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Abstract 

Nowadays, one of the most changeling points in statistics is the analysis of high dimensional data. In such cases, it is commonly 
assumed that the dimensionality of the data is only artificially high: although each data point is described by thousands of 
features, it is assumed that it can be modeled as a function of only a few underlying parameters. Formally, it is assumed that the 
data points are samples from a low-dimensional manifold embedded in a high-dimensional space. 
In this paper, we discuss a recently proposed method, known as Maximum Entropy Unfolding (MEU), for learning non-linear 
structures that characterize high dimensional data.  
This method represents a new perspective on spectral dimensionality reduction and, joined with the theory of Gaussian Markov 
random fields, provides a unifying probabilistic approach to spectral dimensionality reduction techniques. Parameter estimation 
as well as approaches to learning the structure of the GMRF are discussed 
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1. Introduction 

The aim of statistical methods for dimensionality reduction (DR) is to detect and discover low dimensional 
structures in high dimensional data. Many high-dimensional data in real-world applications can be modeled as data 
points lying close to a low-dimensional nonlinear manifold. The key observation is that, even if the dimension of the 
embedding spaces is very high, the intrinsic dimensionality of the data points could be rather limited. Traditional DR 
techniques, such as principal component analysis and multidimensional scaling, usually work well when the data 
points lie close to a linear (affine) subspace in the input space. They cannot, in general, discover nonlinear structures 
embedded in the set of data points. 

Different methods have been proposed in literature for nonlinear dimensionality reduction1. 
In this paper we discuss a spectral nonlinear approach in the framework of Maximum Entropy Unfolding 

(MEU)2. It is shown that a low-dimensional representation of the data can be achieved through a spectral 
decomposition of the precision matrix of an Intrinsic Gaussian Markov random field (GMRF), which represents an 
important class of spatial models3. 

In general, the correlation structure of a GMRF model is hard to determine (except numerically), but the inverse 
correlations can be directly specified. On a lattice, this gives most, but not all, elements of the inverse dispersion 
matrix which is required for Gaussian maximum likelihood estimation of the proposed model. The Markov property 
of a GMRF makes it possible to utilize numerical methods for sparse matrices to construct fast algorithms for 
sampling and evaluation of the likelihood. Based on the theory of graphical models, we discuss both parameter 
estimation and possible approaches to retrieve the underlying structure (graph) of a GMRF.  

The paper is organized as follows. Section 2 introduces the dimensionality reduction problem, while Section 3 
provides details on MEU. In Section 4 we discuss parameter estimation based on Maximum Pseudolikelihood which, 
resulting in a least square estimator, favours the use of algorithms, such as Elastic Net and Lasso, to learn the graph 
structure of the Markov random field. Finally, Section 5 concludes the paper by discussing a Bayesian approach to 
parameter estimation. 

 

2. The Manifold learning problem 

Dimensionality reduction is the transformation of high-dimensional data into a meaningful representation of 
reduced dimensionality. Ideally, the reduced representation should have a dimensionality that corresponds to the 
intrinsic dimensionality of the data, defined as the minimum number of parameters needed to account for the 
observed properties of the data4. 

Specifically, let  be a  data matrix of input coordinates consisting in  data-vectors, 
, with . We further assume that the data matrix has intrinsic dimensionality , with 

. 
In this context, the aim of dimensionality reduction methods is that of finding a  matrix of the 

coordinates in the reduced space, or reconstructed embedding coordinate matrix,  with ,
while retaining the geometry of the data as much as possible. The assumption that the observed data have intrinsic 
dimensionality , implies that the data points lie on (or near) a manifold , with dimensionality , that is 
embedded in the -dimensional input space . To retrieve a faithful low dimensional representation of the data, 
which accounts for their intrinsic geometry, it is, then, important to determine the manifold metric. 

Formally, the dimensionality reduction problem can be stated as follows: find a mapping , 
where  is an affine space, called feature space of dimension , such that the reconstructed embedding 
coordinates  represent the metric structure in  well. In other words, given points 
that lie on a -dimensional manifold  that can be described by a single coordinate chart , find 

, where 5.
Solving this problem is referred to as manifold learning, since we try to learn the manifold structure starting from 

a sample of data points. Hence, assuming the map  to be non-linear allows capturing the nonlinearity of the 
underlying structure. 
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3. Maximum entropy unfolding 

In recent years, several spectral nonlinear methods have been developed to address the manifold learning 
problem, including Isomap6, Locally Linear Embedding7, Laplacian eigenmaps8, Kernel Principal Component 
Analysis9 and Maximum Variance Unfolding10. 

 Specifically, the spectral approach to dimensionality reduction involves the eigendecomposition of a  
similarity matrix, also know as the Gram matrix, whose principal eigenvectors are extracted in order to retrieve a 
lower dimensional representation of the high dimensional data. 

These nonlinear dimensionality reduction techniques are closely related and can be unified in a classical 
multidimensional scaling (CMDS)11 perspective, where the Gram matrix is obtained from the pairwise squared 
Euclidean distances between the data points.  

Starting form the perspective of CMDS, Lawrence2 shows that the main difference between the nonlinear spectral 
DR techniques is in the distance matrices they use. Moreover, by following a different approach for constructing the 
distance matrix, Lawrence2  proposes a new method, called the Maximum Entropy Unfolding, whose main feature is 
that of providing a probabilistic model. Exploiting the maximum entropy formalism12, MEU specifies the 
probability density by a free form maximization of the entropy subject to constraints imposed on the expectations of 
the squared distances between two neighboring data points sampled from the model. For any two samples, 

 it thus holds 
 

 
where  represents the set of neighboring points of , and  is the squared Euclidean distance between 
and 

In order to maximize the entropy in a continuous system, Lawrence2 proposes to maximize the negative 
Kullback-Leibler divergence (KLD), or relative entropy, between a base density,  and the density of interest, 

) 
 

 
where  is defined as a very broad spherical Gaussian density with covariance , with  typically assumed to 
be close to zero. By writing the set of constraints as  where  are the Lagrange 
multipliers, it can be shown that the probability distribution  corresponds to a zero-mean Gaussian Markov 
random field (GMRF) 
 

       (2) 
 
with precision matrix  Note that, in order to capture the underlying structure of the manifold,  is defined 
as the Laplacian matrix, with off diagonal elements given by  if is neighbor of and 0 otherwise, and its 
diagonal elements defined as . Hence,  is symmetric and constrained to have a null space in 
the constant vector, , where  is the -dimensional vector of ones. 

Equation (2) enlightens that MEU implies independence across data features, which is due to the imposed 
constraints, and that the parameters, , can be estimated through maximum likelihood. In fact, the gradient of 
each Lagrange multiplier is given by2 

 
 

 
which can be evaluated by computing the expectation of the squared distance as 
 

  (3) 
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where  is the th entry of the kernel (i.e. covariance matrix) . Equation (3) represents 
a scaled version of the standard transformation between distances and similarities. This relationship arises naturally 
in the probabilistic model since, in general, every GRF has an associated interpoint distance matrix and it is this 
matrix that is used in CMDS2. The parameter  ensures that the precision matrix is positive definite. This implies 
that, knowing that the Laplacian has a null space in the constant vector, then . This reflects an 
insensitivity of the covariance matrix to the data mean, and this in turn arises because that information is lost when 
we specify the expectation constraints only through interpoint distances. In practice,  is always centred before its 
eigenvectors are extracted, , where the centering matrix is , with  a  identity 
matrix. Once the maximum likelihood  solution is recovered, the data can be visualized by looking at the 
eigenvectors of the Gram matrix . 
 

4. Parameter estimation 

Optimal parameter estimation techniques, such as maximum likelihood (ML) estimation, can be computationally 
expensive, especially if noisy data are available and the noise is non-Gaussian. Also, there are many practical 
applications when fast solutions are required, even at the expense of a non-optimal estimate.  

Hence, in light of equation (2), which tells us that our model is a GMRF, and according to graphical models 
theory, we propose a different approach for parameters estimation based on the maximization of the 
pseudolikelihood (PL) subject to constraints. Maximum pseudolikelihood (MPL) estimation provides an alternative, 
quick, and often reasonably efficient method of parameter estimation. Specifically, we discuss constrained MPL 
estimation to help deal with the problem of estimating Gaussian intrinsic autoregressions for which the model 
parameters are constrained to be on the boundary of the valid region. 

In accordance with earlier discussion, we assume henceforth that each data point has a limited number of 
neighbors and that the conditional distribution of  is fully specified in terms of a vector consisting of a few 
unknown parameters. Given the data, we shall use  to denote the conditional probability of observing , 
given all other values. The primary objective is to obtain a reasonable estimate of . The most naive approach to 
the estimation of the unknown parameters in the terms  would be to take the vector which maximizes 
the quantity 

 
        (4) 

 
with respect to . 

From a graphical model perspective, this implies the specification of a family of probability distributions defined 
in terms of directed or undirected graphs. The nodes in the graph are identified with random variables, and joint 
probability distributions are defined by taking products over functions defined on connected subsets of nodes13. 

Although maximum pseudolikelihood estimation is intended to have fairly widespread applicability, it is of 
special interest in the Gaussian case in which we assume that 
 

       (5)
 
where  is the conditional variance.  

According to Rue and Held14, in the case of GRFs, the connected subsets of nodes are specified through the 
elements of the precision matrix, . The pairwise conditional independence properties of  is contained solely in 
the covariance matrix and for detecting conditional independences, one must investigate : each vertex represents a 
data point, and an undirected edge connects two data points, , if the corresponding element of the precision 
matrix, , is non-zero. In order to analyse the nonzero pattern of the precision matrix , and hence, the 
connectivity of the underlying graph we follow an approach based on the Cholesky decomposition of : 

 
 

 



42   Sara Fontanella et al.  /  Procedia Environmental Sciences   26  ( 2015 )  38 – 44 

where  is a lower triangular matrix and represent a weighted adjacency matrix from a directed acyclic graph - 
DAG. This implies that when constructing the neighborhood, the triangular form for this matrix can be achieved by 
first imposing an ordering on the data points. Then, when seeking the nearest  neighbors for , we only consider a 
candidate data point . Applying recursively this procedure one vertex at time, we obtain that the -th row of 

 provides an alternative parametrization of the conditional distribution of . These conditional 
statements are described by a linear recursive system where the zero pattern for the regression coefficients is the 
same as in the concentration matrix. Hence, in light of these results and from equations (4) and (5), it can be shown 
that the estimated ’s are the result of the solution of a system of recursive regressions  

 
        (6) 

 
where  is a  indicator matrix which selects the  neighbors of . The ’s are strictly related to the 
coefficients ’s of the precision matrix  through 

 
 

 
MPL thus reduces to the ordinary method of least square which, for a design matrix , gives 
 

          (7) 
 

and 
 

         (8) 
 

is the estimate of the conditional variance. 

4.1 Learning the graph structure 

In the MEU framework, an important part of the model specification is the choice of the structure of the GMRF 
or, equivalently, of the precision matrix , which has the form of the Laplacian matrix. 

As seen in the previous section, we parameterize the GMRF according to the Cholesky decomposition of , and, 
in order to constrain the Laplacian matrix to be positive semidefinite we may have to guarantee that assume that 

, which satisfy . If we force  and set the diagonal elements 
, we will have a Laplacian matrix which is positive semidefinite without need of any further 

constraint on . One possibility to force a sparse structure in  is to work with a nearest neighbor rule, which 
assigns the same number of (nearest) neighbors to each data point. 

The constraint  can be imposed by ensuring that sum of the off diagonal elements from each column is 
equal to one, i.e. . Under general linear constraints we thus have that the negative 
pseudolikelihood can be reformulated as 

 
      (9) 

 
where  is a  unit matrix which defines the linear system of the parameters which must be solved 
accordingly to the constraints in the -vector , and  is a -vector of Lagrangian multipliers. It is easy to show that 
the minimum of equation (9) is given by 
 

        (10) 
 
where . Equation (10) provides a constrained MPL estimator for the regression weights, which 
guarantees invariance to all the similarity transformations of the data. 

The conditional variance, instead, is obtained as 
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        (11) 

 

4.1.1 The Elastic Net algorithm 

An alternative procedure to learn the graph structure in  is that of using the Elastic Net (EN) algorithm. This is 
a regularization and variable selection method that adds the penalty on the L2-norm to the L1 penalty of the Lasso. 
The Elastic Net is particularly useful when the number of predictors ( ) is much bigger than the number of 
observations ( ), which is a case found in many examples. For any fixed non-negative  and  the elastic net 
criterion is defined as 

 
       (12) 

 
where  is the data matrix without the th input coordinate,  and . We refer to 
Hastie et al.15 for know results on EN and its practical implementation. 

5. Conclusion 

In this paper, we considered MEU approach2 that represents a novel approach to dimensionality reduction based 
on Gaussian random fields. The main advantage of MEU is that it provides a probabilistic model and a unifying 
perspective to spectral DR methods. 

Given that we are required to estimate the parameters of a GMRF, we showed that, instead of applying the ML, 
one may use the PL approximation for obtaining these estimates. This is due to the conditional independence 
properties of GRMFs. We showed that the optimization of the PL turns out to be equivalent to solve a system of 
recursive equations, and hence we derived the maximum PL estimator through the least square method. Hence, PL 
allows for explicit estimation of the parameters through the regression formalism. 

In order to guarantee the constraint concerning the null space of the Laplacian matrix, we derived also a 
constrained maximum PL estimator. 

Moreover, in order to avoid user-defined parameters for the graph building, typical of rules like -nn algorithm, 
we saw that combining PL with Elastic Net algorithm allows us to perform DR while learning the neighborhood 
relations directly from the data. Generally, by a good tuning of  and , EN can increase both sparsity and 
accuracy of the final solution.  

Developing a Bayesian approach to achieve sparsity will be of interest for future works. One promising approach 
would be that of considering Bayesian spike and slab priors, in which the sparsity is induced by placing a mixture 
prior on the regression coefficient. Specifically, we will exploit the results obtained by George and McCulloch16, 
who proposed a stochastic search variable selection (SSVS) algorithm for normal linear regression using Gibbs 
sampling to search for high posterior probability models. Their approach relies on a mixture of a low and high 
variance normal prior centered at zero for each of the regression coefficients, with the low variance component 
corresponding to a predictor being effectively excluded due to the coefficient being close to zero. For each 
independent regression in Equation (6), we suspect only a subset of the elements of  are non-zero. We assume that 

 arises from one of two normal mixture components, depending on a latent variable : 
 

 
 

where  is positive but small s.t.  is close to zero when ;  is large enough to allow reasonable deviations 
from zero when . In addition, the prior probability that  is: 

 
 

 
To obtain the normal mixture prior for , George and McCulloch16 define a multivariate Normal prior 
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where  and  with  if  and if 

. 
 

References 

1. Lee, J.A and Verleysen, M. Nonlinear Dimensionality Reduction. Springer; 2007. 
2. Lawrence, N. D. A unifying probabilistic perspective for spectral dimensionality reduction: �insights and new models. Journal of Machine 

Learning Research 2012; 13:1609-1638. 
3. Cressie, N. Statistics for Spatial Data. Wiley, New York; 1991. 
4. Van der Maaten, L.J.P, Postma, E.O and Van den Herik, H.J. Dimensionality reduction: A comparative review. Technical Report TiCC TR 

2009-005, 2009. 
5. Cayton, L. Algorithms for manifold learning. Univ. of California at San Diego Tech. Rep 2005. 
6. Tenenbaum J. B, De Silva V and Langford J. C. A global geometric framework for nonlinear �dimensionality reduction. Science 2000; 

290:2319-2323. 
7. Roweis, S. and Saul, L. Nonlinear dimensionality reduction by locally linear embedding. �Science 2000; 290:2323-2326. 
8. Belkin, M. and Niyogi, P. Laplacian Eigenmaps for Dimensionality Reduction and Data Representation. Neural Computation 2003; 15:1373-

1396. 
9. Scholkopf, B, Smola, A, Muller, K.R. Kernel principal component analysis. Lecture Notes in Computer Science 1998; 1327:583-588. 
10. Weinberger K.Q, Saul L.K. Unsupervised learning of image manifolds by semidefinite programming. Proceedings of the 2004 IEEE 

Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2004. 988-995.  
11. Mardia, K.V, Kent J.T and Bibby J.M. Multivariate Analysis. Academic Press, London; 1979. 
12. Jaynes, E.T. Information Theory and Statistical Mechanics, Phys.Rev.1957; 106:620-630. 
13. Jordan, I. M. Graphical models. Statistical Science 2004; 19(1):140155,. 
14. Rue, H. and Held, L. Gaussian Markov Random Fields: Theory and Applications, volume 104 of Monographs on Statistics and Applied 

Probability. Chapman & Hall, London, 2005. 
15. Hastie,T, Tibshirani, R. and Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. 2nd ed., Springer, 

New York, 2009.  
16. George, E. I. and Mcculloch, R. E. Variable Selection Via Gibbs Sampling. Journal of the American Statistical Association 1993; 

88(423):881-889 


