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Suffkient optimality conditions are obtained in the case of continuous time 
programming problems under the assumptions that (i) particular linear 
combinations of the components of the constraint function are quasiconvex and 
objective functional is pseudoconcave “almost everywhere,” (ii) a particular linear 
combination of constraint function and objective functional is pseudoconcave 
“almost everywhere.” 

1. INTRODUCTION 

The continuous time programming problem originated from Bellman’s 
bottleneck problem [ 11. Tyndall [2] and Levinson [3] studied duality for the 
linear continuous time programming problem and established well-known 
duality theorems. Hanson and Mond [4] generalized these duality theorems 
to the case where the objective functional is concave and derived the 
complementary slackness principle and Kuhn-Tucker necessary and 
sufficient conditions. Farr and Hanson [5] further generalized the continuous 
time programming problem by introducing nonlinear differentiable 
constraints and establishing the complementary slackness principle and 
Kuhn-Tucker theorem in their setup. Recently Singh and Farr [6] 
considered the continuous time programming problem 

Maximize I(z) = [’ h(z(t)) dt W’) 
-0 
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Subject to f(z(t)) < c(t) + 1.’ g(s, t, z(s)) ds, O<t<T, 
-0 

z(t) > 0, 0 < t < T, 

where z(.) is an N x 1 vector-valued function defined on [0, T], f(.) is an 
A4 x 1 vector-valued function defined on the space Lz[O, T] of all N x 1 
vector-valued, bounded, and measurable functions defined on [0, T], g(., ., .) 
is an M x 1 vector-valued function defined on [0, t] x [0, T] x L’L[O, T] for 
each I E [0, T], c(.) is an M x 1 vector-valued function defined on [0, T], 
h(.) is a real-valued function defined on L*L[O, T], and all the integrals are in 
the Lebesgue sense. They established the optimality criteria of Kuhn-Tucker 
and Fritz-John type for this problem without assuming the differentiability 
of the functions involved. However, all the authors have taken the functions 
to be convex or concave in the nonlinear case. In [ 71, Singh has weakened the 
convexity (concavity) restrictions by considering quasiconvex/quasiconcave 
and pseudoconcave functions and has established a sufficient optimality 
criterion for (MP). But there is an obscurity in the proof of his main 
Theorem 2. This theorem is stated in somewhat straightforward manner and 
the sufficient optimality conditions are obtained under the weaker 
assumptions that (i) particular linear combinations of the components of the 
constraint function are quasiconvex and objective functional is 
pseudoconcave “almost everywhere,” (ii) a particular linear combination of 
constraint function and objective functional is pseudoconcave “almost 
everywhere.” 

2. PRELIMINARIES 

Let LLNIO, T] be the collection of all N x 1 vector-valued nonnegative, 
bounded, and measurable functions defined on [0, T]. Let 

W(t)) = f(z(t)) - c(t) - (_I g(s, I, z(s)) ds. 
-0 

Then H(.) is the constraint function defined on L”,[O, T] with values in 
L,z[O, T]. Let 

S = {z(t) E Lg”[O, T]/H(z(t)) < 0 for all t E [0, T] }, 

i.e., S is the set of all feasible solutions of (MP). If there exists Y(f) E S such 
that l(Z) = MaxZurES l(z) we say Y(f) is an optimal solution of (MP). 

We assume that H(z(t)) is Lebesgue measurable and the space Lz[O, T] is 
suitably normed. Throughout this paper, Fc denotes the complement of F 
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with respect to [0, r] for any subset F of [0, T]. The definitions of quasicon- 
vexity, quasiconcavity, and pseudoconcavity “almost everywhere” (a.e.) of 
functions used in this paper are given in Singh’s paper [7]. It is also proved 
in 171 that if H(.) is Frichet differentiable and quasiconvex at z,(t) E 
L$[O, r]. then for z*(t) E Lz[O, T] 

H(zzW) < H(z,O)) * dWz,W; zzw -Z,(f)> < 0 for all f E [0, T], (2.1) 

where &(z,(f); zz(t) -z,(t)) is the Frichet differential of H(.) at z,(t) with 
increment z2(f) - z,(f). 

3. SUFFICIENT CONDITIONS FOR OPTIMALITY 

In Ref. [7], Theorem 2 gives sufficient conditions of optimality for the 
maximization problem (MP). But there is an obscurity in the proof of this 
theorem. It is claimed that quasiconvexity off(.) on L,L[O, TJ and quasicon- 
cavity of g(. , . , .) with respect to the third component implies that Zf(.) is 
quasiconvex on L,>[O, T]. This is not always correct because of a well- 
known result that a linear combination of quasiconvex functions is not 
quasiconvex [ 9 ]. However, if we assume H(z(t)) to be quasiconvex on 
L$[O, T], the same proof of Theorem 2 in Ref. [7] applies (with a few 
changes in Case 2 in view of the above remarks) and we obtain sufficient 
optimality conditions for (MP) in the form of the following theorem. 

THEOREM 1. Let H(z(f)) be F&chef differentiable and quasiconvex on 
L$[O, T] and h(z(t)) be pseudoconcave ott L’L[O, T] a.e. on (0, T]. Then 
z’(t) E L;‘[O, T] is an optimal solution of (MP) if fhere exists u’(f) E 
L.z(O, T] safisf$ng the conditions 

-dh(z’(f); z(f) -z”(t)) + u”(f) dH(z’(f); z(f) -z’(f)) > 0, 

H(0) = 0 and Wz”W) < 0 for all f E [O, T], 

2(f) > 0 for all f E [0, T], 

)-I u”‘(t) H(z’(t)) df = 0. 
‘0 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

The following theorem generalizes the above theorem in the sense that the 
requirement of quasiconvexity on all the components of H(z(t)) is somewhat 
weakened. 

For this we define the following sets. 
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For each I E 10, T], let 

I, = { i/Hi(ZO(t)) = 0 t, 

J, = {i/H,(zO(t)) < O}. 

Then I, U J, = ( 1, 2 ,..., M} for each fE[O,T]. Let I=U,c,o.TIII, J= 

n f~,O,T,Jf, 1, = fL,o,r,~f, and J, = UrElo.rlJt. Then lnJ=a IUJ= 
( 1. 2,..., Mt, I, nJ, = 0, I, uJ, = (1, 2 ,..., M), and JGJ,, I, C_I. 

THEOREM 2. Let H(z(t)) be FrPchet d$erentiable and H,(z(f)) be 
quasiconvex on Lz[O, T] and h(z(t)) be pseudoconcave on Lz [O, T] a.e. on 
10, T]. Then z’(r) E L&![O, T] is an optimal solution of (MP) if there exists 
u’(f) E L$(O, T] sati&ing conditions (3.1)-(3.4) of Theorem 1. 

Proof. According to the hypothesis, H(z’(t)) < 0 for all l E [0, T]. For 
each i = I, 2,.... A4 define the sets 

Ai = (t E [O, T]/H,(z’(t)) = O}, 

Bi = (t E [0, T]/Hi(zo(t)) < 0). 

Let A = (J,y=, Ai, B = lJy=“=, Bi. 
It can be shown [7] that A U B = [O, T] and A n B = 0. The definitions 

of the sets I, and J, show that if t E A, then I, = ( 1, 2 ,..., M) and J, = 0. 
Using (3.4) we have 

O= ir u”(t) H(z’(r)) dt 
-0 

= iT t u;(t) kf,(Z”(t)) df 
-0 i=L 

= r 1 up(t) Hi(z’(t)) dl 
i=l-0 

= 2 
i=l 

[ [ u;(t) H,(z”(t)) dt + \ u;(t) H,(z”(t)) df ] 
- .4 ‘B 

.M _ 
= ” 1 u;(t) Hi(zo(t)) dt (since Hi(zo(t)) = 0 for all t E A) 

i=l .B 

= [ u,“;(t) HJ,(zo(t)) dt 
“8 

(since H,,(z’(t)) = 0 for all t E [0, T]). 



CONTINUOUS TIME PROGRAMMING 41 

This implies that .)‘B up(t) H,(z”(t))dt = 0 for each i EJ, because of 
nonnegativity of u:,(t) and HJ (z’(t)) < 0 for all t E [0, r]. 

Hence either p(B) = 0 or up(r) H,(z’(t)) = 0 a.e. on B for all i E J, where 
,U is the Lebesgue measure restricted to the o-field of Lebesgue measurable 
subsets of ]O, T]. 

Case 1. Suppose p(B) = 0. Let 

z*(t) = zO(t) 

=o 

Then 

z*(t) = zO(t) 

If t E A, then by construction of A 

if tEA 

if tEB. 

a.e. on [O, T]. (3.5) 

and if t E B, then 

H(z “(t)) = H(z’(t)) = 0 

H(z *(t)) = H(0) = 0. 

Hence H(z*(t)) = 0 for all t E [0, T]. Therefore, for any feasible solution 
4th 

H(z(t)) < 0 = H(z *(t)) for all t E [0, r]. 

In particular, the inequality 

H,W) < 0 = H,@*(t)) (3.6) 

holds for all t E [0, T]. Since H,(z(t)) is quasiconvex on L,k[O, T], therefore 
it follows from (2.1) that 

dH,(z*(t); z(t) -z*(t)) < 0 for all t E [0, T]. (3.7) 

Also Frechet differentiability of H,(z(t)) gives that 

H.,W) = H.,(O) + dH.,(O; z(t)) + IlzWll E (0; z(t)) for all t E [0, T]. 

where ~(0; z(t)) + 0 as z(t) + 0. 
Therefore, feasibility of z(t) and H(0) = 0 imply that 

dH,(z*(t); z(t) - z*(t)) = dH,(O; z(t)) < 0 for all t E B. 
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Also t E A implies that the sets J, and .Z are empty, therefore 

dH,(z*(t); z(t) - z*(t)) < 0 for all t E [0, Z]. (3.8) 

Thus, from (3.7) and (3.8), we have 

dH(z *(t); z(t) - z”(t)) < 0 for all t E [0, T], 

which shows that 

dH(zO(t); z(t) -z”(t)) < 0 a.e. on [O, T]. 

It now follows from the last inequality, (3.1) and (3.3) that 

dh(zO(t); z(t) - zO(t)) < 0 a.e. on [0, T]. (3.9) 

The function h(z(t)) is pseudoconcave at z”(t) a.e. on [0, T]; therefore (3.9) 
yields h(z(t)) < h(z’(t)) a.e. on [0, 7’1. Thus Z(z) = j,’ h(z(t)) dt < 
J’; h(z’(t)) dt = l(zO), i.e., z”(t) is an optimal solution of (MP). 

Case 2. Suppose u!(t) H,(z’(t)) = 0 a.e. on B for each i E J,. Since 
H,(z’(t)) = 0 for each i = 1, 2,..., M and all t E A, therefore 

up(t) H,(zO(t)) = 0 a.e. on [0, T] for each i E J,. (3.10) 

In particular, u:(t) H,(z’(t)) = 0 a.e. on [O, T] for each i E JcJ,. The 
definition of the set J shows that 

i.e., 

u;(t) = 0 a.e. on (0, 7’1 for each i E J, 

u,O(t) = 0 a.e. on [0, 7-1. (3.11) 

Since Zf,,(z’(t)) = 0 for all t E [0, T] and Z - I, G J,, where Z - I, = {i/i E Z 
and i 65 Z,}, therefore it follows from (3.10) that u!(t) H,(z’(t)) = 0 a.e. on 
[0, T] for each i E I. 

Thus u:(t) H,(z(t)) < 0 = u!(t) Hi(zo(t)) a.e. on [0, T] for each i E Z and 
for any feasible solution z(t). For an arbitrary but fixed i E I, let 

Ei = (t E [0, Z-]/u;(t) H,(z(t)) > u;(t) H,(z”(t))}. 

Then p(Ei) = 0 and u!(t) Hi(z(t)) Q u!(t) H,(z’(t)) for all t E E:. 
Now define 

u?(t) = z&t) if tEEF 

=o if t E Ei 
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so that u,*(t) = u!(t) a.e. on [0, T]. It follows that 

ui*(f) Hi(z(f)) < ui*(f) Hi(zo(f)) for all f E [0, T]. 

Let Mi = (t E [0, T]/u,*(t) = 0). Then u,*(f) > 0 for t E MF. 
From (3.12),. we obtain the inequality 

Hi(z(r)) G Hi(zo(f>) for all f E Mr. 

Let 

2(f) = z”(f) if fEMr 

=o if fEM,. 

Therefore 

(3.12) 

Hi(z(f)) G Hi(2(f)) for all f E [0, T]. (3.13) 

The relation in (3.13) further yields 

dH,(z^(t); z(f) - 2(t)) < 0 for all t E [0, T] 

in view of the fact that H,(z(t)) is quasiconvex on LN,[O, T]. This shows that 
UT(t) dH,(i(f); Z(f) -i(t)) < 0 for all t E [0, T] i.e., Ui*(f) dHi(ZO(f); 

z(f) -z’(f)) < 0 for all f E [0, T], because u:(t) = 0 for all f E Mi and i(f) = 

z’(l) for all f E MF. The last inequality gives that up(f) dH,(z’(f); 

z(f) - z’(f)) ,< 0 a.e. on [0, T]. 
Arguing similarly for each i E I, we observe that 

u,o’(t) dH,(zO(t); Z(f) - z”(t)) < 0 a.e. on [0, r]. 

Also (3.11) gives 

(3.14) 

u,o’(r) dH,(z”(f); z(t) - zO(t)) = 0 a.e. on [O. T]. (3.15) 

Combining (3.14) and (3.15). we have 

uO’(t) dH(zO(t): Z(f) -Z”(f)) < 0 a.e. on [0, T]. (3.16) 

Hence from (3.1). we obtain 

dh(zO(t); Z(f) - ZO(f)) < 0 a.e. on [0, T], 

which is inequality (3.9) and we can proceed as in Case 1 above to prove 
that z’(t) is an optimal solution of (MP). 

Remark 1. We note that in Theorem 2, there is a quasiconvexity 
assumption on the constraint function H,(z(t)), that is, on each component of 
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H,(z(t)). The following theorem replaces this requirement of a quasicon- 
vexity assumption on each component of H,(z(t)) by quasiconvexity 
assumption on particular linear combinations of the components of H,(z(t)). 

THEOREM 3. Let h(a) be pseudoconcave on L,L[O, T] a.e. on [O, T] and 
H(z(t)) be F&chef dzfirentiable on Lz[O, T]. Then z’(t) E LG”[O, T] is an 
optimal solution of (MP) if there exists u’(t) E L’z, [0, T] satisfikg conditions 
(3.1)-(3.4) of Theorem 1 and S,‘(t) H,(z(t)) is quasiconuex on LL [O, T], 
where u^[(t) = u:(r) a.e. on [O, T]. 

ProoJ The proof is the same as that of Theorem 2 above except that in 
Case 1 the arguments to get inequality (3.9) are as follows: From (3.3) and 
(3.6) we have 

u;‘(t) H,(z(t)) < 0 = ul”‘(t) H,(z*(t)) for all t E [O, T]. 

The quasiconvexity of u:‘(t) H,(z(t)) on L,i [0, T] and (2.1) give that 

u;‘(t) dH,(z “(t); z(t) - z*(r)) < 0 for all t E [O. T]. (3.17) 

Also from (3.3) and (3.8) we obtain 

u;‘(t) dH,(z*(t); z(t) -z*(r)) < 0 for all t E 10, TI. (3.18) 

Combining (3.17) and (3.18). we get that 

u”(t) dH(z*(r); z(t) -z*(r)) < 0 for all f E [O. T]. 

This gives that 

u”‘(t) dH(z’(t); z(t) - z’(r)) < 0 a.e. on [O. T] 

because of (3.5). Then inequality (3.9) results from (3.1) and we can proceed 
as in Case 1 of Theorem 2 to show that z’(t) is an optimal solution of (MP). 

In Case 2, the argument to get inequality (3.16) runs as follows. Let E = 
(t E (0, T]/uF’(t) H,(z(t)) > u:‘(t) H,(z’(t)) 1. Then we claim that E G 
U,,, Ei. Let t E E and assume t 6S UiE, 15;. Then t E EF for each i E I. which 
implies that 

i.e., 

uP(t) Hi(z(r)) < uP(t) Hi(Z”(f)) for each i E I. 

which contradicts our assumption that t E E. Since each set Ei is of measure 
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zero? therefore p(E) = 0 and u;‘(t) H,(z(t)) < u:‘(r) Hl(zo(t)) for all t E ES. 
Now define 

z.&(t) = u,O(t) if t E EC 

=o if t E E. 

Clearly 8,(r) = u:(t) a.e. on [0, T] and G;(t) H,(z(t)) < G;(t) Hl(zo(t)) for all 
t E [O, T]. 

Therefore quasiconvexity of G;(t) H,(z(t)) and (2.1) yield 

i.e., 
q(t) dH,(zO(t); z(t) - zO(r)) < 0 for all t E [0, T], 

u,o’(t) dIf[(zO(t); z(r) - zO(t)) < 0 a.e. on [0, T], 

which is inequality (3.14) and we can proceed as in Case 2 of Theorem 2 to 
prove that z”( t is an optimal solution of (MP). ) 

Remark 2. We note that in Theorem 3 there is still a pseudoconcavity 
assumption on objective functional h(m) and a quasiconvexity assumption on 
u^f(t) H,(z(t)), separately. The following theorem replaces this by pseudocon- 
cavity assumption on a particular linear combination of the objective 
functional h(e) and the constraint function H(.). 

THEOREM 4. z’(t) E L&“‘[O, T] is an optimal solution oj- (MP) if there 
exists u’(t) E Lz[O, T] satisfying conditions (3.1~(3.4) of Theorem 1 and 
(h - u:‘(r) H,)(z(t)) is pseudoconcave on L‘L[O, T] a.e. on [O. T]. 

Prooj The proof of this theorem is also the same as that of Theorem 2 
except that arguments in Cases 1 and 2 are as follows. 

Case 1. From (3.1) and (3.8), we obtain 

dh(z’(t); z(t) - z’(t)) - u”(t) dH(zO(t): z(t) -z’(t)) 

GO for all t E [O, T] (3.19) 

and u:‘(t) dH,(z*(t); z(t) -z*(t)) < 0 for all t E [O. 71. Therefore 

u;‘(r) dHJ(zo(t): z(t) - z’(r)) < 0 a.e. on 10. 7‘1. (3.20) 

From (3.19) and (3.20) we have 

dh(z’(t); z(t) -z’(f)) - u;‘(t) dH,(zO(t); z(t) -z’(t)) < 0 

i.e., 

a.e. on [0, TI. 

d(h - u;‘(t) H,)(z’(t); z(t) -z’(r)) < 0 a.e. on [O, T]. 
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By the pseudoconcavity of (h - u;‘(f) H,), we have 

(h - 4’(f) H,)W)) < (h - e(t) W(zO(N a.e. on [0, T]. (3.21) 

We know that H,,(z”(f)) = 0, H,(z(t)) < 0 and u;(f) > 0 for all f  E [O, T]; 
therefore (3.21) reduces to 

Mf)) G WO(f)) - 4y> 42(zow) 

where I, = Z - I,. Let 

a.e. on [0, T], 

K = {t E [O, qlwo) > wow) - 4;(f) fh,(zO(0)l. 

Then p(K) = 0 and 

&(0) < wow) - 4;w 4,(z0(N for all f  E KC. (3.22) 

Let K, = {f E [0, T]/h(z(f)) > h(z’(f))}. W e assert that K, c B U K. This 
can be shown as follows. 

Let fEK, and t&BVK. Then t@B and t@K, which imply that tEA 
and t E KC. Hence from (3.22), it follows that h(z(t)) < h(z’(t)), since 
H,,(z’(f)) = 0 for f E A. This contradicts our assumption that t E K,. Both 
sets B and K are of measure zero and as a consequence ,u(K,) = 0. Thus 
h(z(t)) < h(z’(t)) a.e. on [0, 7’1, i.e., f(z) < Z(z’). Hence z’(t) is an optimal 
solution of (MP). 

Case 2. From (3.11) of Theorem 2 (Case 2) it follows that u:(f) = 0 a.e. 
on [O. T]. Inequality (3.19) now yields the inequality 

dh(zO(t); Z(f) - z”(t)) - u;‘(f) dH,(zO(t); z(t) - z”(t)) < 0 a.e. on [O, T]. 

Arguing as in Case 1 above and noting the pseudoconcavity of 
(h - u:‘(t) H,), we obtain inequality (3.22). 

From (3.10) and the fact that I, G J,, we have 

4$, ~,,(zOW) = 0 a.e. on [O, T]. 

Let L = (f E [O, T]/uf;(t) H,I(zo(t)) < O} so that p(L) = 0 and 

4:w f&:(zO(N = 0 for all f  E Lc. (3.23) 

We now claim that K, G KU L. To show this let t E K, and t @ KU L. 
Then t 66 K and t 67! L. which imply that t E KC and t E Lc. From (3.22) and 
(3.23), we now obtain h(z(t)) < h(z’(t)) h s owing that t & K,, a contradiction 
of our assumption. Thus ,u(K,) = 0 as the sets K and L are both of measure 
zero. Therefore h(z(t)) < h(z’(t)) a.e. on [0, T], i.e., l(z) ,< l(z’), showing that 
z”(f) is an optimal solution of (MP). 



CONTINUOUS TIME PROGRAMMING 47 

ACKNOWLEDGMENTS 

The authors are grateful to the referee for pointing out some omissions in the earlier draft 
and making some valuable suggestions which has improved the quality of the presentation of 
the paper. 

REFERENCES 

1. R. BELLMAN. “Dynamic Programming,” Princeton Univ. Press. Princeton, N.J., 1957. 
2. W. F. TYNDALL, A duality theorem for a class of continuous linear programming 

problems, SIAM J. Appl. Mafh. 13 (1965) 533-604. 
3. N. LEVINSON, A class of continuous linear programming problems. J. Mafh. Anal. Appl. 

16 (l966), 73-83. 
4. M. A. HANSON AND B. MOND, A class of continuous convex programming problems, J. 

Math. Anal. Appl. 22 (1968), 427-437. 
5. W. H. FARR AND M. A. HANSON, Continuous time programming with nonlinear 

constraints, J. Math. Anal. Appl. 45 (1974) 96-115. 
6. C. SINGH AND W. H. FARR, Saddle point optimality criteria in continuous time 

programming without differentiability, J. Math. Anal. Appl. 59 (1977) 442453. 
7. C. SINGH, A sufficient optimality criterion in continuous time programming for 

generalized convex functions, J. Marh. Anal. Appl. 62 (1978). 506-5 1 I. 
8. R. CRINOID. Continuous programming. I. Linear objectives. J. Math. Anal. Appl. 28 

(1969) 32-51. 
9. 0. L. MANGASARIAN, “Nonlinear Programming,” McGraw-Hill, New York, 1969. 

10. D. G. MAHAJAN AND M. N. VARTAK, Generalizations of some duality theorems in 
nonlinear programming, Mafh. Programming 12 (1977). 293-3 17. 

409/w I-4 


