 - W>) G/y". 

(11.1) 

The function Y(Y) is a continuously differentiable, monotonic nonincreasing 
function of I, that equals one if Y, < Y < ri , and which vanishes if r 3 rs , 
ra > Y, . Also Y(ri) = I’ n {x: 1 x / < rr}, and r,, is a positive number such 
that the sphere r = r0 lies inside aI’. 

By hypothesis we have 

1 r(V . A - a)] < Cl/r*, P > 2, (11.2) 

if r 2 rr where C, is a constant. Inequality (11.1) follows from the inequality 

21~1 =I(Vp).A+(V.A--a)pI >IVp*Al--rlV*A--alp/r, 

if (11.2) holds. 
In view of (11.1) we stipulate that p(y) be a positive solution of the ordinary 

differential equation 

XlPT -~~(r)$=xr(l-~)exp /-~~m~dS1, (11.3) 

where E is any positive number such that 1 - e/r” > 0 on V u aV. (Note 
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that the assumed uniform ellipticity of the differential operator L, - a . V 
assures that xi # 0.) For if p(r) is a positive solution of (11.3), then 

2 I c I 3 Xl& - X2@) P 

So 1 c j-1 is uniformly bounded on v U aI’, as required in Section 4. 
To get p(y) and its derivatives to behave for large Y, as required in Section 4, 

we set 

which is a positive solution of (11.3). 
If Y > y3 > yl, with p > 2 we have 

p(r) = jr + $) exp I- % -+\ 

=(Y+~)(l+o(~j,=Y(l+o(~)j> 

vPCr)=-f-[(l -$-) + (r++)+]exp1-%+-\ 

=;(l+o(& 

and 

v 1 Vp(y)j = f- [$ - -J& - (p Tly)+; cl 

+ $ki((l-+)+(‘+~)~)]exP~-~~~ 

=- 
x ($+0(7ik))(1 ++-j) r 

APPENDIX III 

To establish (10) and (11) we first consider the quantity 
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where V(r,) = {x: 1 x I > y2 , ys > rl}. By hypothesis 

p > 2, if r 3 y3 > r, . Also if r > rs we set 

which implies that 1 I’ - 1 1 < 2r,/r’r if r > Y, . 
Consequently, 

Re(& * x) (VI’ * A) . &, = Re(&, * x) (VT * &,) + O(l/+‘), 

and 

- 2 I c I2 <&I * (A ’ 50)) > - I vp I2 + O(l/YPj, 

with 

IVPI =(I -;fi-+o($)). 

It follows that 

= V(~%vY 2-&-g ( ‘a + r - 1 + Re<& * x) (VT - 6,) + 0 (-$)) . 

With r as defined above, the quantity r - 1 + Re(&, * x) (VT * &,) is non- 
negative, so that 

The quantity on the left is therefore positive if Y, is sufficiently large, and 
p > 2. 
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If rl < Y < y3 inequality (111.1) still holds, and we set r = (l/c’ + 1). 
Consequently, 

Since - 2 j c I2 (<a . (A . 5,)) is independent of B’, the quantity on the left 
of this inequality is positive if E’ is sufficiently small, and we assume (without 
loss of generality) that y1 > 51K’~‘D. 

Finally, consider the quantity 

with r still equal to (1 /e’ + 1). 
This quantity will be positive if 

is positive, since -2 j c I2 (5, * (A + &)) - (1 + c/r2)/2 is independent of 
E’, and r can be made arbitrarily large by taking E’ sufficiently small. 

In view of the above we conclude that 

will be positive if (111.2) is positive. This will be the case if 

Note that if A = ~1, with a = 0, then ““,‘,“y y2q(&, , x) will be positive if 
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