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Abstract

We consider the Dirichlet boundary value problem for the equations of a stationary
micropolar fluid in a bounded three-dimensional domain. We show the existence and
uniqueness of a distributional solution with boundary values.fa O 2002 Elsevier
Science (USA). All rights reserved.
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1. Introduction

The micropolar fluid model is an essential generalization of the well-estab-
lished Navier—Stokes model in the sense that it takes into account the microstruc-
ture of the fluid. It may represent fluids consisting of randomly oriented (or spheri-
cal) particles suspended in a viscous medium, when the deformation of fluid parti-
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clesisignored. Micropolar fluids were introduced in [1]. They are non-Newtonian
fluids with nonsymmetric stress tensor.

The governing system of equations of micropolar fluids expresses the balance
of momentum, mass, and moment of momentum [1,2], which in a stationary
regime is

—uAV+ (V- V)V+Vp=arotw+f, divv=0, 1

{—aAW+(v-V)w—ﬁVdivw+yW:arotv+g, @)
wherev = (v1, v2, v3) is the velocity field p is the pressure antl = (w1, w2, w3)
is the microrotation field interpreted as the angular velocity field of rotation
of particles. The field$ = (f1, f2, f3) andg = (g1, g2, g3) are given external
forces and moments, respectively, apd=v + v,, a = 2v,, @ = ¢, + ¢4,
B =co+ cqg —cq, v =4, Wherev, v, c,, cq, cq are positive constants that
represent viscosity coefficienisjs the usual Newtonian viscosity andis called
the microrotation viscosity. It is assumed that the density of the fluid is equal to
one.

Observe that if the microrotation viscosity equals zero then the first
equations in system (1) reduce to the incompressible stationary Navier—Stokes
system and the velocity field is independent of the microrotation field.

Several experiments show that solutions of the micropolar fluid model better
describe behavior of numerous real fluids (e.g., blood [3]) than corresponding so-
lutions of the Navier—Stokes model, especially when the characteristic dimensions
of the flow (e.g., the diameter of a channel) become small.

In this paper we are interested in the boundary value problem for system (1) in
a bounded domai2 of R3 with a smooth boundary” and Dirichlet boundary
data,

V| = Vo, w|r = Wo, )

in L2(I"). We assume thdt g € L?(£2) and the compatibility conditiorf - vo -
nds = 0, where we denote biy the unit outward normal of". The case of null
boundary data was studied by Lukaszewicz [4] (see also [2]), and in [5] in the case
of exterior domain. The case where the boundary data are not null but sufficiently
regular, such that they can be extended to the interior of the damaircordingly
with trace theorems, can be treated in a similar way as in [2]. (The case of
stationary Navier—Stokes system with datad®2(I") goes back to the classical
method of Leray—see, e.g., [6], and with datalit—1/7:9(I"), 3/2 < ¢ < 2, was
solved in [7].) However, if they are not regular, for instance, if the boundary data
are not the traces at the boundaryabf some functions in Sobolev spaces@n
then the problem is quite more difficult. This problem for the Stokes equations was
treated by Conca [8], where the conceptefy weak solutiowas introduced (see
Appendix A in [8], or [9]). Then, more recently, MardsPaloka [10] proved the
existence of aery weak solutioffior the stationary Navier—Stokes equations.
There are some physical motivations for considering fluid equations with ir-
regular boundary data; e.g., in [8] it is considered the Stokes equations modeling



G. ktukaszewicz et al. / J. Math. Anal. Appl. 271 (2002) 91-107 93

a fluid in a domain containing a sieve and then it is shown that when the sieve
becomes finer and finer the solution of the problem converges to a solution of a
Stokes problem with boundary data onlyZid. Other examples, for the stationary
Navier—Stokes equations with boundary data in some Sobolev $p&ck?:4,

are pointed out in [7]; namely, the problem of a stationary fluid in a “domain with
a cavity,” i.e., the union of a semi-space with a bounded domain (the “cavity”),
and theTaylor problem|.e., the problem of equilibrium of a fluid between two
co-centered cylinders with the external cylinder fixed and the internal one in a
rotational motion about its axis.

The mainidea used by Conca in [8] is the transposition method (see, e.g., [11]),
which is very useful for linear equations. Mari$taloka [10] was able to extend
Conca’s result, first for small data by using a linearization of the Navier—Stokes
equations and an iterative argument (in fact, the Banach'’s fixed point theorem)
based on penalization method and an estimate on the Oseen’s problem solution,
and then for no small data assumption by splitting the data into a small irregular
part and a large regular part.

We combine ideas from Conca [8], MarGdPaloka [10], and Lukaszewicz [4],
to obtain the existence ofvery weak solutioffior the stationary micropolar fluid
equations. That is, first we use the transposition method for obtaining a solution
to the microrotational field equation, which depends on the velocity fieltat
lives in L3(£2). This microrotational field solutiow obeys a good estimate with
respect tov, as we prove below, providedis split into a small irregular part in
L3(2) and aregular part® in H1(£2) (see Lemma 3.1). To attain that, we needed
to prove a regularity result for a second-order linear strongly elliptic system with
an irregular coefficient (see the proof of Lemma 3.1). Then taking the small part
of v as a solution for the Navier—Stokes equations, via MarBsiloka’s theorem
(Theorem 4 in [10]), we prove the existenceuwsfusing an appropriate Leray—
Hopf extension of a smooth approximation of the boundary valug,feuch that
we may employ the Leray—Schauder fixed point theorem following [4].

Besides the existence of solutions, we obtain a result of continuous dependence
on the boundary data fev and given external forces, which implies, in particular,
unigueness of solution.

The plan of the paper is as follows. In Section 2 we give the definition of a
very weak solutiomnd state our main theorems. Section 3 deals with the system
for the microrotational fieldv assuming that is split into an appropriate sum, as
explained above. In Section 4 we show a way of reducing the systentda new
system for an unknown in the space’ of divergent free functions inH(}(Q).
Thatis,v = U¢ +V¢, wherev¢ is the small part of in L3(£2). This small part/® is
avery weak solutiowf the stationary Navier—Stokes system, which exists due to
the Marust-Paloka’s theorem [10], with null external force and with a boundary
data very small in the norm af?(I"), depending on a smooth approximation
vg of f vo. The partu8 is the “large” regular part o in H1(£2). It is equal to
u+ VO, Wherev0 is an appropriate Leray—Hopf extension\gfto £2 which is
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in V, andu is the new unknown which satisfies its own system shown in Section 4.
This system fou is a nonlinear one, where the nonlinearities come from the term
(u- V)u and fromw that depends om. In Section 5 we prove the existence of
a solutionu in V for this system using the Leray—Schauder fixed point theorem,
with the help of a good choice of; andv0 Finally, in Section 6 we prove the
continuous dependence of thery Weak solutioon the datd, g andwp.

Notations. Throughout this paper, besides standard or above stated notations,
we fix the following one:W*? is the Sobolev space of ordérmodelled in
LP($2; R3) Wé‘ " is the closure inW* of the functions inCg°; H* = w2

H" (( )) is the inner productiv (V is the closure |rH1 of the functions

in C0 W|th null divergence); i.e.,

def [ 0v; Ju;

((u, ))—e/ L U= (u1,uz,u3), V=(vi,v2,v3) €V,
axj'axj'

2

where repeated indices mean summation from 1 0 |Bis the norm associated
with (()); Il llx,» is the norm ofW*-7; || ||, is the norm ofH*; (, ) is the inner
product of L2; | , | is the norm ofL2 |, |, is the norm ofL?; B(, , ) is the
trilinear form given byB(u, v, w) = ((u V)V, w); ¢ is some positive constant
that does not depend on the unknowns.

2. Very weak solution

In this section we give the definition ofvery weak solutioand state our main
theorems.

Definition 2.1 (Very weak solution). A triple(v, w, p) in L3 x L2 x W13 is a
very weak solutionf problem (1)—(2) if
(v, VO) :/(vo-n)e ds, Vo ewb¥2? ()

r
—u (v, Ap) — B(V, ¢, V) — (p, dive)

9
:a(W,r0t<p)+(f,g0)—u/voo%ds, Vo e 22wy Y2 (4)
r
and

=a(v, roty) + (g, w)—oz/WO'%ds—ﬂ/(wcj'n)divwds,
r r

Yy € H2N Hg. (5)
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The main goal of this paper is to prove the following theorems.

Theorem 2.1 (Existence)There exists a very weak solution of probléb—(2)
in the sense of the above definition, provided ¢* ., wherec* is some positive
constant depending only g2 and on the parametets, 8, andy .

Theorem 2.2 (Continuous dependence &g, wg, and uniquenesslet (v;, w;),

i =1, 2, be very weak solutions of probleit)—(2) corresponding to the external
fieldsf = f;, g = g;, and boundary datavg;, i = 1, 2, respectively. Then there
exists a constant* > 0 such that for allu > ©*,

Vi — V2lz + [w1 — wo| < c(|fy — f2 + 91 — G2l 4 [Wo1 — Wo2l), (6)

where the constant depends only on the data of the problem ands®nin
particular, for u > u* the problem is uniquely solvable.

Remark 2.1. Observe that the solution existsif ¢* . In particular, witha = 0,

g = 0, andwg = 0 our existence theorem reduces to that in [10]. On the other
hand, the solution is unique provided the viscogitis large enough, exactly as

in the case of more regular solutions [4].

3. Probleminw
In this section we study the following problemn

Problem 3.1. Givenwg € L?(I") andv € L3 with divv = 0 (see Remark 3.1
below) and such that = u® + v®, whereu® =vg +u, ueV, vy e H?, with
divvi =0, andv® e L3 with |v*|3 sufficiently small; findw € L2 such that (5) is
satisfied.

Remark 3.1. Above, the condition div = 0 is understood in the weak sense; i.e.,
(v, Vo) =0forallg e W§’3/2. As a consequence, we have that the bilinear form

B@. ) E'a(Ve, V) — B, v, ¢) + Bdive. divy) + v (p. v)  (7)

is strongly elliptic; i.e., it is bilinear continuous and coercive. Indde@, ¢, ¥)

= —(1/2)(v, V(¢|?) =0, for all € H}, since diw = 0 andHE c Wg¥/%.

Lemma 3.1. There exists a unique solutianof Problem3.1. Moreover,
Iw| < c(1+ u®]l1), (8)

wherec is independent of.
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Proof. We use the transposition method [11]. Let

L) T oAy — (v-V)y — BV divy + . ©)

Givenh € L?, lety be the unique weak solution Hol of the equatiorL(¥) = h
ie.,

B(¢.y) = (h. o) (10)

forall ¢ Hol. Existence and uniqueness of such solutjom HO1 easily follows
from Lax—Milgram’s lemma, since diw= 0 (cf. Remark 3.1 above). Besides, we
can easily get the estimates

Il <e Yul, <y bl (11)

by takinge¢ = ¢ in (10).
Next we prove higher regularity of the solution of (10); i.e., we show that
¥ € H?. Moreover, we obtain the following estimate:

I¥ll2 < c(L+ U 13)1Al, (12)
wherec is independent of. To attain that we first regularize by making use
of the convolution operator with a smooth family of mollifigys,}, n > 0. For
v,7 = us +v;,, whereuj, = ux p, +v0, Vg = V® * p;, We letyr, be the solution in
H1 of the following regularization of systeth(y) = h

—a Ay, — BV AV, + vy — Fy, (13)

whereF, £+ (v, - V), = b+ (US - W)y, + (V5 - V). Sinceut, Ve € C(2)
andVy, € L?, we have that, € L2 thus by N&as result on strongly elliptic

systems (Theorem 5 in [12]) we obtain

||1//,7||2<C|F,7|, (14)
wherec is independent of,,. But

1/2
(W - V)| < ellUE 12 Vg la < ellud el 121w 115
2
<E||uf,||§||w,,n+o||wn||z (15)

for anyo > 0. (In the second inequality above we used the Gagliardo—Nirenberg
(see, e.g., [13]) inequalityu e, < cllullfymqluli=? with k =1, p=n =3,
m=gq=2,0=1/2,andr = 6.) Besides,

|V - W)y | < IV5 131 Vg le < IVE13I VY le < aclliy 2, (16)

if [v¢|3<o. Then, usmg (15) and (16) in (14) with an appropriateve obtain
1y ll2 < eI+ U 1Y 1) - AS (19 ]| < clhl, we arrive at (12), withy, in place
of ¥ anduj in place ofu®. Then we pass to the limit for a subsequenc¢mf
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and get (12). Here we used Banach—Alaoglu’s theorefdrand the uniqueness
of solution of (10) inHZ.

Now we consider the map that takiesn L2 into the unique solutiory of (10)
which is in H2. Since we have (12) and Eq. (10) is linear, this is a continuous
linear map fromL? into H2. Then the expression

1(h) ¥ a(v, roty) + (g, w)—a/wo. %ds—ﬂ/(wo.n)divwds
r r

defines a continuous linear functional inacting onL2. Writing the equation
for win the form

(W, h) =1(h) (17)

for all 1 € L2, we conclude directly from the Riesz representation theorem that
it has a unique solutiow in L2. This prove the existence and uniqueness part of
the lemma.

Next we proceed to get the estimate (8). Setting= w in the equation
(w, h) =1(h) we get

\W[% = a(v, roty) + (g, ¥) —a/WOZ;—Ir/: ds—ﬁ/(wo-n)divwds, (18)
r r

whereL(y) =w, ¥ € Hi N H2. We shall show that the right-hand side of (18)
can be estimated by(1 + ||u®|1)|w|, wherec is independent of.. From the
estimatex ||y |2 + v [¥]? < (W, ) < (1/2y) W[ + (v/2)||? we have

1 1

Iwl and |y < —|w|. (19)

V2ay %
The difficult term in (18) isfr Wo(dvr/an) ds. To estimate it we need to use the
fact that

Izl 2 < c(IV2IY2121M2 + 2] (20)

[KAIBS

for anyz in H(£2). This estimate can be inferred froi, 2 -, < ¢|Vz|¥?|z|%/?
forall z € H1(£2) with null average inf2 (see, e.g., [14, p. 50]) by applying it to
minus its average if2. Using (19), (20) withy = V¢ and (12), we have

a(v,roty) <alvllly | <

a
v||w| <ac(1+ ||u®|1)wl],
W' 1w < ac(1+ u®]l1)|w]
1
(9,1//)<I9|W|<;IQIIW|<C|WI,

Y
Q/Woa—nds<(¥|W0|L2(1")|VW|L2(F)

r
1/2
< alwol g2 mye (W15 21w 12 + 11w )
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1/2
< aclWol20m (14 U8 13) 2w Y2 w2 + w))
< (14 U f1z)wl,
and

p /(Wo ) divyr ds < cBIWol 2 Wl < (14 (U l1) Iw].
r

In conclusion, (18) together with the above estimates gives (8).

We finish this section with the following lemma which will be used in the end
of the proof of Lemma 5.2.

Lemma 3.2. Let (u}) be a bounded sequence i, v, dzefuf, +vé, andw,, the

unique solution of Problen3.1 with v =v,,. Then there exists a subsequence
(wy, ) that is strongly convergent ih2.

Proof. From inequality (8) we conclude that the sequefvgg) is bounded in..
Thus, there exists a subsequetwg, ) that is weakly convergent ih2. From (18)
written forw,, andw,,, we get

(Wi 12 = W, 2
= a(Vnk — Vyy, rOtI//nk) + a(Vnks rOt(l//nk - I//m)) + (g, 'ﬂnk - 'ﬂk})

0 .
- a/WOa_n(wnl - Wnk)ds - B /(WO : n)le(l//m - Wnk)ds’ (21)
r r

whereL (Y, ) =W, andL(yy,,) = W,,.

From the boundedness 6fy,) in L2 and inequality (12) it follows that the
sequencéy,, ) is bounded inH2. From the compact embeddirg < < 1.3/2
we conclude the existence of a subsequeqgg , m = 1,2,..., such that
(V) converges strongly ill¥2. Since H? < H¥*(I') << HX(I"), we
can assume also tha‘V(wnkm — wnkl_)le(p) converges to zero a&, i ¢go to
infinity. Taking that into account, we can see easily from (21) that |2 —

m

Wiy, |2 — 0, asm, i go to infinity. This, together with the weak convergence of
(Wy, ) in L2, gives the strong convergence@f,, )in L2. O

4. Problemin v and arelated problem

Assume thatv e L? is given and consider the problem (3), (4)irWe want to
get rid of the pressure (it can be recovered when needed from De Rham’s lemma)
and to this end we take test functions that are divergent free. Then the problem (3),
(4) reduces to the following one.
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Problem 4.1. Givenw € L2, vg € L2(I") andf € L?; find v e L3 such that

vV, V) = / (Vo-n)ods, VOewl3/2 (22)
r

and

0
— 1V, A) — BV, 9, V) = a(w, rotg) + (F, ¢) — i / vo-sLas.  (29)
I

for all  in W23/2 Wa-*/? such that diy = 0.

Now, we introduce a problem that is related to Problem 4.1. Assume tisat
a solution of Problem 4.1 and that we can writan the form
v=Uu+Vv: (¢>0), (24)

whereu? is a “large regular part'v® € H%, divu? =0,u|r = Vg (Vg is a smooth
approximation ofvg in L2(I") such thatvg — vgle(p) <« 1), andv? is a “small
irregular part”:v¢ € L2 and is very weak solution of the problem (cf. Lemma 4.2
below)

—UAVE + (VE-VIVE+VpE =0 ing2,
divv* =0 in£, (25)
VE|r =Vo — V.

According to the definition of a very weak solution, we have, in particular,
9
V. 89) = B g =it [ o~y 3 ds (26)
r

for all g € W23/2 wy¥? with dive = 0. From (23), (24) and (26) it follows

that

—u(uf, Ap) =B, ¢, V) + B(V®, ¢, u®) + a(w, rote) + (f, @)
)
£
- — ds.
M/\loan :
r

Observe that; is smooth and that® belongs toH 1. We can integrate by parts
on the left-hand side of this equation to get

n((U%, @) =B, ¢, V) + B(V*, ¢, u?) + a(w, rote) + (f, ¢). (27)
Now we writeu? in the form

U =+, (28)
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where\}% is a suitable Leray—Hopf extension ¢f to £2 (cf. Lemma 4.1 below),
andu € V. From (27) and (28) we can derive the equationfovVe also write

VUV =V UV =U+ Ve (29)

where VS vF + v&. We observe thav¢ belongs toL2® and V¢|r = vo. Ap-
plying (28) and (29) to (27) we obtain

w((u, @) =B, ¢, u) + BV, @, u) + B(u, ¢, V) + a(w, rotp)
+(F, 0) — (Ve 9)) + B(Vey 0, V) + B(V, ¢, V5).
Denote
L, ) EBVE ou)+Bu, g, Vo), vEEE+ve, (30)

and

(F.0) £ 0) — (Y, 0)) + BV, ¢) + B, 9. V)
+ B(V¢, 9, V5). (31)
Then

w((u, ) =B, ¢, u) + L(U, ¢) + a(w, rote) + (F, ¢) (32)

forall o € W23/2n Wl %/2 \with divp = 0. If u is a solution of problem (32), then

itis also a varlatlonal solution; that is,
w((u, ) =B, ¢, u) + L(U, ¢) + a(w, rote) + (F, ¢) (33)

for all ¢ € V, as from (30), (31) we can see thatu, ), (F, ¢), andB(u, ¢, u)
are continuous i with respect to theé4! topology.

Let us assume now that € V is a solution of (33). From the above con-
siderations it follows then that=u + V¢, V¢ = vg + V¢, is a very weak solution
of Problem 4.1.

In the next section we prove existence of a very weak solution of problem
(1)-(2), where the velocity field is of the form=u + V* = u® +-v*, withu € V,
and with v¢ d_fvs +V&, U =u+ vo, suitably constructed on the basis of the
boundary datag € L2. We will use the following lemmas.

Lemma 4.1 (Leray—Hopf extension).et £2 be an open connected and bounded
set inR3 of classC? and zg € H¥2(I") with [,-zo - nds = 0. Then for every

o > 0 there exists a functioly such thatzg € H2(£2), divzg=0in 2, Zo = 2o
onI" and|B(u, o, w)| < oful®forallue V.

Proof. See [6, Chapter I, §1.4 and Appendix 1|0
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Lemma 4.2 (Marust-Paloka) Let 2 ¢ R® be a bounded domain iR® with a
boundaryI” of classC?. Consider the following boundary value problem for the
Navier—Stokes equations with dagan L2(I") satisfyingfr g-nds=0:

—uAZ+(z-V)z+Vp=0 Iin$2,
divz=0 in £2,
z=g onrl.

If 1912, is sufficiently small, then there exists a unique very weak solation

L® of the above problem. Furthermore, there is a constardepending only on
w1 such that

cipl9lzecry

1z]3 < .
w—c1l9l2ry

(34)

Proof. See Theorem 4 in [10]. O

5. Existencetheorem

At the beginning of this section we shall show how to construct a map
A:V — V whose fixed point gives a very weak solution of (1)—(2) in the sense of
Definition 2.1. Then we prove two lemmas which yield the proof of Theorem 2.1.

We start withvg € L?(I")—the irregular boundary condition. We take a smooth
approximationvg of vo in L2(I") such thatvg — Volr2¢ry Is small enough with
respect tou, and letv® to be a very weak solution of (25) (cf. Lemma 4.2); we
take|vo — Vgl 2.y SO small that the Problem 3.1 has a solution for escim H?
and that the last inequality in (38) below holds true. Then we construct the Leray—
Hopf extensiony of v satisfying

~ jz
B(u. vp. u) < gllul’? (35)

forallu eV (cf. Lemma 4.1). ~ ~

Now, for u € V, we definev =u + vg + v® = u® 4 v*, u® dzefu +vg, and
for this v we solve Problem 3.1 irw. Having w—the unique solution of
Problem 3.1—we can defind(u) € V by the relation

E(A(u), ) = a(w, rot) + (F, ¢) + B(U, ¢, u) (36)
for all ¢ € V, where E(u, ¢) £ 1((u. 0)) — L(u.¢) (£ defined in (30)) is
continuous and coercive under our assumptions. For weelL? andu € V the
right-hand side of (36) defines a linear and bounded functionalon V. Thus,
by the Lax—Milgram lemma, the mag is well defined.

Observedtpgt each fixed pointof the map.A defines a pai(v,w) = (u +
vew), vEE Vg + V¢, which is a very weak solution of (1)—(2). Using the De
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Rham lemma we show then that there exists @ W13 such that the triple
(v, w, p) satisfies all conditions in Definition 2.1.

We can prove that the operatot is completely continuous and that for
a < c*u, with some constant®, all u € V such that for some. € [0, 1] it is
u = LAu are contained in a ballu|| < M. The existence of a fixed point of
follows then from the Leray—Schauder fixed point theorem.

Lemma 5.1. If a is small enoughg < ¢*u with some constant*, then there
exists a constan¥ > 0 such that for allu € V satisfying the equation = A.4Au
for somex € [0, 1] we have|u|| < M.

Proof. If A =0, thenu=0. Now, if 0< A < 1, then settingdu = (1/2)u in (36)
with ¢ = u, we obtain
mllull® — £(u, u) = A{a(w, rotu) + (F, u)}. (37)

By the definition ofL (see (30)) together with the fact that di¥ = 0 andV* =
Vg + V¢, and by the estimates (35) and (34) in Lemma 4.2 \gita vo — v (cf.
problem (25)), we have

|£u,w)| =B, u, V)| =|B(u,u,V§) + B, u,v*)|

~ jz
= |=B(u,v§, u) + B(u, u, v¥)| < g||u||2+c|v€|3||u||2

© c1iulVg — Vol 2 %
<<§+c e ) ull? < il (38)
I,L—C1|V0—V0|L2([‘)

for |vg — Vol .2 sufficiently small with respect tp.. Also, by (8),

a(w, rotu) <alwl|lul < ac(14 1) ul
<ac(1+|lully + V5] )l
ac(L+ [lull + V5] ) lul
<aclul? +ac’ul < Z Il +ac'lul (39)
forac < u/4 (we can set* = 1/(4c¢)) and, by the definition ofF (see (31)),
(F.u) = (f.u) — (V5. u)) + B(Ve. u. V) + B(v*,u, v§) <cllull.  (40)
From (37), together with (38)—(40), we obtain the desired result.

Lemma 5.2. The operatot4 is completely continuous.

Proof. Let (u,) be a bounded sequencelin We shall show that theqAu,,, ) is
a Cauchy sequence W (for a subsequenaey)). Let
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E(Aum, (p) - a(Wma rOt(p) + (F, (p> + B(um7 (0, um)a (41)
E(AU,, 9) = a(Wy, rote) + (F, @) + B(Uy, @, Uy) (42)
forall ¢ € V, where

(Wi, =AY + (V- V)Y — BV VY + yy)

= a(Vp, roty) + (g, 10)—a/wo%ds—ﬂ/(wcyn)divwds, (43)
r r

(Wna —Oém// + (Vn : V)l// - lBVdIVw + VW)
=a(vy, roty) + (g, ¥) —Ol/WO?)—:f ds —ﬁ/(wo-n)divwds, (44)
r

r

Vi = Uy, + V&, v, = U, + V&, V¢ dzef\% + vé. Taking the difference of (41)
and (42) we obtain
E(Aum - Auna 90) = a(Wm — Wy, rOt(p)
+ BUn — Uy, @, Uy) + B(Up, @, Uy — Uy). (45)
Setp = Au,, — Au, and we have

3
Z/IAU, — Aup % < alWy, — Wy || AU, — Auy |
+ (I |+ 11U 1) AU, — AUy [[ Uy, — Uy 3,

where for obtaining the left-hand side we usgdl, ¢) d:efu((u, ) — LU, p)
and the estimate fof(u, u) in (38). Thus

3
Z/’L”Aum - Aun” < a|Wm - Wn| + C(”um ” + ”un ”)lum - un|3- (46)

Now, as(u,,) is a bounded sequenceli) there exists a subsequence (we denote
it also by (u,)) that is convergent id.3. Moreover, in view of Lemma 3.1,
(w,,) converges inL2. Thus, by (46),(Au,) is a Cauchy sequence . In
consequence, the operatdris compact. Observe that from inequality (46) the
continuity of 4 in V immediately follows. O

6. Continuousdependence

In this section we prove Theorem 2.2. Let
n((Ui, ) = B(U;, ¢, u) + L(U;, §) + a(W;, rotd) + (Fi, ¢), (47)

where

L) BBV g u) + B g, Ve, VEEE £y, (48)
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and

(Fir ) B (6, 9) — (T, @) + BV, ¢) + B(VE, ¢, V¥)

+B(V*. . ) (49)
fori=1,2and¢g € Hol. We recall that/? is the very weak solution of (25) with
V¥ = Vo — Vg, wherevg is a smooth approximation o such that diwvg = 0,
IVo — Vgl3 is very small with respect tgu (cf. (38)), andvy is a Leray—Hopf
extension ok/g satisfying (35). From (38) we have

n
L(ug — Uz, Up — U2) < Zllui— uz||?. (50)
Then, writing (47) fori = 1, 2, taking the difference and settigg= u; — uz, we
obtain
3
Zlun — ua)?
< B(ug —up,ug — Uz, Uz) + a(W]_ — W, rot(ug — Uz))
+ (f1 —f2,u1 —up)
< clluzllfluy — uzll? + alw — wa[Juy — Uzl + c|fy — falllug — Uz,
whence

3
Z,U«HUl — Uzl < clluzlllug — uz|l 4+ alw1 — wz| 4 c|f1 — f2|.

From Lemma 5.1 we have thét|| < M, whereM is a constant that does not
increase withu; thus foru large enough such thafjus|| < /4, we obtain

%”Ul—UZ” <alwg —wz|+clfy —fa|. (51)

Now, we use Eq. (17). Assume at first thag; = woz. Then from (17) written
forw=w;,i =1, 2, we have
8 .
Vi s
an

(We. hi) = a(va, rotys) + (g1, ¥i) — o / Wo
r
_ﬂ/(WO'n)diVI/fi ds, (52)
r

whereh; = Ly, (i) for Ly & —¢ Ay — (v- V)y — gV divy + y . Making the
difference in (52) foi =1, 2, we obtain
W1 — W2|? = a(V1 — Vg, rotyr2) + a(Va, rot(ya — ¥12)) + (91 — G2, ¥2)

0
+ (91, Y1 — ¥2) +a/W08—n(W1 —Y2)ds
r

+8 / (Wo - n) div(yr1 — ¥r2) ds. (53)
r
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Now, we estimate the terms on the right-hand side of (53). The first term is easily
estimated:

a(Vy — V2, rotyr) = a(uy — Uz, rotyrp) = a(rot(ul —up), 1//2)

a
<Cl||U1—U2|||'ﬂ2|<;||U1—U2|||W1—W2|, (54)

where we used (11). The second term can be estimated as follows:

a(Vl, rot(yr1 — 1sﬁz)) <alvilllys — v2ll. (55)
We have—aAy; + (v1 - V)Y — BVdivy; + vy =wg — wp, i = 1,2; then
making the difference far= 1, 2, we get
—aA(Y1 — Y2) + (Vi- VY(Y1 — ¥2) — BV div(y1 — ¥2) + v (Y1 — ¥r2)
=—((vi—V2) - V)2 =—((ur — u2) - V). (56)

Multiplying by ¥1 — 2 and integrating inf2 we obtain, in particular||y1 —
Yol < cljur — uz|ll¥2]l, so, using again (11), it follows that

V1 — Y2l < cllur — uzlljlwi — wal.
Using this estimate in (55) we obtain

|a(v1, rot(y1 — ¥2)) | < elvalllug — U]l [wy — wa. (57)
Next, we have

(01— G2, ¥2) < |91 — Goly~Hwa — wo| (58)
and

(91, Y1 — ¥2) < clQulllvr — Y2l < clgalllur — uzfllwy — wal. (59)

The boundary integrals give, by (56) and (12),

0
o [ o (s = ¥ ds < alwolyzqrycllva — Vel

r
< clwol 2 | ((UL — U2) - V) 2|

<clwolzzcryllur — uzllliv2ll2

< elWol z2¢ry luz — Uzl (1 + [|uz1?) lwz — wa|

< clwol 2 llur — uzll(1+ M%) |wi — ol

= c|Wol .2( ) llur — Uz|[|wy — w2 (60)

and

B [ o mydiveys — vz ds < Bl zrycliua = valiws ~ wal. (61)
r
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From (53)—(61) we obtain
w1 —wa| < c(|lug — Uzl + |91 — g2l). (62)

Using this estimate in (51) we hayia; —uz|| < c¢(|g1—g2| + [f1—f2|) for u large
enough. Then, from (62), it follows an estimate of the same typéfor wo|.
Therefore, we can write

Vi — V2|3 + [w1 — wa| < c(|f1 — f2| + 191 — 92l). (63)

as|vi — Va|z = |u; — Uz|3 < c|ju; — uz|. Estimate (63) gives the continuous
dependence of solutiong, w) on the datd, g, providedu is large enough.

Now, to prove (6), we observe that\fg; # Wo2, then in (52) we havevp
andwpgy instead ofwg, respectively, and subtracting these equations we obtain
two new terms, namely

ad .
a/(W01—W02)%¢2dS and ﬂ/((Wm—Woz)'n)lewzds,
r r

which can be estimate from above &yo1 — Wo2||w1 — Wa|, whence we have (6)
in view of the above considerations.
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