© 2012 Elsevier Inc. All rights reserved.

J. Math. Anal. Appl. 396 (2012) 412-416

Contents lists available at SciVerse ScienceDirect

Journal of Mathematical Analysis and Applications

journal homepage: www.elsevier.com/locate/jmaa

A common fixed point property for semigroups is applied to show that the group algebra

 $L^{1}(G)$ of a locally compact group G is 2*m*-weakly amenable for each integer $m \geq 1$.

2*m*-Weak amenability of group algebras

Yong Zhang

Department of Mathematics, University of Manitoba, Winnipeg MB R3T 2N2, Canada

ARTICLE INFO

ABSTRACT

Article history: Received 1 December 2011 Available online 28 June 2012 Submitted by Tomas Dominguez-Benavides

Keywords: Derivation 2m-weak amenability Locally compact group Common fixed point L-embedded Semigroup Weakly almost periodic

1. Introduction

Let \mathcal{A} be a Banach algebra and X a Banach \mathcal{A} -bimodule. A linear mapping $D: \mathcal{A} \to X$ is called a *derivation* if it satisfies D(ab) = aD(b) + D(a)b $(a, b \in \mathcal{A})$. Given any $x \in X$, the mapping $ad_x: a \mapsto ax - \alpha (a \in \mathcal{A})$ is a continuous derivation, called an *inner derivation*.

If X is a Banach A-bimodule, then the dual space X^* of X is naturally a Banach A-bimodule with the A-module actions defined by

$$\langle x, af \rangle = \langle xa, f \rangle$$
 $\langle x, fa \rangle = \langle ax, f \rangle$ $(a \in \mathcal{A}, f \in X^*, x \in X).$

Note that the Banach algebra \mathcal{A} itself is a Banach \mathcal{A} -bimodule with the product giving the module actions. So $\mathcal{A}^{(n)}$, the *n*-th dual space of \mathcal{A} , is naturally a Banach \mathcal{A} -bimodule in the above sense for each $n \in \mathbb{N}$. The Banach algebra \mathcal{A} is called *n*-weakly amenable if every continuous derivation from \mathcal{A} into $\mathcal{A}^{(n)}$ is inner. If \mathcal{A} is *n*-weakly amenable for each $n \in \mathbb{N}$ then it is called *permanently weakly amenable*.

Let *G* be a locally compact group. The integral of a function *f* on a measurable subset *K* of *G* against a fixed left Haar measure is denoted by $\int_K fdx$. Two functions on *G* are regarded identical if they are equal to each other almost everywhere with respect to the left Haar measure. The group algebra $L^1(G)$ is the Banach algebra consisting of all absolutely integrable functions on *G* (with respect to the left Haar measure), equipped with the convolution product and the usual L^1 norm

$$||f||_1 \coloneqq \int_G |f(t)| dt.$$

When *G* is discrete, $L^1(G)$ is $\ell^1(G)$ consisting of all absolutely summable functions on *G*.

Johnson showed in [1] that $L^1(G)$ is always 1-weakly amenable for any locally compact group *G*. It was shown further in [2] that $L^1(G)$ is in fact *n*-weakly amenable for all odd numbers *n*. Whether this is still true for even numbers *n* was left

E-mail address: zhangy@cc.umanitoba.ca.

⁰⁰²²⁻²⁴⁷X/\$ – see front matter 0 2012 Elsevier Inc. All rights reserved. doi:10.1016/j.jmaa.2012.06.037

413

(2.1)

open in [2]. For a free group *G*, Johnson proved later in [3] that $\ell^1(G)$ is indeed 2*m*-weakly amenable for any $m \in \mathbb{N}$. The problem has been resolved affirmatively for general locally compact group *G* in [4] and in [5] independently, using a theory established in [6].

In this note we present a short proof to the *n*-weak amenability of $L^1(G)$ for even numbers *n*. Our proof is based on a common fixed point property for semigroups. In Section 2 we study this fixed point property. For the general theory concerning amenability and fixed point properties of locally compact groups we refer the reader to [7,8]. The proof to the main result will be given in Section 3.

2. Common fixed points for semigroups

Let *S* be a (discrete) semigroup. The space of all bounded complex valued functions on *S* is denoted by $\ell^{\infty}(S)$. It is a Banach space with the uniform supremum norm. In fact $\ell^{\infty}(S) = (\ell^1(S))^*$, the dual space of $\ell^1(S)$. For each $s \in S$ and each $f \in \ell^{\infty}(S)$ let $\ell_s f$ be the left translate of *f* by *s*, that is $\ell_s f(t) = f(st)$ ($t \in S$) (the right translate $r_s f$ is defined similarly). A function $f \in \ell^{\infty}(S)$ is called *weakly almost periodic* if its left orbit $\mathcal{LO}(f) = \{\ell_s f : s \in S\}$ is relatively compact in the weak topology of $\ell^{\infty}(S)$. The space of all weakly almost periodic functions on *S* is denoted by *WAP*(*S*), which is a closed subspace of $\ell^{\infty}(S)$ containing the constant function and invariant under the left and right translations. A linear functional $m \in WAP(S)^*$ is a *mean* on *WAP*(*S*) if ||m|| = m(1) = 1. A mean *m* on *WAP*(*S*) is a *left invariant mean* (abbreviated as LIM) if $m(\ell_s f) = m(f)$ for all $s \in S$ and all $f \in WAP(S)$. If *S* is a group, it is well known that *WAP*(*S*) always has a LIM [7].

Let X be a Banach space and C a nonempty subset of X. A mapping $T: C \to C$ is called *nonexpansive* if $||T(x) - T(y)|| \le ||x - y||$ for all $x, y \in C$. When X is a separable locally convex topological space whose topology is determined by a family Q of seminorms on X, we will denote it by (X, Q) to highlight the topology Q.

Let *C* be a subset of a locally convex topological vector space (X, Q). We say that $\mathfrak{S} = \{T_s : s \in S\}$ is a *representation* of *S* on *C* if for each $s \in S$, T_s is a mapping from *C* into *C* and $T_{st}(x) = T_s(T_tx)$ ($s, t \in S, x \in C$). The representation is called continuous if each T_s ($s \in S$) is Q-Q continuous; It is called equicontinuous if for each neighborhood \mathcal{N} of 0 there is a neighborhood \mathcal{O} of 0 such that $T_s(x) - T_s(y) \in \mathcal{N}$ whenever $x, y \in C, x - y \in \mathcal{O}$ and $s \in S$. The representation is called *affine* if *C* is convex and each T_s ($s \in S$) is an affine mapping, that is $T_s(ax + by) = aT_s(x) + bT_s(y)$ for all constants $a, b \ge 0$ with a + b = 1, $s \in S$ and $x, y \in C$. We say that $x \in C$ is a *common fixed point* for (the representation of) *S* if $T_s(x) = x$ for all $s \in S$.

The following fixed point theorem was proved in [9].

Theorem 1. Let *S* be a discrete semigroup and \mathfrak{S} an equicontinuous affine representation of *S* on a weakly compact convex subset *C* of a separated locally convex space *X*. If WAP(*S*) has a left invariant mean then *C* contains a common fixed point for *S*.

Let B be a nonempty bounded subset of a Banach space X. By definition the Chebyshev radius of B in X is

$$r_B = \inf \left\{ r \ge 0 : \exists x \in X \sup_{b \in B} \|x - b\| \le r \right\}.$$

Clearly we have $0 \le r_B < \infty$ and

 $\sup \|x - b\| \ge r_B \quad \text{for each } x \in X.$

The Chebyshev center of B in X is defined to be

$$C_B = \left\{ x \in X : \sup_{b \in B} \|x - b\| \le r_B \right\}.$$

Chebyshev center has been extensively used in the field of fixed point theory (see [10,11]). Some asymptotic version of it has been employed to study fixed point properties of semigroups [12–14].

We now recall that a Banach space X is *L*-embedded if the image of X under the canonical embedding into its bidual X^{**} , still denoted by X, is an ℓ_1 summand in X^{**} , that is if there is a subspace X_s of X^{**} such that $X^{**} = X \oplus_1 X_s$, where \oplus_1 denotes the ℓ_1 direct sum. The class of L-embedded Banach spaces includes all $L^1(\Sigma, \mu)$ (the space of all absolutely integrable functions on a measure space (Σ, μ)), preduals of von Neumann algebras, dual spaces of M-embedded Banach spaces and the Hardy space H_1 . In particular, given a locally compact group *G*, the space $L^1(G)$ is L-embedded. So are its even duals $L^1(G)^{(2m)}$ ($m \in \mathbb{N}$). We refer to [15] for more details of the theory concerning this type of Banach spaces. We also refer to [16–18] for the study of fixed points of various mappings in an L-embedded Banach space. In [16], as an application of a fixed point theorem, a surprising short solution to the well-known derivation problem was given. The problem was first settled by Losert in [6].

We now give a common fixed point theorem for semigroups, which will provide the major machinery for our proof to the main result.

Theorem 2. Let *S* be a discrete semigroup and \mathfrak{S} a representation of *S* on an *L*-embedded Banach space *X* as nonexpansive affine mappings. Suppose that WAP(*S*) has a LIM and suppose that there is a nonempty bounded set $B \subset X$ such that $B \subseteq \overline{T_s(B)}$ for all $s \in S$, then *X* contains a common fixed point for *S*.

Proof. We use the idea of [16] to show that there is a nonempty weakly compact convex set in *X* that is *S*-invariant. We first regard *B* as a subset of X^{**} . Let r_B be the Chebyshev radius and *C* the Chebyshev center of *B* in X^{**} . Then *C* is nonempty, weak^{*} compact and convex. In fact, for each $r > r_B$,

$$C_r := \left\{ x \in X^{**} : \sup_{b \in B} \|x - b\| \le r \right\}$$

is nonempty by the definition of r_B . Note that $C_r = \bigcap_{b \in B} B[b, r]$, where B[b, r] denotes the closed ball in X^{**} centered at b with radius r. The set C_r is convex and weak^{*} compact since each B[b, r] is. The collection $\{C_r : r > r_B\}$ is decreasing as r decreases. Thus $C = \bigcap_{r > r_B} C_r$ is nonempty and is still weak^{*} compact and convex. By the L-embeddedness of X there is a subspace X_s of X^{**} such that $X^{**} = X \oplus_1 X_s$. Let $x \in C$. then there are $c \in X$ and $\xi \in X_s$ such that $x = c + \xi$. For each $b \in B$, $||x - b|| = ||c - b|| + ||\xi||$. So

$$r_B \ge \sup_{b\in B} ||x-b|| = \sup_{b\in B} ||c-b|| + ||\xi|| \ge r_B + ||\xi||.$$

The last inequality is due to (2.1). Therefore, we must have $\xi = 0$. This shows that $C \subset X$. The weak* compactness of C (in X^{**}) is the same as the weak compactness of it (in X). So C is a nonempty, weakly compact and convex subset of X.

Now for $s \in S$, $b \in B$ and $x \in C$ we have

$$||T_s(x) - T_s(b)|| \le ||x - b|| \le r_B$$

since T_s is nonexpansive. This implies that $||T_s(x) - a|| \le r_B$ for $a \in \overline{T_s(B)}$ ($s \in S, x \in C$). In particular, this holds for all $a \in B$ since $B \subseteq \overline{T_s(B)}$. Thus $T_s(x) \in C$ whenever $x \in C$ and $s \in S$, showing that C is S-invariant. Note that a nonexpansive representation of S is indeed equicontinuous. By Theorem 1, there is a common fixed point for S in C. The proof is complete. \Box

Theorem 1 has been extended to the general semitopological semigroup setting in [19]. A more general version of Theorem 2 and some discussion on when there is a set *B* such that $T_s(B) = B$ for all $s \in S$ can also be found there.

3. 2*m*-weak amenability of $L^1(G)$

Let *X* be a Banach space. Denote the space of all bounded linear operators on *X* by B(X). The space B(X) is a Banach algebra with the operator norm topology and the composition product. So is $B(X) \times B(X)^{op}$ with the product topology and coordinatewise operations, where $B(X)^{op}$ is the algebra formed by reversing the order of the product in B(X). The *strong operator topology* (or briefly *so*-topology) on $B(X) \times B(X)^{op}$ is the topology induced by the family of seminorms { $p_x : x \in X$ }, where

$$p_{x}(S, T) = \max\{\|S(x)\|, \|T(x)\|\} \quad (S, T \in B(X))$$

(see [20, p. 327]).

Given a locally compact group *G*, let *M*(*G*) be the space of all bounded complex valued regular Borel measures on *G*. With the convolution product of measures and with the norm induced by the total variation, *M*(*G*) is a Banach algebra containing $L^1(G)$ as a closed ideal. In fact, *M*(*G*) is the multiplier algebra of $L^1(G)$, and as the multiplier algebra of $L^1(G)$, *M*(*G*) is a subalgebra of $B(L^1(G)) \times B(L^1(G))^{\text{op}}$ with each $\mu \in M(G)$ being identified with (the double multiplier) (ℓ_{μ}, r_{μ}) $\in B(L^1(G)) \times B(L^1(G))^{\text{op}}$, where ℓ_{μ} and r_{μ} denote, respectively, the left multiplier operator and the right multiplier operator on $L^1(G)$ implemented by μ . We refer to [20] for the standard theory about multipliers and multiplier algebras.

It is well-known that $lin\{\delta_t : t \in G\}$, the linear space generated by the point measures δ_t ($t \in G$), is dense in M(G) in the so-topology [20, Proposition 3.3.41(i)]. In particular, for each $h \in L^1(G)$ there is a net $(u_\alpha) \subset lin\{\delta_t : t \in G\}$ such that $||(u_\alpha - h) * a||_1 \to 0$ and $||a * (u_\alpha - h)||_1 \to 0$ for all $a \in L^1(G)$.

Recall that if A is a Banach algebra, then its bidual A^{**} is a Banach algebra equipped with the Arens product \Box defined

$$\langle f, u \Box v \rangle = \langle v \cdot f, u \rangle, \quad v \cdot f \in \mathcal{A}^* : \quad \langle a, v \cdot f \rangle = \langle fa, v \rangle$$

for $u, v \in A^{**}, f \in A^*$ and $a \in A$. If X is a Banach A-bimodule, then its bidual X^{**} is naturally a Banach A^{**} -bimodule with the module actions given by

$$\langle F, u \cdot M \rangle = \langle M \cdot F, u \rangle, \quad M \cdot F \in A^* : \quad \langle a, M \cdot F \rangle = \langle F \cdot a, M \rangle$$

and

for $u \in A^{**}$, $M \in X^{**}$, $F \in X^*$, $x \in X$ and $a \in A$. In particular, for any integer $m \in \mathbb{N}$, $A^{(2m)}$ is a Banach A^{**} -bimodule.

A Banach A-bimodule X is called *neo-unital* if X = AXA, that is every element $x \in X$ may be written in the form x = ayb for some $a, b \in A$ and $y \in X$. If A has a bounded approximate identity (e_{α}) and X is a neo-unital Banach A-bimodule, then we may extend the A bimodule actions on X to M(A), the multiplier algebra of A. The extension is defined as follows.

$$\mu x = \lim_{\alpha} (\mu e_{\alpha}) x = (\mu a) y b, \qquad x \mu = \lim_{\alpha} x (e_{\alpha} \mu) = a y (b \mu)$$

for $\mu \in M(\mathcal{A})$ and $x = ayb \in X$. Here we note that $\mu a, b\mu \in \mathcal{A}$ since \mathcal{A} is (always) an ideal of $M(\mathcal{A})$. These operations make X a unital Banach $M(\mathcal{A})$ -bimodule. In this case a continuous derivation $D: \mathcal{A} \to X^*$ may be extended to a continuous derivation from $M(\mathcal{A})$ to X^* by defining

$$D(\mu) = \mathsf{wk}^* - \lim D(\mu e_\alpha) \quad (\mu \in M(\mathcal{A})).$$

Moreover this extended *D* is so-weak^{*} continuous. In fact, if $\mu_{\alpha} \rightarrow \mu$ in *M*(*A*) in the so-topology and $x = ayb \in X$ for $a, b \in A$ and $y \in X$, then

$$\begin{split} \lim_{\alpha} \langle x, D(\mu_{\alpha}) \rangle &= \lim_{\alpha} \langle ay, D(b\mu_{\alpha}) \rangle - \lim_{\alpha} \langle \mu_{\alpha} ay, D(b) \rangle \\ &= \langle ay, D(b\mu) \rangle - \langle \mu ay, D(b) \rangle = \langle x, D(\mu) \rangle. \end{split}$$

We refer to the seminar paper [21] and the monograph [20] for more details of the above extensions.

We now can prove the main result of the paper.

Theorem 3. Let G be a locally compact group. Then the group algebra $L^1(G)$ is 2m-weakly amenable for each $m \in \mathbb{N}$.

Proof. Denote $\mathcal{A} = L^1(G)$, $X = \mathcal{A}^{(2m)}$ and $Y = \mathcal{A}^{(2m-1)}$. Then, as we have indicated, X is a Banach \mathcal{A}^{**} -bimodule. Let (e_α) be a bounded approximate identity of \mathcal{A} and let E be a weak^{*} cluster point of (e_α) in \mathcal{A}^{**} . Then Ea = aE = a for all $a \in \mathcal{A}$. We have the \mathcal{A} -bimodule decomposition $X = X_1 \oplus X_2 \oplus X_3$, where

$$X_1 = \ell_E \circ r_E(X), \qquad X_2 = (I - r_E)(X), \qquad X_3 = (I - \ell_E) \circ r_E(X).$$

Here *I* denotes the identity operator, ℓ_E is the left multiplication by *E* and r_E the right multiplication by *E*. It is readily seen that

$$X_2 = (\mathcal{A}Y)^{\perp} \cong (Y/\mathcal{A}Y)^*, \qquad X_1 \oplus X_3 = r_E(X) \cong (\mathcal{A}Y)^*$$

as Banach A-bimodules. Similarly, in $(AY)^*$

$$(I - \ell_E) \left((AY)^* \right) = (AYA)^{\perp} \cong (AY/AYA)^*$$

and

$$\ell_E\left((\mathcal{A}Y)^*\right)\cong (\mathcal{A}Y\mathcal{A})^*$$

as Banach A-bimodules. We have

 $X_3 \cong (AY/AYA)^*$ and $X_1 \cong (AYA)^*$.

Let *D*: $A \rightarrow X$ be a continuous derivation. Then $D = D_1 + D_2 + D_3$, where

$$D_1 = \ell_E \circ r_E \circ D : \mathcal{A} \to X_1, \qquad D_2 = (I - r_E) \circ D : \mathcal{A} \to X_2,$$

$$D_3 = (I - \ell_F) \circ r_F \circ D : \mathcal{A} \to X_3.$$

Since ℓ_E and r_E are A-bimodule morphisms, D_1 , D_2 and D_3 are continuous derivations. Note that the left A-module action on Y/AY and the right A-module action on A/AYA are trivial. From [21, Proposition 1.5], D_2 and D_3 are inner. We now show that D_1 is also inner. Then D must be inner.

Since AYA is neo-unital, we may extend D_1 to a continuous derivation from M(G), the multiplier of A, to X_1 . So we may consider $\Delta: G \to X_1 \subset X$ defined by

$$\Delta(t) = D_1(\delta_t) \cdot \delta_{t^{-1}} \quad (t \in G).$$

It is readily seen that

$$\Delta(ts) = \delta_t \cdot \Delta(s) \cdot \delta_{t^{-1}} + \Delta(t) \quad (t, s \in G).$$
(3.1)

Let $B = \Delta(G)$. Then B is a nonempty bounded subset of X. For each $t \in G$, let T_t be the self mapping on X defined by

$$T_t(x) = \delta_t \cdot x \cdot \delta_{t^{-1}} + \Delta(t) \quad (x \in X).$$

Using (3.1) one may check that $\mathfrak{S} = \{T_t : t \in G\}$ defines a representation of *G* on *X* which is clearly nonexpansive and affine. Moreover, $T_t(\Delta(s)) = \Delta(ts)$ ($t, s \in G$) and $T_e = I$. Since *G* is a group, the above implies $T_t(B) = B$ for each $t \in G$. Here *G* is regarded as a discrete group. Since WAP(G) has a LIM and X is L-embedded, by Theorem 2, there is $\xi \in X$ such that

$$\delta_t \cdot \xi \cdot \delta_{t^{-1}} + \Delta(t) = \xi \quad \text{for all } t \in G.$$

So $D_1(\delta_t) = \xi \cdot \delta_t - \delta_t \cdot \xi = \operatorname{ad}_{-\xi}(\delta_t)$ $(t \in G)$. Let $x = \ell_E \circ r_E(-\xi)$. Then $x \in X_1$. Also $D_1(\delta_t) \in X_1$. For any $ayb \in AYA$ with $a, b \in A$ and $y \in Y$, we have

$$\langle ayb, D_1(\delta_t) \rangle = \langle ayb \cdot \delta_t - \delta_t \cdot ayb, -\xi \rangle = \langle E(ayb \cdot \delta_t - \delta_t \cdot ayb)E, -\xi \rangle = \langle ayb \cdot \delta_t - \delta_t \cdot ayb, x \rangle = \langle ayb, ad_x(\delta_t) \rangle \quad t \in G.$$

So it is true that $D_1(\delta_t) = ad_x(\delta_t)$ for all $t \in G$. From what we have shown before stating the current theorem, both D_1 and ad_x , as continuous derivations from M(G) into the dual of a neo-unital A-bimodule, are *so*-weak^{*} continuous. Since $lin(\delta_t : t \in G)$ is dense in M(G) in the *so*-topology, we finally have

$$D_1(f) = \operatorname{ad}_x(f) \quad (f \in \mathcal{A} = L^1(G)),$$

therefore D_1 is inner. The proof is complete. \Box

Acknowledgment

This work was supported by NSERC 238949-2011.

References

- [1] B.E. Johnson, Weak amenability of group algebras, Bull. London Math. Soc. 23 (1991) 281-284.
- [2] H.G. Dales, F. Ghahramani, N. Grønbæk, Derivations into iterated duals of Banach algebras, Studia Math. 128 (1998) 19-54.
- [3] B.E. Johnson, Permanent weak amenability of group algebras of free groups, Bull. London Math. Soc. 31 (1999) 569–573.
- [4] Y. Choi, F. Chahramani, Y. Zhang, Approximate and pseudo-amenability of various classes of Banach algebras, J. Funct. Anal. 256 (2009) 3158–3191.
- [5] V. Losert, On derivation and crossed homomorphisms, in: Banach Algebras 2009, in: Banach Center Pub., Vol. 91, Inst. Math., Pol. Acad. Sci, Warszawa, 2010, pp. 199–217.
- [6] V. Losert, The derivation problem for group algebras, Ann. of Math. 168 (2008) 221-246.
- [7] F.P. Greenleaf, Invariant Means on Topological Groups and Their Applications, in: Van Nostrand Mathematical Studies, No. 16, Van Nostrand Reinhold Co, New York-Toronto, Ont.-London, 1969.
- [8] N.W. Rickert, Amenable groups and groups with the fixed point property, Trans. Amer. Math. Soc. 127 (1967) 221–232.
- [9] A.T.-M. Lau, Some fixed point theorems and W*-algebras, in: S. Swaminathan (Ed.), Fixed Point Theory and Applications, Academic Press, 1976, pp. 121–129.
- [10] D. van Dulst, B. Sims, Fixed points of nonexpansive mappings and Chebyshev centers in Banach spaces with norms of type (KK), in: Banach Space Theory and its Applications (Bucharest, 1981), in: Lecture Notes in Math., vol. 991, Springer, Berlin–New York, 1983, pp. 35–43.
- [11] K. Goebel, W.A. Kirk, Topics in Metric Fixed Point Theory, in: Cambridge Studies in Advanced Math., vol. 28, Cambridge University Press, 1990.
- [12] T.C. Lim, Asymptotic centers and nonexpansive mappings in conjugate Banach spaces, Pacific J. Math. 90 (1980) 135–143.
- [13] T.C. Lim, Characterizations of normal structure, Proc. Amer. Math. Soc. 43 (1974) 313-319.
- [14] T.C. Lim, A fixed point theorem for families of nonexpansive mappings, Pacific J. Math. 53 (1974) 484–493.
- [15] P. Harmand, D. Werner, W. Werner, M-ideals in Banach Spaces and Banach algebras, in: Lecture Notes in Math., vol. 1547, Springer-Verlag, 1993.
- [16] U. Bader, T. Gelander, N. Monod, A fixed point theorem for L¹ spaces, Invent. Math. 189 (2012) 143–148.
- 17] T.D. Benavides, M.A. Japón Pineda, S. Prus, Weak compactness and fixed point property for affine mappings, J. Funct. Anal. 209 (2004) 1–15.
- [18] M.A. Japón Pineda, Some fixed point results on L-embedded Banach spaces, J. Math. Anal. Appl. 272 (2002) 381–391.
- [19] A.T.-M. Lau, Y. Zhang, Fixed point properties for semigroups of nonlinear mappings and amenability, Preprint.
- [20] H.G. Dales, Banach Algebras and Automatic Continuity, Clarendon Press, Oxford, 2000.
- [21] B.E. Johnson, Cohomology in Banach algebras, Mem. Amer. Math. Soc. 127 (1972).