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Uniqueness of maximum planar five-distance sets
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Abstract

A subset X in the Euclidean plane is called a k-distance set if there are exactly k distances between two distinct points in X. We
denote the largest possible cardinality of k-distance sets by g(k). Erdős and Fishburn proved that g(5)=12 and also conjectured that
12-point five-distance sets are unique up to similar transformations. We classify 8-point four-distance sets and prove the uniqueness
of the 12-point five-distance sets given in their paper. We also introduce diameter graphs of planar sets and characterize these graphs.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

A subset X in Euclidean plane R2 is called a k-distance set if there are exactly k distances between two distinct
points in X. For two subsets in R2, we say that they are isomorphic if there exists a similar transformation from one to
the other. One of the many interesting problems on k-distance sets is to determine the largest possible cardinality of
k-distance sets and to classify these k-distance sets. We denote this number by g(k). A k-distance set X is said to be
maximum if X has g(k) points. Clearly 2k + 1�g(k) since the vertex set of a regular (2k + 1)-gon is a k-distance set.

On the other hand, Bannai–Bannai–Stanton [2] and Blokhuis [3] gave an upper bound g(k)�
(

k+2
2

)
. Let Rn denote

the vertices of a regular n-gon, and let R+
n be Rn augmented by the point at the center of the regular n-gon. For k = 2,

g(2) = 5 and every 5-point two-distance set is isomorphic to R5 [4,5,9]. For k = 3, the author classified three-distance
sets with at least five points [10]. In particular, g(3) = 7 and every 7-point three-distance set is isomorphic to R7 or
R+

6 . Erdős–Fishburn [7] determined g(k) for k�5 and classified maximum k-distance sets for k�4. They proved that
g(5) = 12 and gave one example of 12-point five distance set. They also conjectured that every 12-point five-distance
set is similar to this example.

The following theorem is proved in Erdős–Fishburn [7].

Theorem 1.1. (a)g(4)=9 and every 9-point four-distance set in R2 is isomorphic to R9 or one of the three configurations
given in Figs. 1(a)–(c).

(b) g(5) = 12 and the configuration given in Fig. 1(d) is an example of a 12-point five-distance set in R2.
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Fig. 1. (a)–(c) Three 9-point four-distance sets configurations. (d) A 12-point five-distance set configuration. (e) An 8-point four-distance set
configuration.

Our main result is:

Theorem 1.2. (a) Every 8-point four-distance set in R2 is isomorphic to R8, R+
7 , Fig. 1(e) or an 8-point subsets of a

9-point four-distance set.
(b) The configuration given in Fig. 1(d) is the only 12-point five-distance set in R2.

The proof of Theorem 1.2(b) is based on the classification of 8-point four-distance sets which in turn uses the
classification of 5-point three-distance sets. We give an outline of the proof of Theorem 1.2 in Section 2. In Section 3,
we introduce diameter graphs of planar sets and give their fundamental properties. In particular, Propositions 3.1–3.3
are of independent interest. It seems that the independence numbers of diameter graphs and the concept of replaceable
vertices in independent sets of diameter graphs defined below play an important role in the classification of k-distance
sets. In Section 4, we give a complete proof of Theorem 1.2.

2. Preliminaries

Let D = D(X) be the diameter of a finite set X ⊂ R2, and let

XD = {x ∈ X : d(x, y) = D for some y ∈ X} and m = m(X) = |XD|.
The following lemmas are known.

Lemma 2.1. Let D be the diameter of an n-point planar set X with n�3. Then

(a) if m�3, the points in XD are the vertices of a convex m-gon;
(b) D can be eliminated as an interpoint distance by removing at most �m/2� points from X, where �m/2� is the smallest

integer at least m/2.

Proof. See Lemma 1 in [7]. �

We denote the set of all n-point k-distance sets and the set of all n-point convex k-distance sets by En(k) and Mn(k),
respectively. A k-distance set is said to be maximal if it is not contained in other k-distance sets. We denote the set of
all non-maximal n-point k-distance sets by E∗

n(k). For i�n− 3, we let Rn − i denote a set of n− i vertices of a regular
n-gon. (When i�2, Rn − i depends on the choice of the i vertices removed from Rn.)
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Fig. 2.

Lemma 2.2 (Altman [1], Erdős and Fishburn [6], Fishburn [8], Shinohara [10]). (a) Let X be an n-point convex
k-distance set, where n�3. Then k��n/2�, where �n/2� is the greatest integer at most n/2. Moreover,

(i) M2k+1(k) = {R2k+1};
(ii) M2k(k) = {R2k, R2k+1 − 1} for k�4;

(iii) M7(4) = {R8 − 1, every R9 − 2};
(iv) M9(5) = {R10 − 1, every R11 − 2}.

(b) g(3) = 7. Moreover,

(i) E7(3) = {R7, R
+
6 };

(ii) every maximal 6-point three-distance set in R2 is isomorphic to R+
5 or one of the configurations (Fig. 2);

(iii) every maximal 5-point three-distance set in R2 is isomorphic to R+
4 or one of the configurations (Fig. 2).

See [1] for the inequality k��n/2� and (a)(i), [8] for (a)(ii)–(iii), [6] for (a)(iv) and [10] for (b).
For E8(4) and E12(5), we have the following proposition.

Proposition 2.1. (a) If X ∈ E8(4), then X contains a subset Y ∈ {R5, R7, R8 − 1, every R9 − 2} ∪ E5(3).
(b) If X ∈ E12(5), then X contains a subset Y ∈ {R9, R10 − 1, every R11 − 2} ∪ E8(4).
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Proof. (a) Let X be an 8-point four-distance set. If m�7, then the subset XD of X is a convex m-gon by Lemma 2.1(a).
Therefore X contains a subset Y ∈ ⋃

k �4 M7(k) = {R7, R8 − 1, every R9 − 2}. If m�6, then 8 − �m/2��5. By
Lemma 2.1(b), X contains a subset Y ∈ ⋃k �3 E5(k) = {R5} ∪ E5(3).

(b) Let X be a 12-point five-distance set. If m�9, then the subset XD of X is a convex m-gon by Lemma 2.1(a).
Therefore X contains a subset Y ∈ ⋃k �5 M12(k)={R10 −1, every R11 −2}. If m�8, then 12−�m/2��8. By Lemma
2.1(b), X contains a subset Y ∈ ⋃k �4 E8(k) = E8(4). �

In Section 3, we slightly improve Proposition 2.1.

3. Diameter graphs

Let G = (V , E) be a simple graph, where V = V (G) and E = E(G) are the vertex set and the edge set of G,
respectively. We denote a path and a cycle with n vertices by Pn and Cn, respectively. The diameter graph DG(X)

of X ⊂ R2 is the graph with X as its vertices and where two vertices x, y ∈ X are adjacent if d(x, y) = D. Clearly
DG(R2n+1) = C2n+1 and DG(R2n) = n · P2. The diameter graph G = DG(X) of X ⊂ R2 does not contain C4 and if
G contains C3, then any two vertices in V (G)\V (C3) are not adjacent. We generalize these properties as follows.

Proposition 3.1. Let G = DG(X) for X ⊂ R2. Then

(a) G contains no C2k for any k�2;
(b) if G contains C2k+1, then any two vertices in V (G)\V (C2k+1) are not adjacent and every vertex not in the cycle

is adjacent to at most one vertex of the cycle.

In particular, G contains at most one cycle.

Proof. We can prove this easily by using the fact that two length-D segments in X must cross if they do not share an
end point. �

A subset H of V (G) is an independent set of V (G) if no two vertices in H are adjacent, and H is said to be maximal if
no other independent sets contain H. The independence number �(G) of a graph G is the maximum cardinality among
the independent sets of G. An independent set H of G is said to be maximum if |H | = �(G).

Proposition 3.2. Let G = DG(X) be the diameter graph of X ⊂ R2 with |X| = n. If G 
= Cn, then we have
�(G)��n/2�.

Proof. We may assume G has no isolated vertex. Moreover, we may assume G contains a cycle Ck with k < n,
otherwise �(G)��n/2�, since G is a bipartite graph. Then there exist two vertices v ∈ V (G)\V (Ck) and w ∈ V (Ck)

such that v and w are adjacent. Since G − {v, w} is a tree, so we have �(G − {v, w})��(n − 2)/2�. Therefore
�(G)��(G − {v, w}) + |{v}| = �(n − 2)/2� + 1 = �n/2�. �

Let H be an independent set of V (G). We say that a vertex v in H is a replaceable vertex in H if there exists a vertex
w in V (G)\H such that H\{v} ∪ {w} is also an independent set of V (G), and w is called a replacement vertex of v

in H. We denote a replacement vertex of v by v+ if the replacement is uniquely determined. Let H be a maximum
independent set of V (G) and v be a replaceable vertex in H. If w1, w2, . . . , wk are replacement vertices of v, then vwi

and wiwj must be edges of G for 1� i < j �k. Thus for any diameter graph, except for C3, if v is replaceable then
there is a unique replacement if the independent set is maximum. Clearly all vertices of a non-maximal independent
set are replaceable.

Lemma 3.1. Every tree T with |V (T )| = n�4 and �(T ) = �n/2� has a maximum independent set with at least two
replaceable vertices.

Proof. Clearly n is even, thus �(T ) = n/2. We may assume that T contains a vertex v with degree k�3 by the fact that
the assertion holds for a path with at least four vertices. Let Ti be a connected component of T − {v} and ni = |V (Ti)|
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for 1� i�k. Since
∑k

i=1 ni is odd, we may assume that n1 is odd. Then we have

n

2
= �(T )�

k∑
i=1

�(Ti)�
k∑

i=1

⌈ni

2

⌉
= n1 + 1

2
+

k∑
i=2

⌈ni

2

⌉
.

Therefore exactly one connected component has odd order and �(Ti) = �ni/2� for 2� i�k. We may assume ni = 2
for 2� i�k, since if nj 
= 2, we apply the same argument for Tj instead of T. Then T has a maximum independent set
with at least k − 1�2 replaceable vertices. �

Proposition 3.3. Let G = DG(X) be the diameter graph of X ⊂ R2. Suppose |V (G)| = n�6 and �(G) = �n/2�.
Then there exists a maximum independent set which has at least two replaceable vertices.

Proof. This proposition is proved easily by using Proposition 3.1 and Lemma 3.1. �

We say that a subset Y of X ⊂ R2 is an independent set if the corresponding vertex set of Y in the diameter graph of
X is an independent set of V (DG(X)). We also apply other definitions of graphs given above to subsets or points of
the Euclidean plane in the same manner.

Remark 3.1. Let X be a k-distance set and Y an independent set of X with two replaceable points p1, p2. Let Yi =
Y\{pi} ∪ {p+

i } for i = 1, 2. Then

(a) Y and Yi are at most (k − 1)-distance sets;
(b) Y ∪ {p+

1 , p+
2 } is a k′-distance set for some k′ �k.

Moreover, if Y is a maximal independent set of X, then

(c) d(pi, p
+
i ) = D(X) for i = 1, 2;

(d) p+
1 
= p+

2 .

Lemma 3.2. (a) Let X be an 8-point four-distance set such that m = |XD|�6. Then X contains a 5-point independent
set with at least two replaceable points.

(b) Let X be a 12-point five-distance set such that m = |XD|�8. Then X contains an 8-point independent set with at
least two replaceable points.

Proof. (a) Let X be an 8-point four-distance set. If �(DG(X))�6, then clearly the assertion holds. Therefore we may
assume �(DG(X)) < 6. Since |X\XD| = 8 − m and X\XD consists of isolated points, the assertion holds for m�3. If
m=4, then there exists v, w ∈ XD satisfying d(v, w) 
= D. Then (X\XD)∪{w} satisfies the condition we want. Hence
m=5 or 6. Since �(DG(X))=�(DG(XD))+8−m < 6, we obtain �(DG(XD))�m−3. If m=5 and DG(XD) 
= C5,
then Proposition 3.2 implies �(DG(XD))�� 5

2� = 3. This is a contradiction. Hence DG(XD) = C5. C5 has a 2-point
independent set H ′. Then H = H ′ ∪ (X\XD) is a 5-point independent set. Clearly H has two replaceable vertices.
If m = 6, Proposition 3.1 implies that DG(XD) 
= C6. Then Proposition 3.2 implies �(DG(XD))�3. Therefore
�(DG(XD)) = 3 holds. Then Proposition 3.3 implies that there exists a 3-point independent set H ′ ⊂ XD having at
least two replaceable points. Then H = H ′ ∪ {v, w} is a 5-point independent set for any distinct two points in X\XD .
Since v, w are isolated points in X, any replaceable point in H ′ with respect to XD is also replaceable with respect to
H and X.

(b) By a similar argument as given in the proof of (a), we can prove (b). �

For a maximal 5-point three-distance set (resp. maximal 8-point four-distance set), it is hard to have replaceable
points satisfying the property of Remark 3.1. Therefore Lemma 3.2 is a useful tool to classify 8-point four-distance
sets (resp. 12-point five-distance set). Using Lemma 3.2 and Remark 3.1, we can improve Proposition 2.1 as follows.

Proposition 3.4. (a) If X ∈ E8(4), then X contains a subset Y ∈ {R5, R7, R8 − 1, every R9 − 2} ∪ E∗
5 (3).

(b) If X ∈ E12(5), then X contains a subset Y ∈ {R9, R10 − 1, every R11 − 2} ∪ E∗
8 (4).
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Fig. 3.

Proof. (a) Let X ∈ E8(4) and assume that X does not contain any subset contained in {R5, R7, R8 − 1, every R9 − 2}.
As we mentioned at the beginning of Proposition 2.1 we may assume m�6. Then Lemma 3.3 implies that X contains
a 5-point independent set Y having at least two replaceable points. Then Y is at most a three-distance set. Since R5 is
the unique 5-point two-distance set in R2, we may assume Y ∈ E5(3). If Y ∈ E∗

5 (3), then the proof is done. Hence
we may assume that Y is a maximal three-distance set. Then again Remark 3.1(b) and (d) imply that there exist distinct
two replacement points v, w ∈ X\Y and Y ∪ {v, w} is a 7-point four-distance set. Thus Y is a maximal 5-point three-
distance set which is contained in a 7-point four-distance set X′. Moreover Y is an independent set in X having at least
two replaceable points. We use the classification of E5(3) given in [10] and show that no such Y exists. Only 5-point
three-distance sets of fig. 505 and fig. 508 in Fig. 2 have such two points. Then X′ must be the seven points in Fig. 3.
However, we cannot put another point q such that X′ ∪ {q} is a four-distance set. This means there exists no 8-point
four-distance set which contains maximal 5-point three-distance sets.

(b) By Theorem 1.2(i), every maximal 8-point four-distance set is isomorphic to R8, R+
7 or the configuration of

Fig. 1(e). By a similar argument as given in (a), we conclude that 12-point five-distance set cannot contain a maximal
8-point four-distance set. �

Proposition 3.4 means that when m=|XD|�6 (resp. m�8) the classification of 8-point four-distance sets (resp. 12-
point five-distance sets) results in that of 6-point three-distance sets (resp. 9-point four-distance sets). However, the clas-
sification of 5-point three-distance sets (resp. 8-point four-distance sets) is still essential to classify 8-point four-distance
sets (resp. 12-point five-distance sets), as it is used in the proof of Proposition 3.4. It would be interesting if one can
prove these facts without reference to the classification of 5-point three-distance sets (resp. 8-point four-distance sets).

4. Proof of Theorem 1.2

In this section, we complete the proof of Theorem 1.2.
Let

A(X) = {d(x, y) : x, y ∈ X, x 
= y},
Np(X) = {x ∈ X : d(x, p) /∈ A(X)} for any p ∈ R2

and

L� =
{

a(1, 0) + b

(
1

2
,

√
3

2

)
: a, b ∈ Z

}
.

(I) Proof of Theorem 1.2(a): Let X ∈ E8(4) and D the diameter of X.

(i) m�7.

As we have seen at the beginning of the proof of Proposition 2.1, X contains a subset Y ∈ {R7, R8 −1, every R9 −2}.
First, we assume X = R7 ∪ {p}. If |Np(R7)|�3, then p must be the center of R7, so X = R+

7 . If |Np(R7)| = k�2,
then R7 − k ∪ {p} ∈ E8−k(3). Using elementary plane geometry we can show that this is impossible. Next we assume
X = R8 − 1 ∪ {p}. Suppose p /∈ XD . Since X is a four-distance set, |{d(p, r)|r ∈ R8 − 1}|�3. Then there exist three
points r1, r2, r3 ∈ R8 −1 such that d(p, r1)=d(p, r2)=d(p, r3). This means that p is the center of R8 and X=R+

8 −1,
but this is a five-distance set. Hence p ∈ XD . Thus X is 8-point convex four-distance set and we have X = R8. Finally,
we assume that X contains an R9 − 2. We can prove X = R9 − 1 using an argument similar to the preceding case.
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Fig. 4.

(ii) m�6 .

By Proposition 3.4, X contains a subset Y ∈ {R5} ∪ E∗
5 (3). We divide the proof for m�6 into two cases:

Case A: R5 ⊂ X.
Case B: Y ⊂ X with Y ∈ E∗

5 (3).
Case A: Let R5 ∪ {p} ⊂ X with p /∈ R5. Then p is on a perpendicular bisector l of two points in R5. It is easy to

check that any other point q which is on l cannot be contained in X. This forces X to be equal to R5 ∪ {p, �i (p), �j (p)}
where �j (p) is the point rotated p by 2�j/5 about the center of R5. Then there exists a 10-point four-distance set Y
such that |m(Y)| = 5. This contradicts the fact that there exists no 7-point three-distance set which contains R5.

Case B. First, we assume X contains an R7 − 2. By Proposition 3.3, R7 − 2 has a point satisfying the condition in
Remark 3.1, so X contains R7 − 1. Then we can show that this case does not occur by the argument similar to that in
(i). Next we assume that X contains a 5-point subset of a three-distance set Y of R+

6 or fig. 604 which is a subset of L�.
We may assume A(Y ) = {1,

√
3, 2}. Suppose D > 2 holds and let p ∈ X\Y . Every subset Y ′ of R2 with at least four

points, A(Y ′) ⊂ {1,
√

3, 2} and 1 ∈ A(Y ′), is a subset of L�. Therefore we can find all possible points p easily and
we conclude that in this case X is an 8-point subset of Fig. 1(a) or (b) which is a subset of L�. Finally, we assume that
X contains a 5-point non-maximal three-distance subset Y in one of the configurations: fig. 601, fig. 602, fig. 603, fig.
605 in Fig. 2. In Fig. 4, Yi means a 6-point three-distance set whose points are denoted by big black dots. Then Y is
among {Yi\{v}|1� i�4, v = A, B, or C}. For each 5-point three-distance set above, we list possible candidates which
can be the sixth point of a four-distance set such that the fourth distance is the diameter of the four-distance set, and
we denote the point by small letter. The point with small letter a (or b, c) means the points such thatYi\{A} ∪ {a} is at
most a four-distance set, and the point with small letter p means the points such that Yi ∪ {p} is a four-distance set. In
this case it is easy to see that X is either Fig. 1(e) or an 8-point subset of Fig. 1(c).

(II) Proof of Theorem 1.2(b): Let X ∈ E12(5).

(i) m�9.

Similar as in I(i) one can show that X contains a subset Y ∈ {R9, R10 − 1, every R11 − 2}. It is clear that they cannot
be extended to a five-distance set on 12 points.

(ii) m�8.

Proposition 3.4, X contains a subset Y ∈ E∗
8 (4). First, we assume X contains a subset Y ∈ {R9 − 1, an 8-point subset

of Fig. 1(c)}. By an argument similar to the preceding case, X must contain R9 or 9-point four-distance set of Fig. 1(c).
However, X does not contain R9 by (i). Therefore X contains the 9-point four-distance set of Fig. 1(c). Let Y ′ be the
9-point four-distance set of Fig. 1(c). We cannot take a new point p such that |Np(Y ′)|�3 since 
 r1r2r3 �5�/6 for
every convex vertices r1, r2, r3 in Y ′, so |Np(Y ′)|�2. Then X\Np(Y ′) ∪ {p} is also a four-distance set with at least
eight points, so we have p ∈ Y ′. This is a contradiction. Next we assume X contains an 8-point subset of a four-distance
set of Fig. 1(a), (b). Clearly X ⊂ L� and X is a 12-point five-distance set of Fig. 1(d). �
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