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We consider linear problems in fields, ordered fields, discretely valued fields (with finite residue 
field or residue field of characteristic zero) and fields with finitely many independent orderings 
and discrete valuations. Most of the fields considered will be of characteristic zero. Formally, 
linear statements about these structures (with parameters) are given by formulas of the 
respective first-order language, in which all bound variables occur only linearly. We study 
symbolic algorithms (linear elimination procedures) that reduce linear formulas to linear 
formulas of a very simple form, i.e. quantifier-free linear formulas, and algorithms (linear 
decision procedures) that decide whether a given linear sentence holds in all structures of the 
given class. For all classes of fields considered, we find linear elimination procedures that run 
in double exponential space and time. As a consequence, we can show that for fields (with one 
or several discrete valuations), linear statements can be transferred from characteristic zero to 
prime characteristic p, provided p is double exponential in the length of the statement. (For 
similar bounds in the non-linear case, see Brown, 1978.) We find corresponding linear decision 
procedures in the Berman complexity classes U STA(*, 2% dn) for d = i, 2. In particular, all 
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these procedures run in exponential space. The technique employed is quantifier elimination 
via Skolem terms based on Ferrante & Rackoff (1975). Using ideas of Fischer & Rabin (1974), 
Berman (1977), Fiirer (1982), we establish lower bounds for these problems showing that our 
upper bounds are essentially tight. For linear formulas with a bounded number of quantifiers 
all our algorithms run in polynomial time. For linear formulas of bounded quantifier 
alternation most of the algorithms run in time 2 °~"k~ for fixed k. 

Introduction 

Elemen ta ry  s t a tements  a b o u t  fields, ordered fields and va lued  fields p l ay  an  i m p o r t a n t  
r61e in symbol i c  a lgebra ic  computa t ions .  On  the one h a n d ,  their  express ive  p o w e r  is 
s t rong  enough  to cover  a good  deal  of  commuta t ive  a lgebra ,  geomet ry  a n d  n u m b e r  
theory ,  in pa r t i cu la r  mos t  p o l y n o m i a l  manipu la t ions .  On  the  other  hand ,  one  k n o w s  s ince 
the p ioneer ing w o r k  of  Tarsk i ,  A, R o b i n s o n  and Ax-Kochen-Ershov ,  tha t  these  s t a t emen t s  
are  amenab le  to  c o m p u t a t i o n a l  me thods ,  when cons idered  in cer ta in  fields such  as the  
reals,  the complex  numbers ,  the p-adics and  cer ta in  power  series fields. 

Two m e t h o d s  are of  p r ime  impor t ance  in this connect ion:  

(1) Decision procedures, i.e. symbol ic  man ipu l a t i ons  for dec id ing  the va l id i ty  of fo rma l  
e l emen ta ry  s ta tements  in certain classes of  s t ructures .  

(2) Quantifier elimination procedures, i.e. symbol ic  m a n i p u l a t i o n s  r e d u c i n g  fo rma l  

e l emen ta ry  s t a tements  with pa ramete r s  equiva len t ly  in a class of  s t ruc tures  to 
pa r t i cu la r ly  s imple such s ta tements  (quantifier-free formulas) .  

Whi le  a great  n u m b e r  of recursive and even pr imi t ive  recurs ive  p roc e du re s  o f  this k i n d  
have been es tabl i shed  (cf. van  den Dries,  1981; Mac in ty re  et at., 1983), on ly  few of them,  
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as e.g. for real algebra (ef. Collins, 1983; Ben-Or et al., 1986), complex algebra (cf. Heintz, 
1983), boolean algebra (cf. Kozen, 1980), are known to be elementary recursive, i.e. to 
run in time bounded by a finite iteration of the exponential function applied to the size of 
the input. 

In this paper, we restrict our attention mostly to linear statements with parameters in 
fields, ordered fields, discretely valued fields and fields with several orderings and 
valuations. Roughly speaking, these are formulas of the respective elementary language, 
in which all essential variables, i.e. the variables x bound by a quantitier 3 x, V x, occur 
only linearly. This is, of course, a severe restriction in expressive power; on the other 
hand, it allows us to dispense with closure conditions such as real or p-adic elosedness. 
The following two examples may illustrate the kind of problems that can be handled in 
this framework: 

(1) Solvability of finite systems of linear equations, linear order inequalities, and linear 
p-adic divisibilities for variable prime p in the field Q of rationals. 

(2) Solvability of finite systems of linear equations and in equations with specified 
orders of poles and zeros at finitely many places in the rational function field Q(t). 
Moreover, if t is specified as a transcendental real, linear order inequalities may be 
added, 

(3) Elementary problems in computational geometry such as movability problems to 
the extent that they concern (not necessarily convex) polyhedra and translations 
(see section 6 for an example). In all examples, the parameters of the problem may 
be indeterminate. 

The existence of quantifier elimination procedures for linear formulas (linear elimination, 
for short) has been studied in Macintyre et al., 1983; Point, 1983; van den Dries, 1981. 
None of the procedures exhibited there is better than primitive recursive. 

The purpose of this paper is to determine the exact complexity of linear elimination and 
the decision of linear sentences in the classes of fields mentioned above. Somewhat 
surprisingly, the outcome is essentially the same for all these classes of fields: 

Except for the case of multiordered, multivalued fields, the decision problem for linear 
sentences in complete (under polynomial time reductions) for the Berman complexity 
class U STA(*, 2 c", n) (see Berman, 1977, 1980). So all these decision problems are 
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computationally equivalent to the decision problem for real addition (see Berman, 1977) 
and for boolean algebras (see Kozen, 1980). In the exceptional case the problem is 
uSTA(*,  2 c", n)-hard and in uSTA(*, 2 c", 2n). So in every case, the problem can be 
solved in exponential space and double exponential time. 

We find linear elimination procedures running in double exponential space and time, 
and prove that any such procedure does, indeed, require double exponential space on 
infinitely many formulas. So the linear elimination problem for these classes of fields is of 
the same complexity as the quantifier elimination problem for torsion-free abelian groups 
and for algebraically closed fields (cf. section 5 and Heintz, 1983). Moreover, we show 
that any quantifier elimination procedure for the reals or p-adics requires double 
exponential space. So the 'quantifier elimination problem for arbitrary formulas and for 
linear formulas in the theory of real numbers are essentially of the same complexity. 

We shpw in section 6 that the number of quantifiers (the dimension) of a linear formula 
is the prime source of computational complexity; the number of quantifier alternations is 
of secondary importance and the length of the formula enters only polynomially. Thus, 
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for bounded dimension all our algorithms run in polynomial time; for bounded quantifier 
alternation many of them run in exponential time (with a polynomial exponent). 

As a by-product, we find that the transfer of linear statements ? in fields and fields with 
one or several independent discrete valuations from characteristic zero to large positive 
characteristic p works for p double exponential in the length of q~, and does in fact require 
a lower bound of this size (see sections 2.7, 3.5, 4.3, 5.2' below). 

The upper bounds are established by the method of quantifier elimination via Skolem 
terms, based on ideas of Ferrante & Rackoff (1975). The lower bounds use results of 
Fischer & Rabin (1974), Berman (1977, 1980) and Fiirer (1982), in particular the 
construction of short linear formulas defining large finite sets. 

The plan o f  the paper is as follows: Section 1 provides the logical background and 
presents the general method. Section 2 treats the case of fields and ordered fields, and 
section 3 the case of discretely valued fields. Section 4 combines the results of the previous 
sections with the appropriate approximation theorem for independent valuations 
and orders to treat the case of multivalued, multiordered fields. Section 5 establishes the 
lower bounds. Section 6 studies the modifications of these results for linear formulas with 
a bounded number of quantifiers or quantifier blocks. 

1. The General Method 

We begin with a short sketch of the logical background. A reader familiar with 
elementary logic may skip this paragraph. 

We consider elementary languages L given by a finite set of constants and finitary 
operation and relation symbols. From these symbols together with an infinite supply V of 
variables x, y . . . . .  the equality sign " = " ,  the logical symbols ^, v, 7 ,  3, V and brackets 
(,),  the terms and formulas of L are built up: terms t, t ' , . . ,  are formed from constants 
and variables by superposition of operation symbols; atomic formulas are equations 
( t =  t') or formal relations R(tl . . . .  , t,,) between terms; arbitrary formulas (p, ~O,.. i 
are obtained from atomic formulas by closure under ^ ,  v, 7 and quantifiers 3 x, V x. 
qo ~ ~b and ¢p ~ ~ are abbreviations for 7 q~ v ~ and (~o -~ ~) ^ (~ -o q0). An occurrence of a 
variable x in a formula q~ is bound, if it is in the scope of a quantifier 3 x or V x; otherwise, 
it is free. A formula containing no quantifier is quantifier-free. A formula containing no 
variable free is a sentence. A theory T in L is a set of L-sentences. An L-structure A is a 
non-empty set, where the constants, operation symbols and relation symbols of L are 
interpreted as elements, operations and relations of the appropriate arity. If ~0(x) is an 
L-formula with all free variables in the string x, A is an L-structure and a is a string of 
elements of A matching x, then A ~ ~0(a) means "~o holds in A for the parameters x = a". 
For a sentence ¢p the parameters are deleted, A is a model of an L-theory T, if A ~ qo for 
all sentences q~ e T. A sentence ~o is a consequence of T, T ~ q0, if q~ holds in all models of 
T. Let T be a theory in L and ~ a set of L-formulas. Then a decision procedure for ~,  T is 
a procedure that decides for any sentence q~e~ whether T ~  rp or not. A quantifier 
elimination for ~, T is a procedure ~0~--~qg' assigning to any formula q9 ~ a quantifier-free 
formula qg'e ~ such that q0 and q¢ are T-equivalent. If in these definitions • is the set 
Fo(L) of all L-formulas, then the reference to • is omitted. 

Quantifier elimination procedures are an important tool in model theory; in particular, 
they reduce the decision problem for T to the decision of quantifier-free sentences with 
respect to T. The latter is solvable for many algebraic theories. Therefore, a great variety 
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of techniques has been developed to prove the existence of quantifier elimination 
procedures (cf. Weispfenning, 1984). They yield--as a rule--only general recursive, at 
best primitive recursive procedures, and hence are far from being feasible. On the other 
hand, one knows from the work of Fischer & Rabin (1974) that the decision problem even 
for simple algebraic theories like real addition requires non-deterministic exponential 
time. The same technique can be applied to show that quantifier elimination for this 
theory requires double exponential space (see 5.1'). So the best time and space bound that 
can be expected in these matters is a finite iteration 2**2**...  2**n of the exponential 
function 2**n = 2". Functions computable on a Turing machine with such a time (or 
space) bound are called elementary recursive. Traditional quantifier elimination 
procedures violate such a bound for a rather trivial logical reason: They eliminate one 
quantifier at a time, and solve the quantifier elimination problem for a formula 3 x(~o) 
with quantifier-free q~ by reduction to the case that q~ is simple enough to express a 
mathematically well-known problem of the respective theory T. This invariably involves 
an application of the distributive law for ^, v, in order to eliminate disjunctions from ¢p. 
But any such application may increase the length of the formula exponentially. So, for an 
unbounded number of quantifiers the length of the resulting formula surpasses any 
elementary recursive bound. 

For some theories T, this problem can be circumvented in the following way: One 
disregards the internal structure of the formula 3 x(cp), and tries instead to find a finite set 
of terms (depending on the free variables of this formula) to act as witnesses for the 
existence of an element x satisfying ¢p. This device dates back to the early work of Skolem. 
It was taken up by Cooper (1972) and Ferrante & Rackoff (1975) to find elementary 
recursive quantifier elimination procedures for Presburger arithmetic and for addition of 
reals with order (of. also Weispfenning, 1986). 

In the rest of this section, we present a uniform, abstract version of this method, suited 
for application to linear problems. A novel element--multiple substitution of Skolem 
terms--is introduced in order to cover the case of fields with several orderings and 
valuations in section 4. A corresponding method for finding elementary recursive decision 
procedures via finite sets of Henkin constants has received a uniform treatment in 
Ferrante & Rackoff (1979). 

Let L be an elementary language and let T be a theory in L. Let X ~ V be an infinite set 
of variables, Z a set of L-terms, 0 a set of atomic L-formulas, and • the closure of 0 under 
A, V, 7 and quantifiers 3 x, V x with x e X .  Assume, moreover: 

1.1 (i) All terms occurring in formulas ,9 e 0 are in Z. 
(ii) There is a modified substitution procedure assigning to variables x e X  and 

terms t, t' ~Z a term t (x / / t ' )eZ such that T ~ t(x// t ' )= t(x/t'), where t(x/t') 
denotes the term obtained from t by substituting t' for x in the usual sense. 

0ii) For 9e 0, x ~X, t '~Z, let ~(x//t') denote the expression resulting from 9 by 
replacing every term t in 8 by t(x//t'). Then 9(x//t') is a formula in 0. 

If t is a term, ~0 is a formula, then X(t), X(q~) denote the set of variables x e X occurring 
in t and q0 respectively. If W is a finite subset of O, x ~ X,  S is a finite set of terms t e Z with 
x~X( t ) ,  then we say, S is a set o f  Skolem terms for x, • if 

We call T a Skolem theory with respect to X, Z, 0, if for every x ~ X  and every finite 
qJ ~ 0, x, • has a set of Skolem terms. 
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LEMMA 1.2. Let T be a Skolem theory with respect to X, Z,  O. 

(i) I f  ¢p ~ ~ is quantifier-free, • is the set of  atomic subformulas o f  ~o, x ~ X ,  and S is a 
set of  Skolem terms for  x, ~ ,  then 

(*) T b 3 x(tp),~, V q~(x//t) 
taS 

and 

(**) T ~ V x(~o) +, A ~ox//t). 

(ii) Suppose modified substitution (x, t, t')~-~t(x//t'), and the assignment o f  sets S of  
Skolem terms to pairs (x, W) is recursive for the theory T. Then there is a recursive 
quantifier elimination procedure for ¢~, T. 

PROOF. (i) (*) is obvious from the definitions; (**) follows from (*) by replacing V x(~o) by 
n 3 x n (q~). (ii) Notice that the formulas on the right-hand side of (*) and (**) are in q). 
So the following describes a recursive quantifier elimination procedure for ~,  T: 

Input: cp 
Output: rp' 
cp': = ¢p; 
while q/ contains a quantifier do 

begin find the first quantifier 3 x or V x in ~p', whose scope q/is quantifier-free; replace 
3 x(¢) or V x(¢) in ¢' by the corresponding right-hand side of (*) or (**), 
respectively. 

end 
end, 

The following technical lernma will be useful in sections 2 and 3 to avoid explicit case 
distinctions on the parameters of linear problems. 

LEMMA 1.3. Let x e X,  let q2, ~'  be finite subsets of  O, and assume for every (peW there 
exists a.finite set J~ of  pairs of  formulas such that 

(i) x (~ X(p) and cr~ ~P' for  all (p, ~r) ~ J~; 

(ii) T ~  V P; 
(p,~)ed¢ 

(iii) T ~  A P--*(tr'q)). 
(p, a) GJ¢ 

Then any set S of  Skolem terms for x, W' is also a set of Skolem terms for x, W. 

PROOF. Let all the variables of formulas in qJ, W' be interpreted in a model A of T. Then 
for any ¢ e q~ there exists (p~, a,p) e d~ such that A ~ p~, and so A ~ % ~ cp. Furthermore,  
there exists t E S with 

A A 

Since x ¢ X(p~), A ~ p<p(x//t), and so A ~ cr~(x/It)~ ¢P(xl/t) for any ~o ~qJ. Consequently, 

A p A ¢(x//t). 

Our next goal is to compute upper bounds on the complexity of the quantifier 
elimination procedure described in lemma 1.2. To this end, we assume that we have a 
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notion of rank for terms t s Z  with the following properties: 

1.4 There is a positive constant c such that for all x e X, t, t ' s  Z, 

(i) rank(t) is a positive integer; 
(ii) rank(t) ~ length(t) ~< c. rank(t)./X(t)J; 

(iii) rank(t(x//t ')) <~ c. rank(t) + rank(t).  

For  c p ~ ,  we let rank(q))=max(rank(t):  t occurs in q)); atom(q)) is the number of 
atomic subformulas of q), and quant(q)) is the number of quantifiers in q). If S _ Z, • ___ 
are finite, then rank(S), rank(W) is the maximum of all ranks of terms (formulas) in S, h v, 
respectively. 

LEMMA 1.5. Let g, h be weakly monotonic functions from N in N, and put ga(n) = g(n) " n, 
h t ( n ) = h ( n ) + c n  with e as in 1.4. Let T be a Skolem theory with respect to X,  Z,O and 
assume that for  x e X ,  u7 a finite subset o f  O, a set S of  Skolem terms for x, • can be found 
with [S[ ~<g(]W[), rank(S)~< h(rank(hU)). Let q)~q)' be the quantifier elimination procedure 
of  1.2(ii). Then 

(i) atom(q)') ~ gctq"a"t~'(atom(q))), 
(ii) rank(q)') ~< h~q"""'ce'(rank(q))), 

(iii) length(q)') ~< c'. [X(q))[. g~q"amc¢))(length(~0)) . h~q"""tc¢'(length(q))) for  a positive 
constant c ~. 

PROOF. Notice that 

and by  1.4, 
a t o m ( V  q)(x//t)) = Is[ .atom(e),  

\ t ¢ S  

rank (,Ys q~(x//t)) = c" rank(o)+ rank(S). 

From this remark and the proof of 1.2, (i) and (ii) follow now by induction on quant(q)). 
For  (iii), let k be the maximal arity of a relation symbol in L. For ~9 ~ 0, we have by 1.4, 

length(0) ~< (k+2) .  max(length(t): t occurs in 0) 

(k + 2). c" rank(0). IX(0)[. 

In 1.20), we may assume that X(t) c_ X(q)) for all t s S. So by (i) and (ii), we get 

length(q)') ~ atom(q)'). (k + 2). c- rank(~0'). IX(q)')l 
t (quant(q))) (quant(cp)) ~< c "gl (length(cp)). h~ (length(q))). IX@)I, 

for c' = (k + 2)c. 
Specialising 1.5 to the case of a polynomial bound g(n) = el" n k and a linear bound 

h(n) = ca" n with el > 0, we obtain: 

COROLLARY 1.6. Assume the hypothesis o f  1.5 for g, h as specified above. Then 

(i) atom(q)') ~< (1 +atom(q)))**2**d*quant@), 
(ii) rank(~o') ~< (2**d*quant(q)))*rank(q~), 

(iii) length(q)') ~< 2**2**d*length(q)), 

for  some positive constant d. 

THEOREM 1.7. Let T be a Skolem theory with respect to X,  Z, O, and suppose that modified 
substitution (x, t, t')~-~t(x//t') and the assignment o f  sets S o f  Skolem terms to pairs (x, tg) 
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can be performed in polynomial time. Let q~-~¢p' be the quantifier elimination procedure o f  
1.2. Then ¢p' can be constructed from ~o in TIMEq~(tp)~< 2**2**d*length(tp)for some 
positive constant d. 

PROOF. By the hypothesis, the elimination of one quantifier according to 1.2(i) can be 
performed in polynomial time. So by induction on quant(~0), the construction of a 
quantifier-free equivalent cp' for a formula in 1.2 requires at most double exponential time. 

COROLLARY 1.8. Assume the hypothesis of 1.7, and suppose in addition that the question 
whether T ~  ¢p for a quantifier-free sentence q~ ~ ¢b can be decided in time TtMEd~c(q~) 
polynomial in length((p). Then for an arbitrary sentence q~E~, TIMEd~c(q~) 
~< 2**2**d*length(~p) for some positive constant d. 

PROOF. Apply 1.7 to pass from ~o to tp', and decide tp'. 

With respect to the space required to decide T ~ ~p for q~ e t g, we get the following 
simple exponential bound. 

COROLLARY 1.9. Assume the hypothesis of 1.6, and suppose in addition that the question 
whether T ~-¢p for a quantifier-free sentence t O ~ ¢b can be decided in space SPACEa,~(q~) 
polynomial in length(tp). Then for an arbitrary sentence cpetI~, SPACEa~c(tp) 
~< 2**d*length(~o) Jot a positive constant d. 

PROOF. It suffices to produce in a suitable systematic fashion the tuples of variable-free 
Skolem terms corresponding to the quantifiers in the given sentence cp, and to decide the 
validity in T of the sentences tp* obtained from cp by substituting (in the modified sense) 
these tuples for the corresponding bound variables. Since by 1.6(ii), 

rank(t) ~< (2**d'. quant(q0)' rank(q0, 
we get from 1.4, 

length(~0*) ~< atom(cp), c'. (2**d'' length(~o)) • rank(~0), IX(~)l 2 

~< 2**d" • length(q~) 

for certain constants d', c', d". So these decisions together with a suitable record of their 
outcome can be made in space bounded by 2**d" length(~p) for some constant d. 

A tighter complexity bound for the decision problem for ~, T under the hypothesis of 
1.8 is given by the Berman complexity class c~ '°'" STA(*, 2 c", n). STA(*, 2 c', dn) may be 

described as the class of all sets accepted by an alternating Turing machine running in 
time 2 c" which may make only d. n alternations of universal and existential states, where n 
is the length of the input (see Berman, 1977, 1980; Kozen, 1980). For ~my de  N, this class 
is contained in EXPSPACE. Then the argument given for 1.9 shows (comp. Kozen, 1980, 
pp. 234,235): 

THEOREM 1.10. Assume the hypothesis of  1.6 and 1.8. Then the decision problem for ~,  T is 
in the class U STA(*, 2 on, n). 

The framework outlined so far is sufficient for handling linear problems in fields, 
ordered fields and valued fields. For multi-ordered, multi-valued fields, we now introduce 
a method of quantifier elimination via multiple substitution of Skolem terms. 
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Let  Lo be an elementary language, let Lt (1 .%< i ~< r) be extensions of Lo by new relation 
symbols such that Lff~Lj = L o for i 4:j, and let L = u L  I. Let X _ V, Z a set of Lo-terms, 
and 0 t (0 .%< i ~< r) pairwise disjoint sets of atomic Lrformulas such that each triple X, Z, Ol 
satisfies 1.1. 

Let Ol be the closure of Oi under ^,  and let • be the closure of U Oi under 
O ~  ~-~t~< r 

^,  v ,  ~ x, V x with x E X  (note the absence of the negation). Then we define the multiple 
substitution of an ( r+ l ) - tup le  (to, tl . . . . .  tr) of terms f i e Z  for a variable x e X  in a 
quantifier-free formula q~ e • as follows: ~o(x//to, ta . . . . .  tr) is obtained from rp by replacing 
any term t occurring in an atomic subformula 4' of ~0 in Oi by t (x/ / t3 for 0 ~ i ~< r. If T~ are 
theories in L~ and 

T~- U Ti, 
O~i~r 

then we say T satisfies the abstract approximation theorem (AAT) for 01 . . . . .  O r, if for all 

x A o,). T~l~i~rA 3 x 0 ~ 3  (1~l~, 

LEMMA 1.1 1. Let Tt be Skolem theories in L~ with respect to X,  Z,  0 t for  0 <~i <~ r, and 
assume 

T O ~ V x 0 v V x V y ((~ ^ O(x//y)) ~ x = y) 

./'or x, y ~ X,  ~ ~ 0o. Let 
T=_ T,, 

0 r 

and assume T has only infinite models and satisfies A A T  with respect to 01 . . . . .  0 r. 

(i) Let ipaO be quantifier-free, let q2 t be the set o f  atomic subformulas o f  q~ in 0 L, and let 
S t be a set o f  Skolem terms in L o for x, tP l. Then 

(*) T ~ 3 x ( ( p ) o  V ~o(x//to) V V . . .  V A (P(x//to, tt . . . . .  tr). 
tO~SO tl ~Sl trESr IOESO 

(ii) Assume in addition: 

(1) There are quantifier-free formulas v =, vRt~) for any atomic formula R(x 1 . . . . .  x,,) 
in L with x i e X ,  such that T~xl : f ix2~-~v= , T ~  ~ R ( x ) ~ , v  R. Moreover, 
v=, VR~x) contain no negation. 

(2) Modified substitution (x, t, t')~-~t(x//t') and the assignment of  sets Si o f  Skolem 
terms to pairs x, ~F~ with ~ ~_ O~ is recursive. 

Then there exists a recursive quantifier elimination procedure for  ~, T. 

PROOF. (i) Let  A be a model of T in which all the free variables of 3 x(~o) are interpreted. 
" ~ " :  Suppose A~q~ when x is interpreted by a e A .  If a = t  o for some toeSo,  we are 
done. Otherwise, for every 4' ~ ~o,  either A ~ -7 4' or A ~ V x4', and so for every to e S o, 
A ~ ~l, ~ 4'(x//to). For 1 ~< i ~< r, find ti ~ Si with 

A ~ A 4' *" 4'(x//t,). 
Then ~o~,, 

A ~ A ~ ( x / / t o ,  t l  . . . . .  tr)" 
to~So 

"~=": If A ~ q~(x//to) for some t o e S o, we are done. Otherwise, there exist t~ ~ Si (1 ~< i ~< r) 
such that 

A A q)(x//to, . . . . .  O .  
t o ~ o  
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By choice of S o, there exists t o e So such that for every ~b e qJo, A ~ 7 ~k(x//to) v V xlp. Let 
W'~ be the set of all ~k ~ qJi with A ~ ~(x//t~), and let #~ = A W~ for 1 ~< i ~< r. By the AAT 
there exists a e A such that, when x is interpreted by a, 

A ~  A 

So A ~ t p ( x / / t i ) - ~  for all ~he~,, 0~<i~<r, and so A~q~. 
(ii) We define a recursive map q~q~.o~ assigning to every quantifier-free formula q~ e (I) 

a quantifier-free formula ~.~, with T~--l~p'~tp.o,:q~ncg is obtained from q~ by 
interchanging ^ and v in q~ and replacing any atomic subformula R(t~ . . . . .  t,) of q~ by 
vR(xl//tl . . . . .  x,,//t.), and any equation t 1 = t 2 in cp by v=(xl//t ~, x2//t2). A quantifier 
elimination procedure for (I), T can now be described as follows: 

Input: ~p; Output: qf; ~a':= a negation-free formula equivalent to q); 
while ~p' contains a quantifier do 

begin find the first quantifier 2 x or V x in q¢, whose scope 0 is quantifier-free; 
if  this quantifier is existential 
then replace ~ x(~) in (p' by the corresponding right-hand side of (*) 
else begin compute ~h.~,; compute the corresponding right-hand side ~,' of (*) for 

x(~O,~); compute ~',~; replace V x(~) in ~p' by ~k~o~ end 
end 

end. 

Upper bounds for the complexity of the quantifier elimination procedure ¢pF-+cp' 
provided by 1.11 and a resulting decision procedure for ~, T can now be computed 
similar as for 1.5-1.10. Two additional complications occur: 

(1) Due to the double formation of formulas ~Pneg during the elimination of one 
universal quantifier, the number of atoms of the resulting formula is additionally 
increased by a constant factor determined by the maximum of all numbers 
atom(v=), atom(vR(x)). In the final outcome, this increase is absorbed in the double 
exponential growth of atom(~p') given by 1.6. 

(2) For each existential quantifier, (*) introduces an additional alternation of a 
disjunction and a conjunction. This leads to a doubling of the last parameter in the 
Berman complexity class, yielding STA(*, 2 c", 2n) instead of STA(*, 2 ~", n). 

We leave the details of the verification to the reader and state only the results required 
for section 4. 

THEOREM 1.12. Let L, T be as in 1.11(ii). Assume in addition: 

(1) Modified substitution (x, t, t')~-*t(x//t') can be performed in polynomial time. 
(2) For every pair x, ~Pi (~Pt c_ Ol) a set S i o f  Skolem terms can be computed in polynomial 

time such that rank(S/) is linear in rank(Tl). 
(3) For quantifier-free sentences (p s ~, "T  ~ q~" can be decided in polynomial time. 

Then: 

(i) There is a quantifier elimination procedure rp~-*q)' f o r  ~, T with 

length(~p') ~< 2**2**d*length(~o), TIMEqe(q~) ~< 2**2**d*length(~o) 

for some positive constant d. 
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(u) The decision problem for  ¢b, T is in the Berman complexity class ~ STA(* ,  c ~', 2n). 
c~.N 

In  particular, it can be solved in exponential space and double exponential time. 

2. Linear Problems in Fields and Ordered Fields 

We let L F = {0, t, + ,  - , . ,  - 1} be the elementary language of fields, and Lo~. = L F u  { < } 
the language of ordered fields. We treat ( )-1 as a total operation with the convention 
that 0-1 = 0. V is the set of variables for formulas in LF and Lo~. We fix an infinite subset 
X of V and a linear order -< of X. The variables in X will be denoted by x, x', xl, x2 . . . .  , 
and called linear variables. A term t of LF is linear if t is of the form a o + a l x ~ + . ,  . 
+ a , x ,  with x~ ~ X, x~-< xj for i < j ,  and a~ terms containing no linear variable. The rank of 
t is then defined as 

rank(t) = max(length(a/) : 0 ~< i ~< n). 

Deviating from the usual definition of addition, subtraction, multiplication and  
substitution for terms in LF, we define these operations on linear terms in such a way tha t  
linearity is preserved. Let 

I ! 
t = a o + a l x ~ +  . . .  +a,x , , ,  t' = ao' +a'xx'l+ . . .  +a,,,x,, 

be linear terms, and let c be a term containing no linear variable. Then 

- t = - a o + - a l x l  + . . . + - a , x , , ,  t + t '  = a o + a  1 "  "x'~ + . . . + am" x,,", 
where 

( x ' ;  . . . .  , x ; ' . }  = . . . . .  . . . . .  x ; , }  

ordered according to -<, and ao-"-(ao + a'o), 

t 
a~ if x~ = xt ¢ {xl, • . . ,  x',,}, 

a~ = a~ ifx~ = x ~ q ~ { x l , . . . , x , } ,  for 1 ~h<~m.  

k(a ,+a j )  if x',i = x~ = xj, 

C" t ----- t ' C  ---- c a  O + c a l x  1 + . . . + c a n x  n. 

Modified substitution for linear terms is defined as follows: 

t(x//t ')  = t if x q~ {xt . . . . .  x,}; 

with t(x://t') = bo + b~ x~ + . . .  + bmX2 

( x ' ; , . . . ,  x : , }  = ( ( x , . . . ,  . . . .  , 

ordered according to -4,, bo = ao + aja'o, 

I 
a~ if x~ = x~¢ {xl, • . . ,  x',,}, 

bh --~- aja~ if x~ = x'~¢ {xl ,  . . ., x ,},  for l <~ h <<. m. 

[.(a~+aja'k) if x~ = xi = x~,, 

Then the following properties are obvious: 

LEMMA 2.1. 
(i) r a n k ( -  t) = rank(t) + 1, 

(ii) rank(t  + t') ~< rank(t) + rank(t') + 3, 
(iii) rank (c. t) ~< length(c) + rank(t) + 1, 
(iv) rank( t (x / / t ' )  <<. 2rank(t) + rank(t') + 3, 
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(v) all these operations can be performed in polynomial time, 
(vi) rank(t) ~< length(t) ~< (rank(t)+ 1). IX(t)[, and so 1.3. holds 

We call a formula q~ in Lp(LoF) linear, if 

(i) every atomic subformula of q~ is of the form t = 0 (or t > 0) for a linear term t; 
(ii) every bound variable in q~ is linear. 

If cp is a quantifier-free linear formula, x is a linear variable and t' is a linear term, then 
we denote by q>(x//t') the formula obtained from cp by replacing any term t in q~ by t(x//t'). 
Then q>(x//t') is again linear, and in any field (ordered field) F, q~(x//t') is equivalent to the 
formula q~(x/t') obtained from q> by substituting t' for x in the usual manner, 

We now have the following result on linear elimination in fields of characteristic zero 
and ordered fields. 

THEOREM 2.2. Let T he the theory Tro of  fields of  characteristic 0 in Lr ,  or the theory Tot o f  
ordered.fields in Lot. There is a quantifier elimination procedure ~o ~--~p' for  linear formulas 
with respect to T such that 

length(~p') ~< 2**2**c*length(~o) and TIMEqe(~o ) ~< 2**2**c*length(q~) 

.fi>r some positive constant c. 

In the light of the general results 1.2, 1.6, 1.7, where Z is now the set of linear terms, 
• (0) is the set of (atomic) linear formulas, it suffices to prove the following facts. 

LEMMA 2.3. There exists a positive constant c and a natural number k such that for any 
finite set ~P o f  atomic linear formulas and any linear variable x, W, x has a set S of  linear 
Skolem terms with respect to T with the following properties: 

(i) ISl <~ c .  IVl k, 
(ii) rank(t) ~< c. rank(W) for any t ~ S, 

(iii) S can be constructed.from ~P, x in polynomial time. 

PROOF. By permuting summands, we may write ~p~W in the form ax+b<~)O where 
X (a )=~ ,  b is linear, x~X(b) .  So we may assume that W is of the form 
(ax+bt?.)O: (a, b)~I}, with linear terms b, x~X(b) ,  X (a )=(L  

CASE 1: Fields of  characteristic O. Since 

a = 0 ~ (ax+b = 0+-> b = 0), 

a ~ 0 -~ (ax + b = 0 ~ x = - b/a), 

it suffices by 1.4 to find a set o f  Skolem terms for {x = - b / a :  (a, b)El} .  We claim that 

S = { - b / a ,  - b / a +  1: (a, b )~ I }  

is such a set. This' is a consequence of  the following lemma. 

LEMMA 2.4. Let F be afield, C a finite subset o f F  and let cha r (F )=0  or cha r (F)>  IC]. 
Then {c + l : c~C} ~ C. 

PROOF. { c + I : c ~ C } ~ _ C  implies that for any c ~ C  there exist h<k<~]C] with 
c + h = c + k. So char(F) divides k -  h, and so 0 < char(F) ~< ]C]. 
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The proof of case 1 is now completed by the observation that ISI ~< 2]q~l, 

rank(t) ~< 10 max(rank(ax + b) : (a, b) e 1), 

and that  all terms in S are linear. 

CASE 2: Ordered fields. Since 

a ,~O~(ax  + b > O o  x~  -b /a ) ,  

it suffices by 1.4 to find a set o f  Skolem terms for  

{x -- - b/a, x ~ - b/a : (a, b) ~ I}. 

We  claim that 

S = { - b / a +  1, - b / a -  1 : (a, b) ~ I } u { ( - b ' / a ' - b / a ) / 2 :  (a, b), (a', b') el} 

is such a set. This follows from the following observation due to Ferrante & Rackoff  (1975): 

LEMMA 2.5. Let C be a finite subset of  an ordered field (or a 2-divisible ordered abelian 
group) F, and let d E F. Then there exists 

e~{e + 1, c - 1 :  caC}u{(c +c')/2: c, c' EC} 

such that for all c ~ C, d ~< c iff e ~< c. 

PROOF. Let C = {cl . . . . .  c,} with ca <~ c2 ~< • • • ~< c,,. If d = ct, pick e = c~; if d < c I, pick 
e = c l - - 1 ;  if d > c , ,  pick e = c , + l ;  i f c t < d < c i + 1 ,  pick d=(cl+ci+l) /2 .  

To complete the proof of 2.3, we notice that all terms in S are linear, IS[ ~< 3[I1 z, 

rank(t) ~< 10 max(rank(ax + b) : (a, b)e I) 
for t eS .  

THEOREM 2.6. The decision problem for linear sentences in the theory Tvo of  fields o f  
characteristic 0 and in theory Tvo o f  ordered fields is in the Berman complexity class 
u S T A ( * ,  2 on, n). In particular, it can be solved in exponential space and double exponential 
time. 

PROOF. By 1.8-1.10, it suffices to verify that the validity of an equation t = 0  and an 
inequality t > 0 for variable-free t can be tested in the field Q of rationals in polynomial 
time. For  this purpose, one evaluates t as a quotient m/n of integers in binary expansion, 
and observes that the number of digits required for m and n can be bounded by 
2 length(t). 

COROLLARY 2.7. There exists a positive constant c such that any linear sentence q9 that holds 
in some field of  characteristic O, also holds in any field o f  characteristic p with 
p > 2**2**c*length(~0). 

PROOF. Reduce ~0 equivalently in Tvo to a quantifier-free linear sentence qY. Then by 2.2, 
length(~o')~<2**2**c*length(q0, and by 2.4, the reduction holds in all fields of 
characteristic > length(~p'). By the proof of 2.6, the atomic subformulas t = 0 of ¢p' may be 
written in the form m/n = 0, where the number of binary digits required for m and n is 
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bounded by 
length(t) = rank(t) ~< rank(q¢). 

So by 1.6(ii), 
m, n ~ 2**rank(~0') ~ 2**2**d*length(q~) 

for some positive constant  d. So the truth-value of  m/n = 0 will be the same in all fields of  
characteristic 0 or characteristic >2**2**e'*length(~o) for  c'= max(c,  d). 

3. Linear Problems in Diseretdy Valued Fields 

A discretely valued field (F, v, F) is a field F with a Krull  valuation v: F ~ F u { c o } ,  
where the value group F has a smallest positive element 1 = 1 r. We treat discretely valued 
fields as one-sorted structures for  the language LDv F = LFU{~, div}, where ~ is a field 
constant  of value 1 r (i.e. a uniformising parameter)  and div is a strict linear divisibility 
relation, i.e. a div b iff va < vb (cf. Macintyre et al., 1983).t Accordingly, we define a linear 
formula in Lovr as a formula (p of Lovr such that  

(i) every atomic subformula of  ~p is of the form t = 0 or  t div t' with l inear terms t, t '; 
(ii) every bound  variable in (p is linear. 

LEMMA 3.1. The following hold in any valued field. 

(i) vd >~ 0 ~ (vx + vd < v(x + c) ~ o(cd) < v(x + c)), 

(ii) vd < 0 -~ (vx + vd < v(x + c) ~ vx + vd < vc), 

(iii) ~ vb < vb' if a = a' = 0, 
1 I v(b/a') < v(x + b'/a') if a = 0, a' ~ 0, 

v ( a x + b ) < v ( a ' x + b ' ) ~  " v(x,+,b/a)?v(b/a) ~ , , if a ~ O ,  a'=O, 

 (a/a (b/a < (b/a -b/a)), if a, a' # O, 
v(x+b/a)<v(a /a(b /a  -b /a) ) ,  if a, a' ~ 0 ,  va<va' .  

PROOF. (i) By the strong triangle inequality, vd >1 0 and vx + vd < v(x +c) implies vx = vc, 
and so v(cd)< v(x+c); conversely, this implies vc < v(x+c),  and so vx = vc, and so 
vx +vd < v(x +c). 

(ii) " - - , " :  Assume vx+vd>~ve. Then vx>vc ,  and  so v (x+c)=vc<~vx+vd ,  a 
contradict ion.  "+ - " :  If vx>>.vc, then v x + v d < v e = v ( x + c ) ;  if vx<vc ,  then 
vx + vd < vx = v(x + c). 

(iii) The  first three equivalences are obvious; for the last two, observe that  for a, a' ~ 0, 
v(ax + b) < v(a'x + b') is equivalent to 

v(x + b/a) + v(a/a') < v((x + b/a) + (b ' /a ' -  b/a)), 
and apply (i) and (ii). 

Next, let TDvep be the theory of discretely valued fields F with residue class field F~ of  
characteristic p (p zero or prime) in the language LDw. 

LEMMA 3.2. Let x be a linear variable, let 1 be a finite set of pairs (c, d) o f  linear terms, 
and put 

~P = {x+cd ivd ,  d d i v x + c :  (e, d)~l} .  

t The reason for taking this relation rather than va <~ vb as basic is technical: it guarantees that the relation is 
open in F 2 under the valuation topology. This will be useful in the next section, 
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Then 
S = { - c ,  d - c ,  r id-c ,  n ( c ' - c ) - c ,  n - i d - c ,  x -  l ( c ' - c ) - c ,  c - c ' - c " :  

(c, d), (c', d'), (c", d")e I} 

is a set o f  linear Skolem terms for u~, x with respect to TDvI~p, provided p = 0 or p > III. 

PROOF. Let  F be a model  of Torrp, a ~ F, and let all c, d with (c, d ) e  I be interpreted in F. 
We  are going to show that  for some a ' eS ,  

F ~  &(a) iff F ~ b ( a ' )  for all ~b(x)e~.  (*) 

Choose  (c o, do) ~ I such that  v(a + co) = max(v(a + c) : (c, d) ~ I). 

CASE 1. For all (c, d) e I, o (c -  Co) # v(a + Co). 

SUBCASE 1.1. There  is (c, d) e I with od <~ v(a + Co). Pick (cl, di)  e I with 

vdl = max(vd : (c, d)~ I, vd <<, v(a + Co)). 

SIJBSI.mCASE 1.1.1. There is no (c, d)~I  with vdi < v(C-Co) <<, v(a+co). Then we may  put 
a ' = d i - c  o if vd=v(a+co),  and a ' = n d i - c o ,  if vdi<v(a+co).  Then the triangle 
inequal i ty  guarantees that 

v(a+c)~vd iff v(a'+c)Xvd for all (c, d)eI .  

Sr_mSUBCASE 1.1.2. There exists (c2, d2)E I such that  

vdi < v(c2 - Co) = max(v(c - Co) : v(c - Co) < o(a + co) ). 

Then  we put a' = n(c 2 - C o ) - C  o and again use the triangle inequality. 

SLmCASE 1.2. v(a+co) < od for all (c, d)eI .  Pick (cl, d l ) e I  with 

vd i = min(vd : (c, d) e I). 

StmSUBCASE 1.2.1. There  is no (c, d ) e I  with v(a+Co)<~v(C-Co)<vdl. Then  we put  
a' =x-tdi-c o. 

SUBSUBCASE 1.2.2. There exists (c2, d2)el with 

v(a+Co) < v ( c2 -eo )  = min(o(e-Co) : (c, d) e I )  < vdl. 

Then  we put a ' = x - l ( c 2 - - C o ) - - C o  . Again, the triangle inequality proves (*) in both 
subsubcases. 

CASE 2. There exist (ci, dl )~J  ~-I such that for all (c, d)eJ ,  

v(a + Co) = o ( c -  Co). 

SUBCASE 2.1. a = --Co; then we put  a' = - c  o. 

SUBCASE 2.2. a #- - -c  o, and hence c ~ c o for all (c, d) e J .  Put  

J '  = {C-Co: (c, d)~J} 
and  not ice  that  0 :# J ' .  
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CLAIM. There exists (c2, d 2 ) ~ J  such that with e 2 = C2--C0, el = Cl --Co, 

v(e2 + e l - - e )  = ve 1 
for all e ~ J'. 

PROOF of the claim: If the claim fails, there exists a finite sequence et, e 2 . . . .  , e k of  
elements of J '  and 1 ~<j < k ~< IJ'l + 1 such that  ej = ek and v(el+el--e~+ 1) > re1 for  
1 ~< i ~< k. Letf~ = res(e~/el) ¢ 0 be the residues of eJe~ in the field Fo. T h e n f t +  1 =f~+~ for 
1 ~< i ~< k and f j  =fk" SO f j +  (k-- j ) l  =f~, and so ( k - j ) l  = 0, and so p = char(Fo) divides 
( k - j ) ,  and so 0 ¢ p ~< III, a contradiction. 

We now put 
a' = - (e 2 -1- e ~ --1- Co) = - (c a q- c 1 -- Co). 

Then for every (c, d) ~ J, 

v(a' + c) = v((c - Co)- e2 - el) = re1 = v(a + c), 

and for (c, d)¢ J, v(a' + c) --- v(a + c) by the triangle inequality. 

This completes the proof  of lemma 3.2. 

We can now prove a counterpar t  to theorem 2.2. 

THEOREM 3.3. There is a quantifier elimination procedure ¢p~--~q~' for linear formulas in LDvv 
with respect to TDvFo such that 

length(~o') ~ 2**2**c*length(cp), TIME~e(q0 ~< 2**2**c*length(cp) 

for  some positive constant c. Moreover, the equivalence tp,~,qg' holds in Tov~p for any 
p > 2**2**c*length(q~). 

PROOF. By 1.2, 1.6, 1.7, it suffices to verify the hypothesis of lemma 2.3 for the language 
LDvF and the theory TvvFo. Since t = 0 is equivalent to -7 (t div 0), we may assume tha t  tp 
consists entirely of  linear atomic formulas of the form ax + b div a'x + b', say 

tp = {ax + b div a'x + b' : (a, b, a', b') ~ I}. 

By 1.4 and 3.1(iii), it suffices to consider instead W', x with 

W' = {x + c div d, d div x + c : (c, c) s I'} 
with 

I' = {(b'/a', b/a'), (b/a, b'/a), ((b' /a'-b/a),  a/a'(b' /a'-b/a)),  
(b/a, a'/a(b'/a' - b/a)) : (a, b, a', b') ~ I}. 

By 3.2, S can now be taken as 

{-c,  d-c ,  ~d-c,  ~(c ' -c)-c ,  ~-l d-c ,  ~-l(c'--c)-c, c - c ' - c "  : 
(c, d), (c', d'), (c", d") e 1'}. 

Notice that 1' consists entirely of pairs of linear terms; so all the terms in S are linear. 
Furthermore,  

ISI <~ 41I'1 + 21I'12 + 11'13 ~< 71I'13 ~< 281113 -- 287t'13; for t e S, 

rank(t)  ~< 10 max(rank(c),  rank(d) : (c, d) ~ I ') ~< 100 rank(tP). 

S is obviously constructible in polynomial  time. The  last s tatement of the theorem follows 
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from the fact that in the equivalence proof for q~ and ~p', 1emma 3.2 is applied to sets I of 
pairs of terms with 

III <~ length(tp') ~< 2**2**c*length(q~). 

THEOREM 3.4. The decision problem for linear sentences in the theory Tovm is in the Berman 
complexity class uSTA(*,  2 ~e, n). In particular, it can be solved in exponential space and 
double exponential time. 

PROOF. Any model F of Tov~.o contains the rational function field Q(n), and for 
f ( X )  = )2f~X~e Q[X],  the valuation v induced by F on (~(~) is determined by 

vf(~) = kl r i f f f  o = . . .  = f k - t  = 0 # A .  

Since any variable-free term t in LDw can be rewritten as a rational function term 
f(~)/g(~) with deg(f), deg(9)~< length(t), equations t = 0 and relations t divt '  can be 
decided in time polynomial in the length of t and t'. By 1.8-1.10, this proves the theorem. 

COROLLARY 3.5. There is a positive constant c, such that for any linear sentence q~ in LgvF, 
¢p has the same truth-value in any model of T~vvp with p = 0 or p > 2**2**c*length(cp). 

PROOF. Similar to the proof of 2.7. 

Next, we consider discretely valued fields with finite residue fields. 
Let LDvF~ be L o w  extended by a constant ~. For k a positive integer, p prime, we let 

TDvFp.k be the theory of all models F of TDVFp in the language LDvF~, whose residue field 
Fv has pk elements and is obtained from the prime field ~:p by adjunction of ~. 
Furthermore, we assume that for each (p, k), the irreducible polynomial f~(X) of ~ is 
specified with coefficients in {0 . . . . .  p -  1}. In particular for k = 1, we assume c~ = 1. 

THEOREM 3.6. Let p, k be fixed. There is a quantifier elimination procedure q~w-~9' for linear 
formulas in Love~ with respect to Tovrp, k such that 

length(~o') ~< 2**2**c'length(q)), TIMEqe(q~ ) ~< 2**2**c*length(q~) 

for some positive constant c. 

PROOF. For the proof, it suffices to replace the application of lemma 3.2 in the proof of 3.3 
by the following lemma. 

LEMMA 3.7. Under the hypothesis of 3.2, 

S = {-c ,  d-c,  ~d-e, ~(c'-c)-c, ~- ld-e ,  ~-l(c '-c)-c,  g(~)(c'-c)-c: 
(c, d), (c', d')e I, g(X) 

polynomial of degree <k with coefficients in {0 . . . .  , p -1}}  is a set of linear Skolem terms 
for W, x with respect to TDVFp, k. 

The proof is the same as for 3.2, except in subcase 2.2: There is (cl, d l ) eJ  c_ I such that 
for all (c, d)e J, 

oo > v(a+co) ~ v(C-Co) = max(v(a+c): (c, d)~I).  
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Then v((a+Co)/(C-Co) ) = O, and so there is a polynomial #(X) of degree <k with 
coefficients in {0 . . . . .  p -  1} such that 

v(('a + Co) / (c -  Co) - g(~)) > O, 
and so 

v(a + c o - ( c -  co)g(c0) > v(a + co). 

So with a' = ( c -  c0)#(e)-  Co, we find that v(a + c) ~ vd iff v(a' + c) .~ yd. 

Concerning the decision of linear sentences in models of TDvFp.k, the situation is 
somewhat more intricate than in the characteristic zero case (cf. Weispfenning, 1985). 

THEOREM 3.8. Let F be a model of TOVFp. k such that for all polynomials f (X,  Y), 
#(X, Y) ~ Z[X,  Y] the relation f(n,  c~) div #(n, c 0 can be decided in polynomial time. Then 
the decision problem for linear sentences in F is in the Berman complexity class 
uSTA(* ,  2 c", n), and hence solvable in exponential space and double exponential time. 

PROOF. It suffices to remark that any variable-free term t in LI~VF can be rewritten in 
polynomial time as a rational function term f(n,  a)/g(n, a) with integer coefficients. The 
result follows now from the hypothesis and t.10. 

The hypothesis of 3.8 is satisfied, e.g. in the following cases: 

3.9 (i) char(F) = 0, ~ = 1, n = p; in particular for the p-adic valuation on ~ .  
(ii) char(F) = p and the residue field Fv is embedded in F. Then vf(n, ~) is determined as 

the index of the lowest non-vanishing coefficient off(n,  c~), when regarded as polynomial 
in n; in particular this is the case for any rational function field or Laurent series field over 
a finite field. 

4. Linear Problems in Multiordered, Multivalued Fields 

In this section, we consider fields with a finite number of independent orderings and 
discrete valuations. We describe such fields as structures for a language L* formed as 
follows: L* = L(Ord, Val) is obtained from the language LF of fields by adding a finite set 
Ord of binary relation symbols <, <', <1 . . . .  for orders, and finite families {divv : vsVal} 
of binary relation symbols for strict linear divisibilities and {n,,eo: r e v a l }  of field 
constants. The case that Ord or Val is empty is admitted. 

Let us call a theory T in L* distinguished if for any model F of T: 

(i) F is a field of characteristic zero; 
(ii) every < s Ord is a field ordering of F; 

(iii) for every reVal ,  divv is the strict linear divisibility associated with a discrete 
valuation v of F with uniformising parameter ~,; 

(iv) for every reVal ,  either char(Fo)= 0 and c~o = 1 or Fo = D:p(~v) is finite and r 
specifies p and an irreducible polynomial f~. for c~v over Fp; moreover, this decision 
is made uniformly for all models of T (but may vary with v e Val). 

If F is a model of a distinguished theory T in L*, we let v<, % be the topologies 
associated with the orders < e  Ord and the valuations v e Val. We call these topologies 
independent if for every family 

{U<: < ~ Ord}u{Uv : reVal}  
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of non-empty subsets of F such that U< is ¢<-open and Uo is %-open, it follows that 

is non-empty. By Stone's approximation theorem for V-topologies on fields (see 
Macintyre et al., 1983), this is the case iff the topologies {~< : < s Ord}~{% : v~Val} are 
pairwise different. The independence of these topologies can be expressed by the following 
(linear) sentence IND in L*: Let 

Ord = {<1 . . . . .  <.}, 

Then I N D  is the sentence 

V x l . . . x ~ + , , V y l . . . y , + , , (  A y , > 0 ^  
l ~ i ~ n  

Val = {vl . . . . .  v,,}. 

A y~ # 0) 
n<l<~n+m 

--* 3 z (  .<A xi--yl< z < &+y~ ^ A y~divo~_,,z-x O. 
l ~t<~n i i n<t<~n+m 

Next, we describe how distinguished theories T in L* fit into the framework of multiple 
Skolem terms and the abstract approximation theorem presented in section 1 (last part): 
Lo is the language of fields extended by the constants r~ v, a,, for v ~ Val. If Ord and Val are 
as above, then L i =  L o u { < }  for 1 <<.i<~n, and Ll=Loo{div,,,} for n<i<..n+m. X is an 

infinite subset of V and Z is the set of linear terms (with respect to X) in Lo. Oo is the set 
of all linear equations t = 0 in Lo; for 1 ~ f <~ n, 0t is the set of all linear inequalities t > 0 

in L~, and for n < i ~ n+m, O~ is the set of all strict divisibilities t divvt_,,t' between linear 
terms in Lt, To is the theory Tvo in Lo; for 1 ~< i ~< n, T t is Toy in L~; for n < i ~< n+ m, Tl is 
TDvvo or Tovl.'t,,k in L~. To complete the picture, we now show: 

L~MMA 4.1. Let T be a distinguished theory in L*. Then T ~  1 N D ~ A A T ,  where AAT is 
the abstract approximation theorem of section 1. 

PRoov. " ~ " :  Let F ~ T ,  Ot(x)a'O~, xaX .  Let the free variables of 0 t, except x, be 
interpreted in F and let ~9[= { a E F : F ~ t ( a ) } # O .  Observe that terms in 0~(x) are 
interpreted as linear functions in Fix], and hence are continuous (with respect to all order 
and valuation topologies) at any point in F. So (by the way divo, are defined) all ¢p[ are 
open in their respective topology ~. Hence, by INT their intersection is non-empty, which 
proves AAT. 

" ~ " :  Suppose F ~ T and A~ are non-empty subsets of F that are open in the topology 
z~ induced by < for v~_, for 1 ~< i~< n+  m. Pick a~ ~ A~ and a basic z~-open neighbourhood 

U~ of a~ (i.e. an interval or a circle) with U~ _ A~. Then there exist formulas ~i(x) ~ 0~ and an 
interpretation of the free variables of ~ except x in F, such that Ut = ~ .  Since 

F~ A 3 x~,(x), 
l <~i<~n+rn 

AAT entails 

and so 

x A 0 O, F ~  3 (1<.1<~,,+,,, 

1 <~I<~n+m 

We are now in a position to apply theorem 1.12. 
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THEOREM 4.2. Let T be a distinguished theory in L* satisfying IND. Suppose that for every 
v~ Val, for which Fo is finite in any model F of  T, the relations f(~v, cc~) divv 9(r~, cQ with 
f ( X ,  Y), #(X, Y)~ Z[X, Y] are decidable in polynomial time. Then the following hold: 

(i) There is a quantifier elimination procedure cpF--+qg' for linear formulas in L* 
with respect to T such that length(q¢)~<2**2**c*length(tp), TIME~e(qo ) 
~< 2**2**c*length(~o) for some positive constant c. 

(ii) The decision problem for linear sentences in 12 with respect to T is in the Berman 
complexity class uSTA(*,  2 c", 2n), and hence solvable in exponential space and 
double exponential time. 

For the case Ord = 9, we have a characteristic transfer principle similar to 2.7 and 3.5: 

THEOREM 4.3. Let L* = L(~, Val). Then there exists a positive constant c such that for every 
linear sentence q9 in L*, tp has the same truth-value in all fields F with independent discrete 
valuations v~ Val such that char(Fv)= 0 or char(Fv)> 2**2**c*length(q~). 

PROOF. 1.6(ii) remains valid for the quantifier elimination procedure of 4.2(i), when T 
specifies char(Fv) = 0 for all v~Val. The argument is now as for 2.7 and 3.5. 

5. Lower Complexity Bounds 

In the previous sections, we have shown that for various classes of fields with additional 
structure: 

5.1 Quantifier elimination for linear formulas can be performed in double exponential 
space and time. 

5.2 Transfer of linear statements ¢p from fields of characteristic zero to fields of prime 
characteristic p works for p at least double exponential in length(~o). 

5.3 The decision problem for linear sentences is in the Berman complexity class 
uSTA(*,  2 ¢", n) or uSTA(*,  2 ~", 2n). 

The purpose of this section is to show that these upper complexity bounds are tight in 
the following sense: 

5.1' Any quantifier elimination procedure for linear formulas in any of the fields 
considered so far requires double exponential space on a set of linear formulas of 
unbounded length in Lr. 

5.2' There is a sequence p, of linear sentences of  unbounded length in LF and a positive 
constant c such that p, holds in any field of characteristic zero, but fails in fields of 
prime characteristic < 2**2**c*length(~0). 

5.3' The decision problem for linear sentences in fields of characteristic zero is 
uSTA(*,  2 c", n)--hard under polynomial time reductions. (So, for linear problems 
in multiordered, multivalued fields there remains a potential gap between upper 
and lower complexity bounds.) 

The last statement 5.3' was essentially proved by Berman (1977, t980) by analysing 
Fischer & Rabin (1974). He shows that uSTA(*,  2 c", n) is polynomial-time reducible to 
the decision problem for the theory of reals in the language {0, 1, +, - ,  < }. His proof-- 
as well as that of Fischer & Rabin--makes no essential use of the order relation, and 
hence holds for the language LG1 = {0, 1, +, --}. In this language, the theory of reals can 
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be completely axiomatised by the axioms for torsion-free, divisible, abelian groups and 
the axiom 0 # 1. This yields the following version of Berman's result which covers 5.3': 

THEOREM 5.4. Let G be a torsion-free, divisible, abelian group with distinguished element 
1 ~ O. G may carry additional structure for a language L extending LGx. Then the decision 
problem for elementary sentences in the L-theory of  G is wSTA(*, 2 ~", n)--hard under 
polynomial time reductions. 

The proof of 5.1' and 5.2' also employs a construction of Fischer & Rabin (1974, 
thin. 8, cor. 9) in a somewhat extended setting. 

LEMMA 5.5 (Fischer-Rabin). There is a positive constant c and a sequence #,(x) of 
L~l-formulas with one free variable x such that: 

(i) In any abelian group G, where 1 is an element of infinite order, 

#~ = {aeG:  G ~ #,,(a)} = {0, 1, 2 . . . .  , 2" '2"*n- -1} ,  

(ii) In any abelian group G with distinguished element 1, 

{0, 1, 2 , . . . ,  2 " ' 2 ' * n -  1} _ #,,~. 

(iii) length(#,,+ 1) ~< c(n + 1). 

PROOF. Fischer & Rabin define a sequence of L~t-formulas M,(x, y, z) such that in the 
field of rea ls - -and in fact in any abelian group G with a distinguished element 1 of infinite 
order, G ~ M,,(a, b, c) iff a e {0, 1 . . . . .  2 " ' 2 ' * n - 1 }  and a. b = c (when a is regarded as a 
natural number). Moreover, length(M,+l)~< e ( n + l )  for a suitable constant c, and M, 
can be equivalently expressed by a positive existential formula. So the formulas 
#,(x) = M,(x, 0, 0) satisfy the lemma. 

We prove 5.2' in the following more general form: 

THEOREM 5.6. There is a sequence p, of  sentences of  unbounded length in L~I and a positive 
constant c such that p,, holds in any abelian group, where 1 is an element of infinite order, 
and p, fails in any abelian group, where 1 has order ~ 2**2**c*length (p,,) for n > O. 

PROOF. Let p,, be the sentence V x (# , ( x )~  x + 1 # 0). Then for some constant c > 0, 5.5(iii) 
shows that length (P,+I) ~< c(n+ 1). By 5.5(i), p, holds if 1 has infinite order. If 

m = order(l) ~< 2" '2 '*c - l l eng th (p ,+  1) ~< 2 " ' 2 ' * ( n +  1), 

then by 5.500, G ~ #,+ l ( m -  1), and so G ~ 7 p,+ 1. 

Finally, 5.1' will be a consequence of the following very general, but somewhat 
technical result 5.7. As in section 4, we call a finite, non-empty set Top of topologies z on 
a set G independent, if whenever °k' is a set of non-empty subsets of G, then c~q/# 0, 
provided there is an injective map q / ~ T o p ,  U~--~zv such that U is zv-open. For A _ G, 
z ~Top,  3,(A) = el~(A) c~ el,(G\A) denotes the z-boundary of A. 

THEOREM 5.7. Let G be an abelian group with distinguished element 1 of  infinite order. G may 
carry additional structure for a language L extending LGr Let Top be a finite independent 
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set of T~-topologies on G, such that ]br any zeTop ,  no a~G is z-isolated. Assume, 
furthermore, that there is a positive constant d and a map ~k(x)~+% assigning to any atomic 
L-formula O(x) in one variable x a topology % ~ Top such that [6,(Oa) I ~< d '  length(0). Let c 
and {#,,(x)} be as in lemma 5.5. Then for any sequence {er,(x)} of  quantifier-free L-formulas 
with G ~ #, ~ ~,,, we have d. length(a,) >t. 2 " 2 ' * c -  qength(#,,) for positive n. 

PROOF. By 5.5, we know that # ~ ° = { 0 , 1 , . . . , 2 " 2 " * n - 1 } ,  and that length(#,+~) 
~< c. (n + 1) for some positive constant c. So it suffices to prove the following claim: 

CLAIM 5.8. Let ~r(x) be a quantifier.free L-formula in one variable x, and let • be the set of 
all atomic subformulas of ~r. l f  a ~ is finite, then 

Assuming the claim, we argue as follows: If G ~ #,, ~ cr for a quantifier-free or, then 

{0 . . . . .  2 " 2 ' * n - ! }  = #~ = ¢r G _c vo{6,~,(OG) : OeV} ,  
and so 

2" ' 2 "*c -  qength(#,,+ ,) ~ 2"2"*(n  + 1) ~< £ {la,,,(~,a)l : ~ eud} 

~< d. Y.(length(O) : ~, e ~)  = d. length(er). 

PROOF of the claim. Assume for a contradiction that ~ is finite 

Then aEint, O/fi)uint~, (-7 ~po) for every Oe~F. By the hypothesis on Top, we find %-open 
sets U,~ with" U~, c_ ( (7) i})o U~,~ao _- {a}. Let V,~, -- ~ {U,,. : %, = %}. Then V~mer a = {a}, 
Vt~ ~ ((7)~)  ° and V,~, ¢ V,/implies % ~ x~.. Since a is not %-isolated, we find for each V~ a 
non-empty %-open subset V~', with a ~ V,;',. Since Top is independent, there exists b ~ c~ { V~}. 

G G t l  But then b ~ ~¢, iff a e qJ for all ~ ~ t .  Consequently, b ~ er a, since a ~ a °, and so 

b~GGC~ & {V,;} _c tract ~ {U,,\{a}} = O. 

This completes the proof of theorem 5.7. 

VERIFICATION of 5.1' by means of theorem 5.7: 

Notice to begin with at any Lv-term t(x) in one variable can be rewritten as a rational 
function term f(x)/g(x) with integer coefficients and degf ,  deg g ~< length(t). 

If G is a field of characteristic zero, we may take Top  = {z}, where z is the cofmite 
topology on G, and d = 2. This gives us a new proof of the fact (see Heintz, 1983) that no 
algebraically closed field admits quantifier elimination in less than double exponential 
space, for the characteristic zero case. 

If G is an ordered field, we take T o p =  {z<}, where z< is the order topology, and 
observe that 6,,(t(x) > O) ~ c (t(x) --- 0) a. This shows in particular that no real closed field 
admits quantifier elimination in less than double exponential space. 

If G is a valued field, regarded as structure for a sublanguage of LD VF, possibly with 
additional constants, then we take Top = {%} with the valuation topology %, and observe 
that 

~ ( t ( x )  div t'(x)) 6 c_ (t(x) = 0)~u (t'(x) = O) G. 
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So we may take d = 4. The same argument is valid for languages including in addition nth 
roo t  predicates l,V,(x)~3 z(zn=x) ,  provided G satisfies Hensel's lemma. For Hensel's 
1emma guarantees that ¢5~(W,(t(x)) ~ ~_ (t(x) = 0) ~. So none of the following fields admits 
quantifier elimination in its natural language (see Macintyre et al., 1983; Weispfenning, 
1985) in less than double exponential space: Algebraically closed valued fields of 
characteristic zero, p-adic fields, fields of Laurent series F((t)) over a real closed or 
algebraically closed field F of characteristic zero. 

Finally, if G is a field with finitely many orderings < E Ord and finitely many valuations 
v ~ Val inducing different topologies on G, we take 

Top = {z<: <~Ord}w{%:  reVal} 
and argue as before. 

6. Linear Problems of Bounded Dimension or Bounded Quantifier Alternation 

We have defined the concept of a linear problem very broadly; accordingly, the upper 
and lower bounds on the complexity of these problems have turned out to be quite high. 
So it is natural to look for more restricted classes of linear problems that are still 
comprehensive enough for applications but computationally less complex. 

Recall from 1.5 and 1.6 that the number of quantifiers quant(q~) occurring in a linear 
formula qJ is the most decisive parameter for the computational complexity of ~0. Since 
quant(~o) measures the number of essential variables of the problem q~, we refer to 
quant(q~) as the dimension of q~. A first obvious restriction on linear problems is thus to 
bound  the dimension q of the problems considered. This has the drastic effect that all 
problems considered so far become solvable in polynomial time. More precisely, we have 
the following result. 

THEOREM 6.1. Let T be any of  the theories of  fields considered in sections 2, 3, 4 and let q be 
a f i xed  non-negative integer. Then the following hold: 

(i) There is a quantifier elimination procedure ¢p ~ qg' for linear formulas o f  dimension 
q with respect to T such that 

length(q~') <~ c*(length(~o))k and TIME~(qg) <~ c*(length(qg)) k 

f o r  some constants c, k ~ ~. 
(ii) The  decision problem for linear sentences o f  dimension <<. q in the theory T is solvable 

in polynomial time. 

PROOF. The upper bounds in sections 2-4 are all based on the inequalities in 1.6, in 
particular the very generous bound in 1.6(iii) on the increase of length of a formula during 
quantifier elimination. Using the tighter inequality 1.5(iii) together with the uniform 
bound  quant(q0 ~< q, we immediately obtain length(~o')~< c*(length(q~)) k for some 
constants c , k ~ .  This bound applies to the quantifier elimination by multiple 
substitutions of Skolem terms in t.12 as well, and thus proves (i). (ii) follows from (i) and 
the fact that for all theories considered, quantifier-free linear sentences can be decided in 
polynomial  time. 

For  some applications, e.g. in computational geometry, a uniform bound on the 
dimension may be felt to be too restrictive. Consider, e.g. the following problem from 
robotics: 
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Input: n, k e N, a (not necessarily convex) polyhedron P in N" with distinguished point 
p e P, a polyhedral environment U of P in R n, a finite set D of vectors (directions) 
in R" and a goal vector g ~ N~. 

Question: Does there exist a sequence of k translations of P along directions in D moving 
P into a position, where p coincides with g without collision with U? 

The problem can be expressed by a linear formula q~ in Loe of the form 
3 x 1 . . .  ~ xk V Yl • • • V y,+ 1~, where ~0 is quantifier-free. So it is not sensible to bound k and 
hence quant(~p) in advance; on the other hand, ~0 will always contain only two blocks 
of quantifiers 3 x l . . .  3 xk and ¥ y ~ . . .  V Yn+t. A similar observation can be made with 
other problems from computational geometry. (In fact, no human being is likely to 
comprehend a linear sentence with, say, 10 alternating blocks of quantifiers, unless 
quantifiers can be "hidden" in defined concepts, for which a "higher level" intuition is 
available.) This motivates the study of linear formulas with a bounded number of 
alternating quantifier blocks. 

A linear formula cp is prenex if it is of the form Q1 xl  . . .  Q,x,~b~ where Q~ are 
quantifiers 3, V and ~b is quantifer-free. By collecting adjacent quantifiers of the same kind 
into blocks, we may write q~ in the form Qlxt  . .  • Q,x,~9, where each Q~x~ is a block o f  
quantifiers ~ x h . . .  3x~,,, or V xil.. .Vxlb~. We let qb~(~,,b) be the set of all linear 
sentences ~0 in the language considered such that cO is prenex with at most a blocks of 
quantifiers (each comprising at most b single quantifiers). For formulas in q%, the upper 
complexity bounds derived in sections 2 and 3 can then be improved as follows. 

THEOREM 6.2. Let T be any o f  the theories considered in sections 2 and 3, and let 
O < a , b ~ N .  

(i) There is a quantifier elimination procedure ~o ~-* q)' for  formulas q) e ~°. b with respect 
to T such that 

length(q0') ~< length(~o) **(a*(c*b)**a) 
and 

TIMEq~(~0) ~ length(o) **(a*(c*b)**a) 

for some constant c ~ N. 
(ii) Linear sentences q) ~ ~,. b can be decided in T in 

TIMEd~(~0) ~< length(o) **(a*(c*b)**a) 

for some constant c ~ ~.  

PROOF. Since quantifier-free linear sentences can be decided in T in polynomial time, (ii) is 
an immediate consequence of (i). To prove (i), we use an observation made by Reddy & 
Loveland (1978) for Presburger arithmetic: In all cases considered, the elimination of an 
existential quantifier is achieved via the equivalence 

V q (xllt) 
t ~ S  

established in 1.2, where S = S(x, q~) is a set of Skolem terms for x and the set Atom(o) of 
atomic subformulas of q). Let now y be a second linear variable, 

q,, = ~o(x/It), ~o' = V q't. 
t ~ S  

Then we may replace the equivalence used so far 

t '  E,.q ~ 
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where S' -= S(y, cO'), by the much more economical equivalence 

y 3 xq, yq,' V yq , V V 
t eS  t e S  t" eSt 

where St = S(y, rp,). The same applies to an arbitrary block of existential or universal 
quantifiers. 

Suppose now to e~, .  b and (¢' is obtained from (p by quantifier elimination in T 
employing the modified equivalence described above. Using the notation of 1.5, we then 
get the following bounds. Let 

g~°)(n, b) = n, 
Then 

and 

Specialising g and h as in 1.6, this yields 

atom(qo') ~< atom(q~) (kb+ t)- 

g~2 "+ 1)(n, b) = (g(g~")(n, b))) b. g(2")(n, b). 

atom(~o') ~< g(2")(atom(to), b) 

length(qY) < c"]X(q~)l-gt2")(length(to), b). ht1"'b)(length(q~)). 

and length(t0' ) ~< length(to) "(eb)" 

for some constant c e N. 

REMARK. This proof does not work for the theories T of multivaluedo multiordered fields 
considered in section 4, since here an existential quantifer is eliminated using a 
disjunction of conjunctions in place of a simple disjunction. 

In Ffirer (1982, theorem 5), is proved a lower bound for the decision of sentences of 
bounded quantifier alternation concerning real addition. His proof is valid for all the 
theories considered in sections 2-4: 

THEOREM 6.3 (Filter). Let T be any of  the theories considered in sections 2-4, and let a e N. 
There exists a positive constant c such that q)e tba cannot be decided in T in 

NTIMEae¢(q) ) ~< (length((p)/a)**Lc. a]. 

A lower space bound for quantifier elimination on ~,  can be obtained by the following 
variant of 5.5, which results from Ffirer's modification of the Fischer-Rabin trick (Ffirer, 
1982, theorem 1]. 

LEMMA 6.3. For all 0 < n, a e ~ there is a LaI-formula #.,.(x) in 02._ a such that: 

(i) In any abelian group G, where 1 is an element of  infinite order, 

{0, 1, 2, 2**n**a}. 

(ii) length(#.,.) ~< c(a. n. log n+ 1) for some positive constant c. 

From 6.3(ii) we get n >~ c'*(length(p.,.)/a)**(1-6) for some c '>  0 and arbitrary 6 > 0, 
As a consequence, theorem 5,7 holds with #. replaced by #,,,. and the lower bound 
2**2**e-llength(#.) by 2**(e'(length(p.,.)/a))**(a(1-6)). This yields the following 
variant of 5.1': 

THEOREM 6.4. Let 0 < aeN and let T be any of the theories considered in sections 2-4. Then 
there is a set M o f  formulas of unbounded length in ~P2a-1 and a positive constant c such 
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that  any quantifier elimination procedure q~ ~-* q¢ on M requires space 

length(tp') t> 2**(c*length(tp) /a)**(a*(1-  5)) 

f o r  arbitrary t5 > O. 

It  is well k n o w n  (see yon  zur  Ga then  & Sieveking,  1976) tha t  exis tent ial  l inea r  
sentences can be decided in the theory ToF of o rde red  fields in non -de t e rmin i s t i c  
p o l y n o m i a l  t ime. A use of  the ap p rox ima t ion  theorem shows that  this fact  holds  for  
mu l t i o rde r ed  fields as well. Is  the cor responding  s ta tement  true for the theor ies  of  va lued  
fields considered in sect ion 3? 
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