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Abstract

We consider the Dirichlet boundary value problem for the equations of a stationary
micropolar fluid in a bounded three-dimensional domain. We show the existence and
uniqueness of a distributional solution with boundary values inL2.  2002 Elsevier
Science (USA). All rights reserved.
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1. Introduction

The micropolar fluid model is an essential generalization of the well-estab-
lished Navier–Stokes model in the sense that it takes into account the microstruc-
ture of the fluid. It may represent fluids consisting of randomly oriented (or spheri-
cal) particles suspended in a viscous medium, when the deformation of fluid parti-
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cles is ignored. Micropolar fluids were introduced in [1]. They are non-Newtonian
fluids with nonsymmetric stress tensor.

The governing system of equations of micropolar fluids expresses the balance
of momentum, mass, and moment of momentum [1,2], which in a stationary
regime is{−µ∆v + (v · ∇)v + ∇p = a rotw + f, div v = 0,

−α∆w + (v · ∇)w − β∇ div w + γw = a rotv + g,
(1)

wherev = (v1, v2, v3) is the velocity field,p is the pressure andw = (w1,w2,w3)

is the microrotation field interpreted as the angular velocity field of rotation
of particles. The fieldsf = (f1, f2, f3) and g = (g1, g2, g3) are given external
forces and moments, respectively, andµ = ν + νr , a = 2νr , α = ca + cd ,
β = co + cd − ca , γ = 4νr , whereν, νr , co, ca, cd are positive constants that
represent viscosity coefficients,ν is the usual Newtonian viscosity andνr is called
the microrotation viscosity. It is assumed that the density of the fluid is equal to
one.

Observe that if the microrotation viscosityvr equals zero then the first
equations in system (1) reduce to the incompressible stationary Navier–Stokes
system and the velocity field is independent of the microrotation field.

Several experiments show that solutions of the micropolar fluid model better
describe behavior of numerous real fluids (e.g., blood [3]) than corresponding so-
lutions of the Navier–Stokes model, especially when the characteristic dimensions
of the flow (e.g., the diameter of a channel) become small.

In this paper we are interested in the boundary value problem for system (1) in
a bounded domainΩ of R3 with a smooth boundaryΓ and Dirichlet boundary
data,

v|Γ = v0, w|Γ = w0, (2)

in L2(Γ ). We assume thatf,g ∈ L2(Ω) and the compatibility condition
∫
Γ v0 ·

nds = 0, where we denote byn the unit outward normal ofΓ . The case of null
boundary data was studied by Łukaszewicz [4] (see also [2]), and in [5] in the case
of exterior domain. The case where the boundary data are not null but sufficiently
regular, such that they can be extended to the interior of the domainΩ accordingly
with trace theorems, can be treated in a similar way as in [2]. (The case of
stationary Navier–Stokes system with data inH 1/2(Γ ) goes back to the classical
method of Leray—see, e.g., [6], and with data inW1−1/q,q(Γ ), 3/2< q < 2, was
solved in [7].) However, if they are not regular, for instance, if the boundary data
are not the traces at the boundary ofΩ of some functions in Sobolev spaces onΩ ,
then the problem is quite more difficult. This problem for the Stokes equations was
treated by Conca [8], where the concept ofvery weak solutionwas introduced (see
Appendix A in [8], or [9]). Then, more recently, Marusič-Paloka [10] proved the
existence of avery weak solutionfor the stationary Navier–Stokes equations.

There are some physical motivations for considering fluid equations with ir-
regular boundary data; e.g., in [8] it is considered the Stokes equations modeling
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a fluid in a domain containing a sieve and then it is shown that when the sieve
becomes finer and finer the solution of the problem converges to a solution of a
Stokes problem with boundary data only inL2. Other examples, for the stationary
Navier–Stokes equations with boundary data in some Sobolev spaceW1−1/q,q ,
are pointed out in [7]; namely, the problem of a stationary fluid in a “domain with
a cavity,” i.e., the union of a semi-space with a bounded domain (the “cavity”),
and theTaylor problem,i.e., the problem of equilibrium of a fluid between two
co-centered cylinders with the external cylinder fixed and the internal one in a
rotational motion about its axis.

The main idea used by Conca in [8] is the transposition method (see, e.g., [11]),
which is very useful for linear equations. Marusič-Paloka [10] was able to extend
Conca’s result, first for small data by using a linearization of the Navier–Stokes
equations and an iterative argument (in fact, the Banach’s fixed point theorem)
based on penalization method and an estimate on the Oseen’s problem solution,
and then for no small data assumption by splitting the data into a small irregular
part and a large regular part.

We combine ideas from Conca [8], Marusič-Paloka [10], and Łukaszewicz [4],
to obtain the existence of avery weak solutionfor the stationary micropolar fluid
equations. That is, first we use the transposition method for obtaining a solutionw
to the microrotational field equation, which depends on the velocity fieldv that
lives inL3(Ω). This microrotational field solutionw obeys a good estimate with
respect tov, as we prove below, providedv is split into a small irregular part in
L3(Ω) and a regular partuε in H 1(Ω) (see Lemma 3.1). To attain that, we needed
to prove a regularity result for a second-order linear strongly elliptic system with
an irregular coefficient (see the proof of Lemma 3.1). Then taking the small part
of v as a solution for the Navier–Stokes equations, via Marusič-Paloka’s theorem
(Theorem 4 in [10]), we prove the existence ofuε using an appropriate Leray–
Hopf extension of a smooth approximation of the boundary value forv, such that
we may employ the Leray–Schauder fixed point theorem following [4].

Besides the existence of solutions, we obtain a result of continuous dependence
on the boundary data forw and given external forces, which implies, in particular,
uniqueness of solution.

The plan of the paper is as follows. In Section 2 we give the definition of a
very weak solutionand state our main theorems. Section 3 deals with the system
for the microrotational fieldw assuming thatv is split into an appropriate sum, as
explained above. In Section 4 we show a way of reducing the system forv to a new
system for an unknownu in the spaceV of divergent free functions inH 1

0 (Ω).
That is,v = uε +vε, wherevε is the small part ofv in L3(Ω). This small partvε is
a very weak solutionof the stationary Navier–Stokes system, which exists due to
the Marusǐc-Paloka’s theorem [10], with null external force and with a boundary
data very small in the norm ofL2(Γ ), depending on a smooth approximation
vε

0 of v0. The partuε is the “large” regular part ofv in H 1(Ω). It is equal to
u + ṽε

0, whereṽε
0 is an appropriate Leray–Hopf extension ofvε

0 to Ω which is
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in V , andu is the new unknown which satisfies its own system shown in Section 4.
This system foru is a nonlinear one, where the nonlinearities come from the term
(u · ∇)u and fromw that depends onv. In Section 5 we prove the existence of
a solutionu in V for this system using the Leray–Schauder fixed point theorem,
with the help of a good choice ofvε

0 and ṽε
0. Finally, in Section 6 we prove the

continuous dependence of thevery weak solutionon the dataf, g andw0.

Notations. Throughout this paper, besides standard or above stated notations,
we fix the following one:Wk,p is the Sobolev space of orderk modelled in
Lp(Ω; R3); Wk,p

0 is the closure inWk,p of the functions inC∞
0 ; Hk = Wk,2;

Hk
0 = W

k,2
0 ; (( , )) is the inner product inV (V is the closure inH 1

0 of the functions
in C∞

0 with null divergence); i.e.,

((u,v))
def=

∫
Ω

∂vi

∂xj

∂ui

∂xj
, u = (u1, u2, u3), v = (v1, v2, v3) ∈ V,

where repeated indices mean summation from 1 to 3;‖ ‖ is the norm associated
with (( )); ‖ ‖k,p is the norm ofWk,p ; ‖ ‖k is the norm ofHk; ( , ) is the inner
product ofL2; | , | is the norm ofL2; | , |p is the norm ofLp; B( , , ) is the
trilinear form given byB(u,v,w)

def= ((u · ∇)v,w); c is some positive constant
that does not depend on the unknowns.

2. Very weak solution

In this section we give the definition of avery weak solutionand state our main
theorems.

Definition 2.1 (Very weak solution). A triple(v,w,p) in L3 × L2 × W−1,3 is a
very weak solutionof problem (1)–(2) if

(v,∇θ) =
∫
Γ

(v0 · n)θ ds, ∀θ ∈ W1,3/2, (3)

−µ(v,∆ϕ)−B(v, ϕ,v)− (p,divϕ)

= a(w, rotϕ)+ (f, ϕ)−µ

∫
Γ

v0 · ∂ϕ
∂n

ds, ∀ϕ ∈ W2,3/2 ∩ W
1,3/2
0 , (4)

and

−α(w,∆ψ) −B(v,ψ,w)− β(w,∇ divψ) + γ (w,ψ)

= a(v, rotψ) + (g,ψ)− α

∫
Γ

w0 · ∂ψ
∂n

ds − β

∫
Γ

(w0 · n)divψ ds,

∀ψ ∈ H 2 ∩ H 1
0 . (5)
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The main goal of this paper is to prove the following theorems.

Theorem 2.1 (Existence).There exists a very weak solution of problem(1)–(2)
in the sense of the above definition, provideda � c∗µ, wherec∗ is some positive
constant depending only onΩ and on the parametersα, β , andγ .

Theorem 2.2 (Continuous dependence onf, g, w0, and uniqueness).Let (vi,wi ),
i = 1,2, be very weak solutions of problem(1)–(2) corresponding to the external
fields f = fi , g = gi , and boundary dataw0,i , i = 1,2, respectively. Then there
exists a constantµ∗ > 0 such that for allµ � µ∗,

|v1 − v2|3 + |w1 − w2| � c
(|f1 − f2| + |g1 − g2| + |w01 − w02|

)
, (6)

where the constantc depends only on the data of the problem and onΩ . In
particular, forµ � µ∗ the problem is uniquely solvable.

Remark 2.1. Observe that the solution exists ifa � c∗µ. In particular, witha = 0,
g = 0, andw0 = 0 our existence theorem reduces to that in [10]. On the other
hand, the solution is unique provided the viscosityµ is large enough, exactly as
in the case of more regular solutions [4].

3. Problem in w

In this section we study the following problem inw:

Problem 3.1. Given w0 ∈ L2(Γ ) and v ∈ L3 with div v = 0 (see Remark 3.1
below) and such thatv = uε + vε, whereuε = ṽε

0 + u, u ∈ V , vε
0 ∈ H 2, with

div ṽε
0 = 0, andvε ∈ L3 with |vε|3 sufficiently small; findw ∈ L2 such that (5) is

satisfied.

Remark 3.1. Above, the condition divv = 0 is understood in the weak sense; i.e.,
(v,∇θ) = 0 for all θ ∈ W

1,3/2
0 . As a consequence, we have that the bilinear form

B(φ,ψ)
def= α(∇φ,∇ψ) −B(v,ψ,φ)+ β(divφ,divψ) + γ (φ,ψ) (7)

is strongly elliptic; i.e., it is bilinear continuous and coercive. Indeed,B(v, φ,ψ)

= −(1/2)(v,∇(|φ|2)) = 0, for allφ ∈ H 1
0 , since divv = 0 andH 1

0 ⊂ W
1,3/2
0 .

Lemma 3.1. There exists a unique solutionw of Problem3.1. Moreover,

|w| � c
(
1+ ‖uε‖1

)
, (8)

wherec is independent ofv.
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Proof. We use the transposition method [11]. Let

L(ψ)
def= −α∆ψ − (v · ∇)ψ − β∇ divψ + γψ. (9)

Givenh ∈ L2, letψ be the unique weak solution inH 1
0 of the equationL(ψ) = h;

i.e.,

B(φ,ψ) = (h,φ) (10)

for all φ ∈ H 1
0 . Existence and uniqueness of such solutionψ in H 1

0 easily follows
from Lax–Milgram’s lemma, since divv = 0 (cf. Remark 3.1 above). Besides, we
can easily get the estimates

‖ψ‖ � α−1|h|, |ψ| � γ−1|h| (11)

by takingφ = ψ in (10).
Next we prove higher regularity of the solution of (10); i.e., we show that

ψ ∈ H 2. Moreover, we obtain the following estimate:

‖ψ‖2 � c
(
1+ ‖uε‖2

1

)|h|, (12)

wherec is independent ofv. To attain that we first regularizev by making use
of the convolution operator with a smooth family of mollifiers{ρη}, η > 0. For
vη

def= uε
η + vε

η, whereuε
η = u ∗ ρη + ṽε

0, vε
0 = vε ∗ ρη, we letψη be the solution in

H 1
0 of the following regularization of systemL(ψ) = h:

−α∆ψη − β∇ divψη + γψη − Fη, (13)

whereFη
def= h+ (vη · ∇)ψη = h+ (uε

η · ∇)ψη + (vε
η · ∇)ψη. Sinceuε

η, vε
η ∈ C(Ω̄)

and∇ψη ∈ L2, we have thatFη ∈ L2; thus by Něcas result on strongly elliptic
systems (Theorem 5 in [12]) we obtain

‖ψη‖2 � c|Fη|, (14)

wherec is independent ofvη. But∣∣(uε
η · ∇)ψη

∣∣ � c‖uε
η‖1|∇ψη|3 � c‖uε

η‖1‖ψη‖1/2‖ψη‖1/2
2

� c2

4σ
‖uε

η‖2
1‖ψη‖ + σ‖ψη‖2 (15)

for anyσ > 0. (In the second inequality above we used the Gagliardo–Nirenberg
(see, e.g., [13]) inequality‖u‖Wk,p � c‖u‖θWm,q |u|1−θ

r with k = 1, p = n = 3,
m = q = 2, θ = 1/2, andr = 6.) Besides,∣∣(vε

η · ∇)ψη

∣∣ � |vε
η|3|∇ψη|6 � |vε|3|∇ψη|6 � σc‖ψη‖2, (16)

if |vε|3 � σ . Then, using (15) and (16) in (14) with an appropriateσ , we obtain
‖ψη‖2 � c(|h|+‖uε

η‖2
1|‖ψη‖). As‖ψη‖ � c|h|, we arrive at (12), withψη in place

of ψ anduε
η in place ofuε. Then we pass to the limit for a subsequence of{η}
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and get (12). Here we used Banach–Alaoglu’s theorem inH 2 and the uniqueness
of solution of (10) inH 1

0 .
Now we consider the map that takesh in L2 into the unique solutionψ of (10)

which is in H 2. Since we have (12) and Eq. (10) is linear, this is a continuous
linear map fromL2 into H 2. Then the expression

l(h)
def= a(v, rotψ) + (g,ψ)− α

∫
Γ

w0 · ∂ψ
∂n

ds − β

∫
Γ

(w0 · n)divψ ds

defines a continuous linear functional inh acting onL2. Writing the equation
for w in the form

(w, h) = l(h) (17)

for all h ∈ L2, we conclude directly from the Riesz representation theorem that
it has a unique solutionw in L2. This prove the existence and uniqueness part of
the lemma.

Next we proceed to get the estimate (8). Settingh = w in the equation
(w, h) = l(h) we get

|w|2 = a(v, rotψ) + (g,ψ) − α

∫
Γ

w0
∂ψ

∂n
ds − β

∫
Γ

(w0 · n)divψ ds, (18)

whereL(ψ) = w, ψ ∈ H 1
0 ∩ H 2. We shall show that the right-hand side of (18)

can be estimated byc(1 + ‖uε‖1)|w|, wherec is independent ofv. From the
estimateα‖ψ‖2 + γ |ψ|2 � (w,ψ) � (1/2γ )|w|2 + (γ /2)|ψ|2 we have

‖ψ‖ � 1√
2αγ

|w| and |ψ| � 1

γ
|w|. (19)

The difficult term in (18) is
∫
Γ

w0(∂ψ/∂n) ds. To estimate it we need to use the
fact that

|z|L2(Γ ) � c
(|∇z|1/2|z|1/2 + |z|) (20)

for anyz in H 1(Ω). This estimate can be inferred from|z|L2(Γ ) � c|∇z|1/2|z|1/2

for all z ∈ H 1(Ω) with null average inΩ (see, e.g., [14, p. 50]) by applying it toz
minus its average inΩ . Using (19), (20) withz = ∇ψ and (12), we have

a(v, rotψ) � a|v|‖ψ‖ � a√
2αγ

|v||w| � ac
(
1+ ‖uε‖1

)|w|,

(g,ψ) � |g||ψ| � 1

γ
|g||w| � c|w|,

α

∫
Γ

w0
∂ψ

∂n
ds � α|w0|L2(Γ )|∇ψ|L2(Γ )

� α|w0|L2(Γ )c
(‖ψ‖1/2

2 ‖ψ‖1/2 + ‖ψ‖)
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� αc|w0|L2(Γ )

((
1+ ‖uε‖2

1

)1/2|w|1/2|w|1/2 + |w|)
� c

(
1+ ‖uε‖1

)|w|,
and

β

∫
Γ

(w0 · n)divψ ds � cβ|w0|L2(Γ )|w| � c
(
1+ ‖uε‖1

)|w|.

In conclusion, (18) together with the above estimates gives (8).✷
We finish this section with the following lemma which will be used in the end

of the proof of Lemma 5.2.

Lemma 3.2. Let (uε
n) be a bounded sequence inH 1, vn

def= uε
n + vε, andwn the

unique solution of Problem3.1 with v = vn. Then there exists a subsequence
(wnk ) that is strongly convergent inL2.

Proof. From inequality (8) we conclude that the sequence(wn) is bounded inL2.
Thus, there exists a subsequence(wnk ) that is weakly convergent inL2. From (18)
written forwnk andwnl , we get

|wnk |2 − |wnl |2
= a(vnk − vnl , rotψnk )+ a

(
vnk , rot(ψnk −ψnl )

) + (g,ψnk −ψkl )

− α

∫
Γ

w0
∂

∂n
(ψnl −ψnk ) ds − β

∫
Γ

(w0 · n)div(ψnl −ψnk ) ds, (21)

whereL(ψnk ) = wnk andL(ψnl ) = wnl .
From the boundedness of(wn) in L2 and inequality (12) it follows that the

sequence(ψnk ) is bounded inH 2. From the compact embeddingH 1 ↪→↪→L3/2

we conclude the existence of a subsequence(ψnkm
, m = 1,2, . . . , such that

(∇ψnkm
) converges strongly inL3/2. SinceH 2 ↪→ H 3/2(Γ ) ↪→↪→H 1(Γ ), we

can assume also that|∇(ψnkm
−ψnki

)|L2(Γ ) converges to zero asm, i go to
infinity. Taking that into account, we can see easily from (21) that|wnkm

|2 −
|wnki

|2 → 0, asm, i go to infinity. This, together with the weak convergence of

(wnkm
) in L2, gives the strong convergence of(wnkm

) in L2. ✷

4. Problem in v and a related problem

Assume thatw ∈ L2 is given and consider the problem (3), (4) inv. We want to
get rid of the pressure (it can be recovered when needed from De Rham’s lemma)
and to this end we take test functions that are divergent free. Then the problem (3),
(4) reduces to the following one.
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Problem 4.1. Givenw ∈ L2, v0 ∈ L2(Γ ) andf ∈ L2; find v ∈ L3 such that

(v,∇θ)=
∫
Γ

(v0 · n)θ ds, ∀θ ∈ W1,3/2, (22)

and

−µ(v,∆ϕ)−B(v, ϕ,v)= a(w, rotϕ)+ (f, ϕ)−µ

∫
Γ

v0 · ∂ϕ
∂n

ds, (23)

for all ϕ in W2,3/2 ∩ W
1,3/2
0 such that divϕ = 0.

Now, we introduce a problem that is related to Problem 4.1. Assume thatv is
a solution of Problem 4.1 and that we can writev in the form

v = uε + vε (ε > 0), (24)

whereuε is a “large regular part”:uε ∈ H 1, divuε = 0, uε|Γ = vε
0 (vε

0 is a smooth
approximation ofv0 in L2(Γ ) such that|v0 − vε

0|L2(Γ ) � 1), andvε is a “small
irregular part”:vε ∈ L3 and is very weak solution of the problem (cf. Lemma 4.2
below)


−µ∆vε + (vε · ∇)vε + ∇pε = 0 in Ω,

divvε = 0 in Ω,

vε|Γ = v0 − vε
0.

(25)

According to the definition of a very weak solution, we have, in particular,

−µ(vε,∆ϕ)−B(vε, ϕ,vε) = −µ

∫
Γ

(v0 − vε
0)
∂ϕ

∂n
ds (26)

for all ϕ ∈ W2,3/2 ∩ W
1,3/2
0 with divϕ = 0. From (23), (24) and (26) it follows

that

−µ(uε,∆ϕ)=B(uε, ϕ,v)+B(vε, ϕ,uε)+ a(w, rotϕ)+ (f, ϕ)

−µ

∫
Γ

vε
0
∂ϕ

∂n
ds.

Observe thatvε
0 is smooth and thatuε belongs toH 1. We can integrate by parts

on the left-hand side of this equation to get

µ((uε, ϕ)) = B(uε, ϕ,v)+B(vε, ϕ,uε)+ a(w, rotϕ)+ (f, ϕ). (27)

Now we writeuε in the form

uε = ṽε
0 + u, (28)
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whereṽε
0 is a suitable Leray–Hopf extension ofvε

0 to Ω (cf. Lemma 4.1 below),
andu ∈ V . From (27) and (28) we can derive the equation foru. We also write

v = uε + vε = ṽε
0 + u + vε = u + V ε, (29)

whereV ε def= ṽε
0 + vε. We observe thatV ε belongs toL3 andV ε|Γ = v0. Ap-

plying (28) and (29) to (27) we obtain

µ((u, ϕ))=B(u, ϕ,u)+B(V ε,ϕ,u)+B(u, ϕ,V ε)+ a(w, rotϕ)

+ (f, ϕ)−µ
((

ṽε
0, ϕ

)) +B
(
ṽε

0, ϕ,V
ε
) +B

(
vε, ϕ, ṽε

0

)
.

Denote

L(u, ϕ) def= B(V ε,ϕ,u)+B(u, ϕ,V ε), V ε def= ṽε
0 + vε, (30)

and

〈F , ϕ〉 def= (f, ϕ)−µ
((

ṽε
0, ϕ

)) +B
(
ṽε

0, ϕ
) +B

(
ṽε

0, ϕ,V
ε
)

+B
(
vε, ϕ, ṽε

0

)
. (31)

Then

µ((u, ϕ)) = B(u, ϕ,u)+L(u, ϕ)+ a(w, rotϕ)+ 〈F , ϕ〉 (32)

for all ϕ ∈ W2,3/2 ∩W
1,3/2
0 with divϕ = 0. If u is a solution of problem (32), then

it is also a variational solution; that is,

µ((u, ϕ)) = B(u, ϕ,u)+L(u, ϕ)+ a(w, rotϕ)+ 〈F , ϕ〉 (33)

for all ϕ ∈ V , as from (30), (31) we can see thatL(u, ϕ), 〈F , ϕ〉, andB(u, ϕ,u)
are continuous inϕ with respect to theH 1 topology.

Let us assume now thatu ∈ V is a solution of (33). From the above con-
siderations it follows then thatv = u +V ε , V ε = ṽε

0 + vε, is a very weak solution
of Problem 4.1.

In the next section we prove existence of a very weak solution of problem
(1)–(2), where the velocity field is of the formv = u +V ε = uε + vε, with u ∈ V ,
and withV ε def= ṽε

0 + vε, uε = u + ṽε
0, suitably constructed on the basis of the

boundary datav0 ∈ L2. We will use the following lemmas.

Lemma 4.1 (Leray–Hopf extension).Let Ω be an open connected and bounded
set in R3 of classC2 and z0 ∈ H 3/2(Γ ) with

∫
Γ z0 · nds = 0. Then for every

σ > 0 there exists a functioñz0 such that̃z0 ∈ H 2(Ω), div z̃0 = 0 in Ω , z̃0 = z0
onΓ and|B(u, z̃0,u)| � σ‖u‖2 for all u ∈ V .

Proof. See [6, Chapter II, §1.4 and Appendix 1].✷
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Lemma 4.2 (Marusǐc-Paloka).Let Ω ⊂ R3 be a bounded domain inR3 with a
boundaryΓ of classC2. Consider the following boundary value problem for the
Navier–Stokes equations with datag in L2(Γ ) satisfying

∫
Γ g · nds = 0:


−µ∆z + (z · ∇)z + ∇p = 0 in Ω ,

divz = 0 in Ω ,

z = g onΓ .

If |g|L2(Γ ) is sufficiently small, then there exists a unique very weak solutionz in
L3 of the above problem. Furthermore, there is a constantc1 depending only on
µ such that

|z|3 <
c1µ|g|L2(Γ )

µ− c1|g|L2(Γ )

. (34)

Proof. See Theorem 4 in [10]. ✷

5. Existence theorem

At the beginning of this section we shall show how to construct a map
A :V → V whose fixed point gives a very weak solution of (1)–(2) in the sense of
Definition 2.1. Then we prove two lemmas which yield the proof of Theorem 2.1.

We start withv0 ∈ L2(Γ )—the irregular boundary condition. We take a smooth
approximationvε

0 of v0 in L2(Γ ) such that|v0 − vε
0|L2(Γ ) is small enough with

respect toµ, and letvε to be a very weak solution of (25) (cf. Lemma 4.2); we
take|v0 − vε

0|L2(Γ ) so small that the Problem 3.1 has a solution for eachuε in H 1

and that the last inequality in (38) below holds true. Then we construct the Leray–
Hopf extensioñvε

0 of vε
0 satisfying

B
(
u, ṽε

0,u
)
� µ

8
‖u‖2 (35)

for all u ∈ V (cf. Lemma 4.1).
Now, for u ∈ V , we definev = u + ṽε

0 + vε = uε + vε, uε def= u + ṽε
0, and

for this v we solve Problem 3.1 inw. Having w—the unique solution of
Problem 3.1—we can defineA(u) ∈ V by the relation

E
(
A(u), ϕ

) = a(w, rotϕ)+ 〈F , ϕ〉 +B(u, ϕ,u) (36)

for all ϕ ∈ V , whereE(u, ϕ) def= µ((u, ϕ)) − L(u, ϕ) (L defined in (30)) is
continuous and coercive under our assumptions. For eachw ∈ L2 andu ∈ V the
right-hand side of (36) defines a linear and bounded functional inϕ onV . Thus,
by the Lax–Milgram lemma, the mapA is well defined.

Observe that each fixed pointu of the mapA defines a pair(v,w) = (u +
V ε,w), V ε def= ṽε

0 + vε, which is a very weak solution of (1)–(2). Using the De
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Rham lemma we show then that there exists ap ∈ W−1,3 such that the triple
(v,w,p) satisfies all conditions in Definition 2.1.

We can prove that the operatorA is completely continuous and that for
a � c∗µ, with some constantc∗, all u ∈ V such that for someλ ∈ [0,1] it is
u = λAu are contained in a ball‖u‖ � M. The existence of a fixed point ofA
follows then from the Leray–Schauder fixed point theorem.

Lemma 5.1. If a is small enough,a � c∗µ with some constantc∗, then there
exists a constantM > 0 such that for allu ∈ V satisfying the equationu = λAu
for someλ ∈ [0,1] we have‖u‖ � M.

Proof. If λ = 0, thenu = 0. Now, if 0< λ � 1, then settingAu = (1/λ)u in (36)
with ϕ = u, we obtain

µ‖u‖2 −L(u,u) = λ
{
a(w, rotu)+ 〈F ,u〉}. (37)

By the definition ofL (see (30)) together with the fact that divV ε = 0 andV ε =
ṽε

0 + vε, and by the estimates (35) and (34) in Lemma 4.2 withg = v0 − vε
0 (cf.

problem (25)), we have∣∣L(u,u)
∣∣ = ∣∣B(u,u,V ε)

∣∣ = ∣∣B(
u,u, ṽε

0

) +B(u,u,vε)
∣∣

= ∣∣−B
(
u, ṽε

0,u
) +B(u,u,vε)

∣∣ � µ

8
‖u‖2 + c|vε|3‖u‖2

�
(
µ

8
+ c

c1µ|vε
0 − v0|L2(Γ )

µ− c1|vε
0 − v0|L2(Γ )

)
‖u‖2 � µ

4
‖u‖2 (38)

for |vε
0 − v0|L2(Γ ) sufficiently small with respect toµ. Also, by (8),

a(w, rotu) � a|w|‖u‖ � ac
(
1+ ‖uε‖1

)‖u‖
� ac

(
1+ ‖u‖1 + ∥∥ṽε

0

∥∥
1

)‖u‖
� ac

(
1+ ‖u‖ + ∥∥ṽε

0

∥∥
1

)‖u‖
� ac‖u‖2 + ac′‖u‖ � µ

4
‖u‖2 + ac′‖u‖ (39)

for ac � µ/4 (we can setc∗ = 1/(4c)) and, by the definition ofF (see (31)),

〈F ,u〉 = (f,u)−µ
((

ṽε
0,u

)) +B
(
ṽε

0,u,V ε
) +B

(
vε,u, ṽε

0

)
� c‖u‖. (40)

From (37), together with (38)–(40), we obtain the desired result.✷
Lemma 5.2. The operatorA is completely continuous.

Proof. Let (un) be a bounded sequence inV . We shall show that then(Aunk ) is
a Cauchy sequence inV (for a subsequence(nk)). Let
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E(Aum,ϕ) = a(wm, rotϕ)+ 〈F , ϕ〉 +B(um,ϕ,um), (41)

E(Aun,ϕ) = a(wn, rotϕ)+ 〈F , ϕ〉 +B(un,ϕ,un) (42)

for all ϕ ∈ V , where(
wm,−α∆ψ + (vm · ∇)ψ − β∇ divψ + γψ

)
= a(vm, rotψ) + (g,ψ)− α

∫
Γ

w0
∂ψ

∂n
ds − β

∫
Γ

(w0 · n)divψ ds, (43)

(
wn,−α∆ψ + (vn · ∇)ψ − β∇ divψ + γψ

)
= a(vn, rotψ) + (g,ψ)− α

∫
Γ

w0
∂ψ

∂n
ds − β

∫
Γ

(w0 · n)divψ ds, (44)

vm = um + V ε , vn = un + V ε, V ε def= ṽε
0 + vε. Taking the difference of (41)

and (42) we obtain

E(Aum −Aun,ϕ) = a(wm − wn, rotϕ)

+B(um − un,ϕ,un)+B(um,ϕ,um − un). (45)

Setϕ =Aum −Aun and we have

3

4
µ‖Aum −Aun‖2 � a|wm − wn|‖Aum −Aun‖

+ c
(‖um‖ + ‖un‖

)‖Aum −Aun‖|um − un|3,
where for obtaining the left-hand side we usedE(u, ϕ) def= µ((u, ϕ)) − L(u, ϕ)
and the estimate forL(u,u) in (38). Thus

3

4
µ‖Aum −Aun‖ � a|wm − wn| + c

(‖um‖ + ‖un‖
)|um − un|3. (46)

Now, as(um) is a bounded sequence inV , there exists a subsequence (we denote
it also by (un)) that is convergent isL3. Moreover, in view of Lemma 3.1,
(wm) converges inL2. Thus, by (46),(Aun) is a Cauchy sequence inV . In
consequence, the operatorA is compact. Observe that from inequality (46) the
continuity ofA in V immediately follows. ✷

6. Continuous dependence

In this section we prove Theorem 2.2. Let

µ((ui , φ)) = B(ui, φ,u) +L(ui , φ)+ a(wi, rotφ)+ 〈Fi , φ〉, (47)

where

L(ui , φ)
def= B(V ε,φ,ui )+B(ui, φ,V

ε), V ε def= ṽε
0 + vε, (48)
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and

〈Fi , φ〉 def= (fi , φ)−µ
((

ṽε
0, φ

)) +B
(
ṽε

0, φ
) +B

(
ṽε

0, φ,V
ε
)

+B
(
vε, φ, ṽε

0

)
(49)

for i = 1,2 andφ ∈ H 1
0 . We recall thatvε is the very weak solution of (25) with

vε|Γ = v0 − vε
0, wherevε

0 is a smooth approximation ofv0 such that divvε
0 = 0,

|v0 − vε
0|3 is very small with respect toµ (cf. (38)), andṽε

0 is a Leray–Hopf
extension ofvε

0 satisfying (35). From (38) we have

L(u1 − u2,u1 − u2) � µ

4
‖u1 − u2‖2. (50)

Then, writing (47) fori = 1,2, taking the difference and settingφ = u1 − u2, we
obtain

3

4
µ‖u1 − u2‖2

� B(u1 − u2,u1 − u2,u2)+ a
(
w1 − w2, rot(u1 − u2)

)
+ (f1 − f2,u1 − u2)

� c‖u2‖‖u1 − u2‖2 + a|w1 − w2|‖u1 − u2‖ + c|f1 − f2|‖u1 − u2‖,
whence

3

4
µ‖u1 − u2‖ � c‖u2‖‖u1 − u2‖ + a|w1 − w2| + c|f1 − f2|.

From Lemma 5.1 we have that‖u2‖ � M, whereM is a constant that does not
increase withµ; thus forµ large enough such thatc‖u2‖ � µ/4, we obtain

µ

2
‖u1 − u2‖ � a|w1 − w2| + c|f1 − f2|. (51)

Now, we use Eq. (17). Assume at first thatw01 = w02. Then from (17) written
for w = wi , i = 1,2, we have

(w1, hi) = a(v1, rotψi)+ (g1,ψi)− α

∫
Γ

w0
∂ψi

∂n
ds

− β

∫
Γ

(w0 · n)divψi ds, (52)

wherehi = Lvi (ψi) for Lv
def= −α∆ψ − (v · ∇)ψ − β∇ divψ + γψ . Making the

difference in (52) fori = 1,2, we obtain

|w1 − w2|2 = a(v1 − v2, rotψ2)+ a
(
v1, rot(ψ1 −ψ2)

) + (g1 − g2,ψ2)

+ (g1,ψ1 −ψ2)+ α

∫
Γ

w0
∂

∂n
(ψ1 −ψ2) ds

+ β

∫
Γ

(w0 · n)div(ψ1 −ψ2) ds. (53)
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Now, we estimate the terms on the right-hand side of (53). The first term is easily
estimated:

a(v1 − v2, rotψ2) = a(u1 − u2, rotψ2) = a
(
rot(u1 − u2),ψ2

)
� a‖u1 − u2‖|ψ2| � a

γ
‖u1 − u2‖|w1 − w2|, (54)

where we used (11). The second term can be estimated as follows:

a
(
v1, rot(ψ1 −ψ2)

)
� a|v1|‖ψ1 −ψ2‖. (55)

We have−α∆ψi + (v1 · ∇)ψi − β∇ divψi + γψi = w1 − w2, i = 1,2; then
making the difference fori = 1,2, we get

−α∆(ψ1 −ψ2)+ (v1 · ∇)(ψ1 −ψ2)− β∇ div(ψ1 −ψ2) + γ (ψ1 −ψ2)

= −(
(v1 − v2) · ∇)

ψ2 = −(
(u1 − u2) · ∇)

ψ2. (56)

Multiplying by ψ1 − ψ2 and integrating inΩ we obtain, in particular,‖ψ1 −
ψ2‖ � c‖u1 − u2‖‖ψ2‖, so, using again (11), it follows that

‖ψ1 −ψ2‖ � c‖u1 − u2‖|w1 − w2|.
Using this estimate in (55) we obtain∣∣a(

v1, rot(ψ1 −ψ2)
)∣∣ � c|v1|‖u1 − u2‖|w1 − w2|. (57)

Next, we have

(g1 − g2,ψ2) � |g1 − g2|γ−1|w1 − w2| (58)

and

(g1,ψ1 −ψ2) � c|g1|‖ψ1 −ψ2‖ � c|g1|‖u1 − u2‖|w1 − w2|. (59)

The boundary integrals give, by (56) and (12),

α

∫
Γ

w0
∂

∂n
(ψ1 −ψ2) ds � α|w0|L2(Γ )c‖ψ1 −ψ2‖2

� c|w0|L2(Γ )

∣∣((u1 − u2) · ∇)
ψ2

∣∣
� c|w0|L2(Γ )‖u1 − u2‖‖ψ2‖2

� c|w0|L2(Γ )‖u1 − u2‖
(
1+ ‖u2‖2)|w1 − w2|

� c|w0|L2(Γ )‖u1 − u2‖(1+M2)|w1 − w2|
= c|w0|L2(Γ )‖u1 − u2‖|w1 − w2| (60)

and

β

∫
Γ

(w0 · n)div(ψ1 −ψ2) ds � β|w0|L2(Γ )c‖u1 − u2‖|w1 − w2|. (61)
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From (53)–(61) we obtain

|w1 − w2| � c
(‖u1 − u2‖ + |g1 − g2|

)
. (62)

Using this estimate in (51) we have‖u1−u2‖ � c(|g1−g2|+|f1− f2|) for µ large
enough. Then, from (62), it follows an estimate of the same type for|w1 − w2|.
Therefore, we can write

|v1 − v2|3 + |w1 − w2| � c
(|f1 − f2| + |g1 − g2|

)
, (63)

as |v1 − v2|3 = |u1 − u2|3 � c‖u1 − u2‖. Estimate (63) gives the continuous
dependence of solutions(v,w) on the dataf, g, providedµ is large enough.

Now, to prove (6), we observe that ifw01 �= w02, then in (52) we havew01
andw02 instead ofw0, respectively, and subtracting these equations we obtain
two new terms, namely

α

∫
Γ

(w01 − w02)
∂

∂n
ψ2 ds and β

∫
Γ

(
(w01 − w02) · n

)
divψ2ds,

which can be estimate from above byc|w01−w02||w1−w2|, whence we have (6)
in view of the above considerations.
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