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Gamma Band Activity (GBA) is increasingly studied for its relation with attention, change detection,
maintenance of working memory and the processing of sensory stimuli. Activity around the gamma range has
also been linked with early visual processing, although the relationship between this activity and the low
frequency visual evoked potential (VEP) remains unclear. This study examined the ability of blind and semi-
blind source separation techniques to extract sources specifically related to the VEP and GBA in order to shed
light on the relationship between them. Blind (Independent Component Analysis—ICA) and semi-Blind
(Functional Source Separation—FSS) methods were applied to dense array EEG data recorded during
checkerboard stimulation. FSS was performed with both temporal and spectral constraints to identify
specifically the generators of the main peak of the VEP (P100) and of the GBA. Source localisation and time-
frequency analyses were then used to investigate the properties and co-dependencies between VEP/P100 and
GBA. Analysis of the VEP extracted using the different methods demonstrated very similar morphology and
localisation of the generators. Single trial time frequency analysis showed higher GBA when a larger
amplitude VEP/P100 occurred. Further examination indicated that the evoked (phase-locked) component of
the GBA was more related to the P100, whilst the induced component correlated with the VEP as a whole. The
results suggest that the VEP and GBA may be generated by the same neuronal populations, and implicate this
relationship as a potential mediator of the correlation between the VEP and the Blood Oxygenation Level
Dependent (BOLD) effect measured with fMRI.
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Introduction

Recording electric or magnetic fields from the scalp using electro-
or magneto-encephalography (EEG/MEG) is one of the primary ways
in which human brain activity can be characterised. However, the
signals measured at the scalp are a mixture of the contributions from
multiple generators or sources, added to background activity and
system noise, meaning that it is often difficult to identify and study
the dynamic activity of generators of interest at the level of the
electrode/sensor space. Although the most common method of
overcoming this limitation is time-domain averaging with or without
source localisation (Key et al., 2005, Michel et al., 2004), source
separation algorithms are becoming increasingly widely accepted as a
way of extracting and investigating the different neuronal sources
that contribute to themeasured scalp signal. The advantage of blind or
semi-blind source separation techniques compared to more restricted
analyses such as time-domain averaging lies in their ability to explore
the data and extract dependencies that were not expected a priori.
They also provide a means of investigating non-phase locked
oscillatory processes and improving the signal-to-noise ratio (SNR)
of the sources of interest by allowing the extraction of a specific part of
the signal.

Blind Source Separation (BSS) algorithms make some assumptions
about the statistical properties of the sources contributing to the
measured signal, but within the constraints of those assumptions are
able to unmix or decompose the scalp signal into a number of
underlying sources. Themost common source separation technique in
terms of EEG and MEG is Independent Component Analysis (ICA,
Comon, 1994; Hyvärinen, 1999, Hyvärinen et al., 2001), which
contains no prior information regarding the signals. Recently, a new
semi Blind Source Separation (s-BSS) method has been developed and
has shown some promising results. Functional Source Separation (FSS,
Barbati et al., 2006; Tecchio et al., 2007) is an extension of ICA that
incorporates prior information into the decomposition, resulting in a
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single component which maximises a temporal or spectral constraint
of interest.

The advantages of source separation techniques are most evident
when dealing with trial-by-trial variations of electrophysiological
signals (Makeig et al., 2002, 2004a,b; Porcaro et al., 2010), or with
other low amplitude and noisy aspects of the scalp signals such as
oscillations in the gamma band (~30–90 Hz, Hadjipapas et al., 2007;
Barbati et al., 2008, Muthukumaraswamy et al., 2010). Gamma Band
Activity (GBA) is increasingly widely studied because of its links with
processes as disparate as the binding of cortical regions and stimulus
features, attention, change detection, maintenance of working
memory and the processing of sensory stimuli (Gray et al., 1989;
Fries et al., 2001; Pesaran et al., 2002; Womelsdorf et al., 2006; see
Tallon-Baudry, 2003, Ward, 2003 and Fries et al., 2007 for reviews).
Activity around the gamma range has also been linked with early
visual processing (Tzelepi et al., 2000; Sannita et al., 2001; Hadjipapas
et al., 2007; Perfetti et al., 2007), although the relationship between
this activity and the low frequency Visual Evoked Potential (VEP)
remains unclear, withmost studies concentrating on one aspect or the
other (although see Muthukumaraswamy et al., 2010). Given the
prevalence of these different responses to visual stimuli, and the
amount of work that has been done to characterise their properties, it
is perhaps surprising that more is not known about how the two are
related. For example, are they generated by the same neuronal pools,
or do they represent the stimulus responses of independent but
spatially co-localised populations? Is there a link between the VEP/
P100 and the GBA?

These questions have a wider significance when considering the
combination of EEG with functional magnetic resonance imaging
(fMRI). Although a number of lines of evidence from animal and
human studies suggest that the tightest coupling between EEG and
BOLD occurs in the gamma band (see, for example, Logothetis et al.,
2001, Niessing et al., 2005, Muthukumaraswamy and Singh, 2008,
Zaehle et al., 2009), most combined EEG-fMRI studies in humans are
interested in and restricted to the lower frequencies of evoked
potentials (see Debener et al., 2006 for a review). In general, this has
also proved fruitful, although even when restricting the analysis to
low frequencies the goal of investigating co-dependencies between
EEG and fMRI is complicated since many potential features can be
investigated (Ostwald et al., 2010). For example, Porcaro et al. (2010)
observed a significant correlation between the mean area of the VEP
and that of the BOLD response, but not when considering their
respective amplitudes. What extra neurophysiological significance
was carried by the area of the VEPwas not clear. However, it is evident
that if EEG-fMRI is to achieve its potential as a neuroimaging
methodology, the nature of the link between the two signals must
be more easily interpretable at all frequencies.

In order to address these issues, and to investigate the ability of
different methodologies to extract the sources of interest, blind (ICA)
and semi-Blind (FSS) source separation methods were applied to
dense-array EEG data recorded during checkerboard stimulation. FSS
was performed with both temporal (Porcaro et al., 2008, 2009, 2010)
and spectral (Porcaro et al., 2008; Barbati et al., 2008) constraints to
identify specifically the generators of the main peak of the VEP/P100
and of the GBA. Source localisation and time-frequency analyses,
single trial and on average data, were then used to investigate the
properties and co-dependencies of the sources identified with the
different methods to build up a picture of the link between VEP/P100
and GBA.

Materials and methods

Participants and data acquisition

Four subjects (1 female, age range 26–33) were paid for their
participation. Written informed consent was obtained and the
protocol was approved by the Research Ethics Board of the University
of Birmingham.

A full field, high (100%) contrast, low spatial frequency (~0.5 cycles
per degree) checkerboard stimulus was presentedwith a reversal rate
of 2 Hz (i.e. the checkerboard was presented for 500 ms before
reversing). This spatial frequency was chosen to be similar to the
standards for generating VEPs used clinically (see for example Odom
et al., 2004), and may not be optimal for the generation of GBA.
However, the primary concern for the current study is that the
stimulus is capable of generating both VEPs and GBA, thereby
allowing the relationship between the two to be investigated. Stimuli
were displayed on a computer monitor with a refresh rate of 80 Hz
using Presentation (Neurobehavioral Systems Inc., CA, USA), approx-
imately 80 cm from the seated subject, in blocks of 5 s with a 10 s gap
between successive blocks. Stimuli were synchronised with the
screen refresh. Participants were instructed to fixate on a central
red dot which was present between checkerboard stimuli and to
minimise blinking whilst the checkerboard was presented. Each run
consisted of twenty blocks, and took approximately 5 min. In total,
600 VEPs were collected (10 VEPS per block, 20 blocks per run, 3
runs). EEG data were acquired using a 128 channel BioSemi Active
Two EEG system (BioSemi, Amsterdam, the Netherlands), with
electrodes placed in a nylon cap according to the 10–5 system
(Oostenveld and Praamstra, 2001). The data were sampled at 2048 Hz
with a linked mastoid reference.

The data from the runs were concatenated, re-referenced to
common average and down-sampled to 512 Hz. The data were also
low pass filtered (100 Hz) prior to the off line analysis. Some trials
were discarded by visual inspection in each subject due to the
movement artefacts, the majority of these trials were discarded at the
beginning and the end of each runs. After this procedure we had 446,
548, 567 and 490 trials respectively for subjects 1, 2, 3 and 4. For the
further analysis we used a consistent number of trials across the
subjects using 400 trials for each subject. The analysis strategy aimed
at extracting signals generated only in response to the stimulus.

Source separation algorithms

Two methods of source separation were used: blind ICA (fastICA,
Hyvärinen, 1999; Hyvärinen et al., 2001; Barbati et al., 2004) and
semi-blind FSS (Barbati et al., 2006; Tecchio et al., 2007). FSS was
performed with both temporal (Porcaro et al., 2008, 2009, 2010) and
spectral (Barbati et al., 2008; Porcaro et al., 2008) constraints to
extract the sources of interest.

Independent Component Analysis (ICA)
ICA (Comon, 1994) is a generative ‘latent variable’ model that

describes how the observed data are generated by a process of mixing
the underlying unknown sources; the sources (ICs) are assumed to be
statistically independent and non-Gaussian. Since the observedmixed
signals will tend to have more Gaussian amplitude distributions, ICA
strives to find a separation matrix that minimizes the Gaussianity of
the results, thus optimally separating the signals. For this purpose, we
assumed the set of observed EEG signals to be generated by the
mixing model:

x tð Þ = As tð Þ ð1Þ

where t=0,1,2,… is the discrete sampling time; x(t)=[x1(t),…,xm(t)]
is the m-dimensional vector of the observed signal recorded by m
electrodes;A is anm×n (withn≤m) unknown full-rankmixingmatrix;
s(t)=[s1(t),…,sn(t)]T is the n-dimensional unknown vector of the
sources. The model is approached by processing electrode signals by an
ICA demixing system described in the form:

IC tð Þ = Wx tð Þ ð2Þ
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where IC(t)=[IC1(t),…, ICn(t)]T is the n-dimensional vector of the
estimated ICs and W is the separation matrix, i.e., the estimate of the
inverse of theunknownmixingmatrixA, up topermutation and scaling:

W = Â
−1

: ð3Þ

We used the FastICA algorithm proposed by Hyvärinen (Hyvär-
inen, 1999, Hyvärinen et al., 2001).

In the case of a large number of channels (128 in this case) a direct
extraction of all the ICs would have been extremely time consuming
and component selection extremely challenging. We pursued a
dimensionality reduction by applying an optimized procedure to
select a k ICs-subset such that the corresponding explained variance
was at least 95% (Salustri et al., 2005). In our case on average 31 ICs
[range 20–39] resulted in a mean explained variance±standard
deviation of 97.9%±1.4% (Table 1).

Selection of sources. From the 20–39 ICs, Event Related Spectral
Perturbation (ERSP) triggered by rest (from−5 to 0 s) and task (from
0 to +5 s) was used to identify ICs of interest. Specifically, ICs were
identified which had an increased power in the gamma band. In three
subjects only one IC was identified (for subjects 1, 2 and 4 ICs 20, 12
and 14were selected), whilst three ICs were selected for subject 3 (ICs
6, 8 and 14). After the identification of ICs, the data at the scalp
electrodes were obtained by retroprojecting the selected ICs:

EEGICk
= AkICk ð4Þ

where Ak is the estimated mixing vector (matrix A of Eq. (1)) for the
source ICk and EEGICk

is the resulting ICk retro-projection on the
channels space.

Functional Source Separation (FSS)
As in the ICA approach, FSS starts from an additive hidden source

model of the type in Eq. (1),whereX represents the observedEEGdata,
S are the underlying unknown sources and A is the source-sensor
coupling matrix to be estimated. Additional information to a standard
ICA model is used to bias the decomposition algorithm towards
solutions that satisfy physiological assumptions. In other words, the
aimof FSS is to enhance the separation of relevant signals by exploiting
some a priori knowledge without renouncing the advantages of using
only information contained in the original signal waveforms. A
modified (with respect to standard ICA) contrast function is defined:

F = J + λRFS ð5Þ

where J is the statistical index normally used in ICA, whilst RFS
accounts for the prior information used to extract a single source.
According to the weighting parameter λ it is possible to adjust the
relative weight of these two aspects. In this study, λ was chosen to be
equal to 1000 in all cases, as detailed in Porcaro et al. (2008). Briefly, λ
was chosen to both minimise computational time and maximise RFS.
Moreover, since prior information about the sources may also be
Table 1
Explained variance.

Num. ICs Exp.Var. (%)

S1 30 98.75
S2 36 98.22
S3 39 95.87
S4 20 98.71
Mean 31 97.9
SD 8.4 1.4

For each subject, the number of estimated ICs (Num. ICs) and the Explained Variance
(Exp.Var.) are shown after the dimensionality reduction procedure (see text). In the
last two rows the mean and standard deviation (SD) across subjects are shown.
described by a non-differentiable function, the new contrast function
F is optimised by means of simulated annealing (Kirkpatrick et al.,
1983; Barbati et al., 2006 Appendix A). This does not require the use of
derivatives, and performs global optimisation, whilst the gradient-
based algorithms usually employed in ICA only guarantee local
optimisation. This scheme gives us the possibility to extract only one
component that maximises the functional behaviour in agreement
with the functional constraint. In the present work, consistent with
the VEP and GBA under investigation, two ad-hoc functional
constraints were maximised. The first constraint was related to the
principal peak (P100) of the VEP. The second was related to the GBA
and a maximisation of the difference in Power (Power Spectral
Density, PSD) between rest and task was used. These constraints are
discussed in more detail below.

Temporal functional constraint. The functional constraint R was
defined as:

R FSP100ð Þ = ∑
tk + Δ2tk

tk−Δ1tk
jEA FSP100; tð Þj− ∑

0

−100
jEA FSP100; tð Þj ð6Þ

with the evoked activity, EA, computed by averaging signal epochs of
the source FSP100, triggered on the visual stimulation (t=0); tk is the
time point with the maximum electric potential around 100 ms after
the stimulus onset on the maximal original EEG channel; Δ1tk(Δ2tk) is
the time point corresponding to a signal amplitude of 50% of the
maximal value before (after) tk. The baseline was computed in the
time interval from −100 to 0 ms. The precise value of each latency tk
was chosen for each subject, corresponding to the maximum electric
potential in the time interval of interest (80–120 ms), see also Porcaro
et al. (2010). The source was then retro-projected to obtain its electric
potential distribution at the scalp electrodes:

EEGFS P100 = AP100FSP100 ð7Þ

where AP100 is the estimated mixing vector (matrix A of Eq. (1)) for
the functional source and EEGFS P100 are the retro-projections on the
electrodes of the estimated FSP100.

Spectral functional constraint. To investigate the GBA, the following ad-
hoc functional constraint R was used:

R FSγ
� �

=
∑
γ

PSD FSγ
� �

Stimulus
−∑

γ
PSD FSγ

� �
No�Stimulus

∑
γ

PSD FSγ
� �

No�Stimulus

: ð8Þ

This constraint computes the difference in the Power Spectrum
Density (PSD) between Stimulus (from 0 to 5 s of each trial, t=0
corresponding to the stimulus onset) and No-Stimulus (from −5 to
0 s of each trial) periods in the γ frequency band (30–90 Hz). This
difference is then normalised with respect to the GBA in the No-
Stimulus period (Barbati et al., 2008). The source was then retro-
projected to obtain its electric potential distribution at the scalp
electrodes:

EEGFSγ
= AγFSγ ð9Þ

where Aγ is the estimated mixing vector (matrix A of Eq. (1)) for the
functional source and EEGFSγ are the retro-projections on the
electrodes of the estimated FSγ .

Data evaluation

To evaluate the quality of the data following ICA and FSS, four
criteria were used: the VEP, Source Localisation, Discrepancy and Time



Table 3
Dipole localisation.

x y z r.v.

EEGICk
−4 [5.17] −62 [2.16] 25 [6.40] 1.58 [4.81]

EEGFSP100 1[1.60] −65 [8.03] 30 [6.55] 1.64 [0.89]
EEGFSγ 3 [8.56] −73 [0.63] 27 [3.49] 3.75 [2.66]

For eachmethod (EEGICk
,EEGFSP100and EEGFSγ), themean position (x, y, and z) [standard

error] and residual variances (r.v.) of the corresponding ECD are reported.
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Frequency Dynamics applied on both averaged trials and single trial
levels. In order to facilitate comparison, the analysed data were taken
from a single electrode selected for each subject based on the
maximum of the voltage field (Eq. (4) for ICA and Eqs. (7) and (9) for
FSS with the time and spectral constraints respectively), at the latency
of the P100 peak. The electrode nomenclature is according to the 10–5
electrode system (Oostenveld and Praamstra, 2001). The selected
electrodes for each subject and for each method are shown in Table 2.

Visual Evoked Potential
After identification of the ICs with increased gamma activity

during the taskwith respect to the rest period, extraction of FSP100 and
FSγ, scalp topographies were obtained by retroprojection of the
identified sources using Eq. (4) for ICA and Eqs. (7) and (9)
respectively for the FSS with temporal and spectral constraint. In
each subject the signals from the selected electrode were averaged
based on the stimulus trigger to obtain the VEP. The grand average
across subjects was also calculated.

Source localisation
Source localisation was performed using an equivalent current

dipole (ECD) model, with a forward model consisting of four
concentric conductive spheres (routine DIPFIT2 (Oostenveld and
Oostendorp, 2002) of EEGLAB v6.01b, available at http://www.sccn.
ucsd.edu/eeglab (Delorme and Makeig, 2004)). EEGLAB expresses
ECD position in Talairach coordinates and projects them onto the
Montreal Neurological Institute (MNI) template brain (Table 3). In
order to test whether the localisation of the ECDs was comparable
between methods, a repeated measures one-way ANOVA with levels
EEGICk

, EEGFS P100, EEGFSγ for X, Y and Z coordinates was performed.

Discrepancy
To determine whether the data after source selection contained

any residual signal of interest, the discrepancy was defined as the
difference between the original EEG data and the data obtained from
Eq. (4) for ICA and Eqs. (7) and (9) for FSS (respectively for the time
constraint and the spectral constraint):

DiscrepancyICk
= EEG−EEGICk

DiscrepancyFSP100 = EEG−EEGFSP100
DiscrepancyFSγ = EEG−EEGFSγ :

ð10Þ

Amean discrepancy index (DI) was calculated as the ratio between
the mean R computed on the discrepancy matrix and the mean R
across the EEG electrodes:

DI =
∑
i
R DiscrepancyMethodð Þ2

∑
i

R EEGð Þ� �2 : ð11Þ

R is the reactivity index defined as:

R =
R

Δ2tk + Δ1tk + 1
: ð12Þ
Table 2
Selected electrodes, Latency and Discrepancy Index.

EEGICk
EEGFSP100

Channel Latency DI Channel

S1 Ch12-POO1 95 3.8 Ch12-POO1
S2 Ch15-PPO2h 78 1.5 Ch 25-PO6h
S3 CH22-POO2 99 4.6 Ch 20-OI2h
S4 Ch15-PPO2h 84 2.5 Ch15-PPO2h
G.A. Ch12-POO1 95 2.0 Ch12-POO1

For each subject and for each methodology, the selected channel, latency of the P100 and t
Average (G.A.).
R is defined as in Eqs. (6) and (8) and tk refers to the latency of each
extracted FS or ICs (see Table 2). The index i runs upon all the
channels. To test how well the three methods were able to extract the
VEP in the time domain, we examined the discrepancy associated
with each method. A one-way repeated measure ANOVA of the
absolute post-stimulus discrepancy time-series was calculated with
data from the three methods.

VEP/P100 regression
One problem when looking at time frequency plots of stimulus

induced changes is that such maps contain both the evoked and
induced responses. In order to specifically examine the induced
changes we took the average evoked response over all trials and
regressed this out of each individual trial. This gives an estimate of the
purely induced component of the response, within the limitations of
the standard model of evoked potential generation which assumes
that the EP and background activity are additive. Although still a
matter of debate, with evidence for an alternative model whereby
evoked responses are the result of phase resetting of ongoing activity
(Min et al., 2007; Hanslmayr et al., 2007; Sayers et al., 1974; Basar et
al., 1998; Schürmann and Başar, 2001), this evoked model has been
demonstrated to be appropriate for early (b175 ms) components of
the VEP (Becker et al., 2008; Mazaheri and Jensen, 2006). The results
obtained using this approach were labelled as ‘regressed’ in the
figures.

Time frequency dynamics
The data subjected to the time frequency analysis were taken from

the same electrodes as used to investigate the VEP (Table 2). Time-
frequency analysis of the data was performed using a short-time
Fourier analysis using Fast Fourier Transforms (FFTs) with a moving
windows size of 256 samples (500 ms) wide as implemented in
EEGLAB (Delorme and Makeig, 2004). Event-related spectral pertur-
bation (ERSP—event-related spectral perturbation, a 2-D (frequency-
by-latency) image of mean change in spectral power (in dB) from
baseline (Makeig et al., 2004a, see Concept and Terms)) was
computed for each electrode, and the results were compared amongst
the methods. The time-frequency plot was thresholded at a bootstrap
significance level of p=0.01. To investigate whether the GBA was
phase locked to stimulus presentation (i.e. evoked or induced) the ERSP
was also calculated after trial averaging. This identified the evoked
component, which was then deleted by the procedure described above
from the single trial power in the original signal to leave an estimate of
the induced GBA power. Moreover, to specifically examine the effect of
EEGFSγ

Latency DI Channel Latency DI

94 6.7 Ch12-POO1 95 3.5
82 2.2 Ch 25-PO6h 83 1.5
97 4.0 Ch25-PO6h 99 1.4
83 1.5 Ch15-PPO2h 83 2.3
96 4.3 CH22-POO2 95 1.6

he Discrepancy Index (DI) are shown. The last row shows the same data for the Grand

http://www.sccn.ucsd.edu/eeglab
http://www.sccn.ucsd.edu/eeglab
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the three methods (EEGICk ,EEEGFS P100 and EEGFSγ) on different
frequency bands, ERSP was averaged for each trial within a frequency
range of 8–13 Hz (Alpha Band), 14–30 Hz (Beta Band), 31–60 Hz (Low
Gamma Band) and 61–90 Hz (High Gamma Band).

ERP image plots were used to visualise the trial-by-trial variability
on the different power bands. Instead of simply summing all the data
trials, trials are first sorted based in order of a relevant data or external
variable, and then plotted as a colour-coded two dimensional image.
Essentially, 2-D ERP images generalise 1-D ERP averaging (Makeig
et al., 2004a, see Concept and Terms).

VEP/P100 vs. frequency bands
In order to investigate whether there was a relationship between

the evoked response and the different frequency bands present in the
EEG, a single trial (ST) comparison between the VEP/P100 and the
different frequency bands was performed for the different methods
(EEGICk

,EEGFS P100 and EEGFSγ). The ST VEP was ordered by the area
under the VEP curve (the VEP was rectified (i.e. abs function in
Matlab) and then averaged in the range of the VEP (i.e., between
~65 ms and ~145 ms according to the single subject variability)). In
addition, the ST P100 peak was ordered by the area under the P100
peak (between ~80 ms and ~120 ms). Both areas were then normal-
ised with respect to the size of the windows used in each subject. As
well as these measures of the VEP, the ERSP for each trial was
calculated and averaged within frequency ranges of 8–13 Hz (Alpha
Band), 14–30 Hz (Beta Band), 31–60 Hz (Low Gamma Band) and 61–
90 Hz (High Gamma Band) with baseline correction using the interval
−100 ms to 0 ms. The trial ordering based on P100 and VEP area was
then also applied to the ERSP data in order to investigate, for example,
whether trials with a large VEP/P100 also had a large ERSP in each of
the specific frequency bands. In order to investigate the relationship
between the induced activity and the VEP/P100 an optimally
weighted version of the average evoked response was then removed
from each trial of the ordered data described above. The time
frequency analysis was therefore performed for evoked, induced and
induced plus evoked data.

Statistical analysis

All statistical analyses were carried out using SPSS 16.0 (SPSS Inc,
Chicago IL, USA).

Results

Selection of sources

From the ICA decomposition of each subject, components display-
ing significant post stimulus GBAwere selected and retro-projected to
the scalp space (from 1 to 3 components). FSS results in only one
source for each constraint, avoiding the need for component selection.

Evaluation of the extracted sources

Visual Evoked Potentials and source localisation
Firstly, the VEP (Fig. 1, second column) and its topographic map

(Fig. 1, first column) and dipole source localisation (Fig. 1, third
column) were examined. The topographic maps for all methods
displayed a dipolar potential distribution (Fig. 1, first column)
confirming the suitability of a single dipole model as an inverse
solution strategy. Although the EEGFSγ source was extracted from the
data based solely on maximising the GBA, the Topographic Map, VEP
and the dipole location derived from it were extremely consistent
with those from the EEGICk

and EEGFS P100 sources (Fig. 1). A repeated
measures one-way ANOVA with Greenhouse−Geisser correction
for each ordinate individually revealed no significant localisation dif-
ferences between methods (X-Ordinate: F(1.2,3.7)=0.20, p=0.72,
Y-Ordinate: F(1.1,3.3)=2.78, p=0.19, Z-Ordinate: F(1.7,5.2)=4.03,
p=0.09, see also Table 3).

Discrepancy
Fig. 2 shows the results of the calculation of the discrepancy. It can

be seen that all three methods were successful at extracting the
signals of interest whilst leaving minimal residual activity (i.e. the
extracted source described practically all of the evoked response
contained in the original EEG data). As expected, since it is intended to
extract only the P100, the EEGICk

did not extract all of the peaks of the
VEP and there appear to be slight deviations at longer latencies (i.e.
140 ms). Interestingly, the discrepancy associated with EEGFSγ

appeared to be lower than for the other two techniques, suggesting
that extracting a source that maximised the GBA was also able to
account for the large majority of the signal at low frequency. All of the
peaks of the VEP were accounted for in the EEGFSγ method.

To confirm these observations, a one-way repeated measures
ANOVA of the absolute post-stimulus time-series for levels EEGICk

(mean 0.50, standard deviation 0.36), EEGFS P100 (mean 0.56, standard
deviation 0.52) and EEGFSγ (mean 0.39, standard deviation 0.32) with
Greenhouse–Geisser correction for non-sphericity was performed.
This revealed a significant omnibus effect (F(1.5, 765.3)=61.8,
pb0.001). Further, all three pairwise comparisons revealed significant
differences (pb0.01) after Bonferroni correction for multiple compar-
isons. Together, these results indicate that the EEGFSγmethod
accounted for more of the stimulus-related activity than either the
EEGICk

or EEGFS P100 methods.

Time frequency dynamics
For the ERSP, the gamma activity after the stimulus presentation

was more evident in the blind and semi-blind methods than in the
raw data (Fig. 3). As expected, since it is optimised to do so, the GBA
was most robust in the EEGFSγdata. To investigate whether the GBA
was phase locked to stimulus presentation (i.e. evoked or induced),
the ERSP was also calculated after trial averaging (Fig. 3, first and
second columns). Fig. 3 (third column) shows the estimate of the
stimulus induced changes after the average evoked response has been
regressed out (note the absence of the regular broad band transient).
This procedure demonstrated the presence of both induced and
evoked components to the GBA, which was most evident in the
EEGFSγdata. It also shows very clearly the presence of a sustained,
induced alpha band response to the stimulation block, which is
evident with all processing methods. Such an alpha band desynchro-
nisation is commonly observed with visual stimulation, and if the
occipital alpha rhythm is considered an ‘idling’ state of visual cortex, it
would correspond to a non-specific event-related activation of visual
cortex (Pfurtscheller and Lopes da Silva 1999). From this point of
view, it is conceptually different to the VEP and the GBA, which are
explicit responses to stimulation.

Fig. 4 shows the average ERSP within the alpha (8–13 Hz), beta
(14–30 Hz), low gamma (31–60 Hz) and high gamma (61–90 Hz)
bands. As can be seen, characterisation of the different frequency
bands was very consistent across methods, with the primary
difference being the improved ability of EEGFSγto extract GBA. In
particular, a clear, sustained induced component of the low GBA was
observed with EEGFSγ , but largely absent with the other methods.

Statistical analysis confirmed these observations. After filtering
into the different frequency bands, the absolute post-stimulus ESRP
underwent a two-way repeated measures ANOVA with factors
‘frequency band’ (alpha, beta, low gamma, and high gamma) and
‘method’ (Raw, EEGICk

, EEGFSP100, and EEGFSγ Data) with Greenhouse–
Geisser correction for non-sphericity. This revealed a significant main
effect of ‘frequency band’ (F(1.4, 135.2)=999.9, pb0.001), a
significant main effect of ‘method’ (F(2.6, 254.3)=302.0, pb0.001)
and a significant interaction (F(4.6, 454.4)=60.1, pb0.001). Exam-
ining more specifically the effect of method, all pairwise comparisons



Fig. 1. Topographic map, VEP and Dipole localisation across methods. For the grand average, the Topographic Map, VEP and Dipole localisation are shown for each method (EEGICk
—

first row, EEGFSP100—second row and EEGFSγ—third row). For the Dipole Fit, position and orientation of the ECD are shown superimposed on the MNI brain template in axial, coronal,
and sagittal views. The last row shows the overlap across the methods for the VEP and dipole source localisation. The envelope indicates plus and minus one standard deviation
around the VEP mean.
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other than the comparison of EEGICk
and EEGFS P100 (p=0.71) revealed

significant differences (pb0.001) after Bonferroni correction for
multiple comparisons based on the estimated marginal means.

As indicated by the significant interaction between the factors, the
differences in absolute post-stimulus ERSP between the different
processing methods were dependent on the frequency band inves-
tigated. Hence, we subsequently carried out a series of one-way
ANOVAs comparing the processing methods for each frequency band
individually. Of particular interest, in the low gamma band the effect
of methodwas significant (F(1.5, 144.0)=484.8, pb0.001), indicating
the improved GBA in the EEGFSγ method.

VEP/P100 vs. frequency bands
Figs. 5 and 6 show the ST comparisons between the normalised

area of the VEP/P100 and the alpha, beta, low gamma and high gamma
band ERSP for the different methods (EEGICk

,EEGFS P100, and EEGFSγ).
The results for all of themethods are shown to confirm that the effects
are consistent despite different data processing strategies.

The upper half of Fig. 5 (first column) shows the ERP image
(Makeig et al., 2004a; 2004b, Delorme and Makeig, 2004) of the VEP
single trials, with the trials ordered by the normalised area of the VEP.
Columns 2 and 3 show the ERSP in the different frequency bands, with
the trials ordered according to column one. From the figure it is clear
that trials with a larger normalised VEP area show higher alpha and
beta power, with a similar though less evident trend for the low
gamma band. For the high gamma band this effect was not evident.
The effect was observed consistently for all the methods.

Maintaining the same ST ordering model used above, the lower
half of Fig. 5 (first column) shows the corresponding ERP image
following removal of the average VEP through linear regression. This
data therefore represents only the induced activity, whilst the data
shown in the upper half of Fig. 5 contain both induced and evoked
components. From the figure it is clear that the observations made for
the upper half of Fig. 5 were also confirmed for the induced activity
alone, indicating that the relationship between the VEP and GBA is not
driven purely by frequency components of the evoked potential.

Fig. 6 used the same scheme as Fig. 5, except that the trials are
ordered by the magnitude of the P100 peak alone, rather than the
whole VEP. A similar link between P100 amplitude and spectral power
can be seen as for the VEP, which is lost when the average VEP is
regressed out (lower half of Fig. 6). This indicates that the link between
P100 and spectral content is driven by the evoked component, with
little or no contribution from the induced component.

To emphasize these effects, Fig. 7 shows the upper and lower
quartiles of the data presented in columns 2 and 3 of Fig. 6 for the
regressed data (i.e., the 25% of trials with the highest VEP/P100 area,
and the 25% of trials with the lowest VEP/P100 area). In Fig. 7, when
the evoked component was regressed out, higher power in alpha, beta
and low/high gamma band can be seen for the fourth quartile with
respect to the first quartile when we ordered by the VEP (Fig. 7 upper
half), with respect to the P100 (Fig. 7 lower half). Fig. 7 also
demonstrates more clearly that these effects weremore evident when
ordering by the VEP area than by the P100 area, suggesting a link
specifically between VEP area and spectral power in the alpha, beta
and gamma bands. Note that as the data in Fig. 7 were baseline
corrected in the interval −100 ms to 0 ms, the positive and negative
deviations are variations about the mean. In particular for the alpha
band, there is a prolonged desynchronisation that is evident



Fig. 2. Discrepancy. For a representative subject and for EEGICk
—first row, EEGFSP100—second row (top) and EEGFSγ—second row (bottom), averaged data are shown in the time

window [−100, 1000]ms (onset at t=0 ms; reversal at t=500 ms). Left: Raw Data. Centre: retro-projected data obtained by ICA (first row) or FSS (second row). Right: Raw Data
minus EEGICk

(first row), Raw Data minus EEGFSP100 (second row—top) and Raw Data minus EEGFSγ (second row—bottom).
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throughout the stimulus period (see Figs. 3 and 4) which then
becomes the baseline for the single trial analysis of Fig. 7. Super-
imposed on these sustained effects are transient peaks associated
Fig. 3. Induced gamma investigation by ERSP. Grand Average of ERSP for Raw Data—first ro
row). The left column shows the ERSP calculated for the single trials and then averaged. The m
right column shows the ERSP calculated for the regressed single trials and then averaged (not
The plots are thresholded at a bootstrap significance level of p=0.01 such that effects below
to the time when a reversal checkerboard stimulus was presented on the screen (Stimulus
reversal checkerboard stimulus was present (No-Stimulus—Rest).
with the checkerboard reversal. These reversal-related alterations in
the frequency content of the EEG can most clearly be seen in Fig. 4,
and are present for all of the frequency bands examined. Fig. 7
w and for each method (EEGICk
—second row, EEGFSP100—third row and EEGFSγ—fourth

iddle column shows the ERSP for the averaged trials (i.e. ERSP of the average VEP). The
e in this case the absence of the regular broad band transient which represents the VEP).
threshold are shown in green for the ERSP. The points after 0 (from 0 to 5 s) correspond
—Task), and the points before 0 (from −5 to 0 s) correspond to the time in which no

image of Fig.�2
image of Fig.�3


Fig. 4. Alpha, Beta, Low Gamma and High Gamma activity. Grand Average across subjects of ERSP in the Alpha (8–13 Hz), Beta (14–30 Hz), Low Gamma (31–60 Hz) and High Gamma
(61–90 Hz) bands as a function of time for all methods (EEGICk—first column, EEGFSP100—second column and EEGFSγ—third column). The data in this figure refers to left column of
Fig. 3.
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therefore suggests that trials with a low VEP amplitude have
proportionately more alpha desynchronisation than trials with a
high VEP.

Discussion

This study examined the ability of blind and semi-blind source
separation techniques to extract sources specifically related to the
Visual Evoked Potential (VEP/P100) and Gamma Band Activity (GBA)
elicited by a reversing checkerboard. The relationship between the
low frequency VEP and the high frequency (~30–90 Hz) GBA, both of
which can be generated by simple visual stimuli such as checker-
boards and gratings, remains unclear. GBA is receiving an increasing
amount of attention because of its purported links with many
different brain processes (Gray et al., 1989; Fries et al., 2001; Pesaran
et al., 2002; Womelsdorf et al. 2006; see Tallon-Baudry, 2003, Ward,
2003 and Fries et al., 2007 for reviews). Of particular relevance to this
study, high frequency EEG activity has been linked with early visual
processing (Tzelepi et al., 2000; Sannita et al., 2001; Hadjipapas et al.,
2007; Perfetti et al., 2007), a domain studied more commonly using
the VEP (Di Russo et al., 2001, 2005). Despite the considerable amount
of work characterising the behaviour of both the VEP and the GBA to
manipulations of stimulus properties, very little attention has been
paid to the relationship between the two. For example, it is not known
whether they are different manifestations of the activity of a single
neuronal pool, or whether they represent the stimulus responses of
independent but spatially co-localised populations. A better under-
standing of this relationship is important to provide a more holistic
approach to the analysis of EEG and MEG data, rather than a strict
parcellation of different parts of the signal. It is also crucial for a proper
interpretation of the results of combined EEG-fMRI recordings, which
to date have focussed almost exclusively on low frequency EEG and
evoked potentials, despite the fact that it has been suggested that the
primary relationship between EEG and the Blood Oxygenation Level
Dependent (BOLD) effect measured with fMRI is in the gamma band.

GBA has a very low signal-to-noise ratio (SNR), meaning that
methods to improve its detectability and allow a more accurate
characterisation of its properties are desirable. Three methods were
examined in this study: Independent Component Analysis (ICA) and
Functional Source Separation (FSS) with temporal and spectral
constraints. ICA is a blind source separation technique that extracts
sources based purely on statistical grounds, whilst FSS can be seen as
an extension to ICA which incorporates some additional information
to bias the decomposition algorithm towards solutions that satisfy
physiological assumptions. In this study, a temporal constraint
maximised the activity around the P100 of the VEP, and a spectral
constraint maximised the difference in the GBA between the rest and
the task periods. The purpose of applying these different analysis
methods was threefold. Firstly, to determine which technique was
able to provide the best characterisation of the GBA. Secondly, to
provide a degree of validation to the comparison of the GBA and the
VEP. Each of the techniques extracts a different part of the raw signal
which is dependent on the assumptions underlying the decomposi-
tion. In particular, the ICA and the EEGFSγ sources were explicitly
intended to identify activity in the gamma band, whilst the EEGFS P100

source employed a temporal constraint designed to maximise the
VEP. If similar conclusions regarding the relationship between the VEP
and GBA are drawn from examination of these different sources then
some confidence can be gained that they represent a realistic
interpretation of the underlying data. Finally, the use of FSS with
multiple constraints allows the relationship between the constraints
to be studied directly. In this case, the temporal constraint centred on
the P100 of the VEP selectively identified the most probable generator
of that peak. The question can then be asked as to whether there is any

image of Fig.�4


Fig. 5. Single trial comparison—normalised VEP area. Grand Average across subjects – upper half – The single trial VEPs ordered by the area under the VEP curve (i.e. ~65 ms and
~145 ms). This ordering was then applied to the ERSP data for each of those trials within the frequency ranges of 8–13 Hz (Alpha Band), 14–30 Hz (Beta Band), 31–60 Hz (Low
Gamma Band) and 60–90 Hz (High Gamma Band) amongst methods (EEGICk

, EEGFSP100 and EEGFSγ). Lower half—as described above but after regressing out the evoked response.

1067C. Porcaro et al. / NeuroImage 56 (2011) 1059–1071
evidence that this source also generates GBA. Conversely, a com-
pletely orthogonal spectral constraint centred on the gamma band
was used to select the generator of the GBA, and the low frequency
behaviour of that source examined. The ability of FSS to selectively
identify specific sources has previously been demonstrated (Barbati et
al., 2006, 2008; Porcaro et al., 2008, 2009, 2010; Tecchio et al., 2007,
2008; Betti et al., 2009) and, especially given the very different
constraints employed in the current study, there is no reason to
suspect that the two extracted sources should artefactually be related.
That is, only if there is a genuine relationship between the VEP and the
GBA will the activity of the two sources be similar. The results from
this study provide clear evidence that the neuronal pools generating
the VEP and GBA have a close spatial and statistical relationship.
Localisation of the blind (ICA) and the semi blind method (FSS with
both temporal and spectral constraint) was very consistent, with
equivalent current dipoles (ECD) demonstrating very precise spatial
co-localisation (Fig. 1 third column). This level of overlap supports the
idea that the VEP and GBA are generated by spatially concordant
neuronal populations. In particular, the comparison of the waveforms,
localisation and time-frequency dynamics for the FSS with temporal
and spatial constraint revealed a high degree of symmetry: maximis-
ing the signal extraction for the low frequency VEP lead to a source
containing strong GBA, whilst maximising for the GBA resulted in a
source with a clear VEP.

In order to characterise the GBA in more detail, and specifically to
determine whether it was phase locked to stimulus presentation (i.e.
evoked or induced), the event-related spectral perturbation (ERSP)
was calculated in two ways (Fig. 3). Firstly, ERSP was calculated for
each single trial, after which the spectra were averaged, and secondly
the data were averaged in the time domain before performing spectral
analysis. The second procedure maintains only the evoked (stimulus
phase-locked) part of the GBR, whilst the first procedure will include

image of Fig.�5


Fig. 6. Single trial comparison—normalised P100 area. The same data used in Fig. 5 but ordered based on the area under the P100 peak (~80 ms and ~120 ms) and on the data after
regressing out the evoked response (upper half and lower half respectively).
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both evoked and induced contributions. The results indicate a clear
induced GBA for the semi blind methods with the spectral constraint,
which is less apparent but also present in the other two data sets
(Fig. 3 third column), in addition to an evoked component. This
behaviour is consistent with previous work, particularly with grating
stimuli (Hall et al., 2005; Muthukumaraswamy et al., 2010; Hadjipapas
et al., 2007; Barbati et al., 2008).

A concern when using source separation techniques is whether in
selecting a few ICs or only one FS some of the signal of interest has
been lost. This was addressed in Fig. 2, which summarises the
discrepancy (i.e. the difference between the raw data and the FSS or
ICA data). According to thismetric, the residual signal not extracted by
Fig. 7. Frequency comparison between trials with high and low VEP/P100 areas. Upper ha
according the VEP area. The envelope indicates plus and minus one standard devi
FSS or ICA is comparable to the level of the baseline, indicating that
most of the signal of interest was kept. In the same figure, it is
demonstrated that the discrepancy results from EEGICk

and EEGFSP100

are comparable, whilst the discrepancy of the EEGFSγ is lower than the
other two methods. It is of note that although the constraint used in
the EEGFSγ decomposition was specifically targeted towards the
gamma activity, it appears from the discrepancy results that all of the
peaks of the VEP were also extracted into the EEGFSγ method. This is
further evidence that the VEP and the GBA are generated by similar
neuronal pools.

These analyses point to a robust relationship between the VEP and
the GBA on average. To investigate this further, and to examine other
lf—the first (solid blue line) and fourth (solid red line) quartiles of the trials ordered
ation around the mean. Lower half—as described above but for the P100 area.
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frequency bands to determine whether the VEP is solely related to the
gamma band, the relationship was examined on a single trial basis.
Trials were ordered based on properties of the VEP (normalised area
of the VEP or normalised area of the P100 peak), and the frequency
content examined. If there is a link between the VEP and the
frequency content of the EEG, there should be a difference between
the frequency content of the highest and lowest quartiles of the
ordered data. Figs. 5, 6 and 7 show that this is indeed the case.
Specifically, there is a clear increase in alpha, beta and low/high
gamma power for the top quartile of trials when ordered by VEP/P100
area. However, when the average evoked response was regressed out
of the data, this effect was maintained only for the data ordered
according to VEP area and not for data ordered by P100 amplitude. In
the latter case, the effect of ordering was drastically reduced
especially for the beta and gamma bands, whilst having much less
of an effect on the alpha band. Taken as a whole, these results suggest
that there is a robust relationship between the induced beta and low/
high gamma activity and the VEP, indicating that this effect is not a
result of contamination of the time-frequency analysis by fast
components of the evoked potential.

Although it is very difficult to guarantee that all of the evoked
component has been removed by the regression process, and as stated
previously it explicitly assumes the standard model of evoked
potential generation which is a matter of considerable debate (Min
et al., 2007; Hanslmayr et al., 2007, Becker et al., 2008, Mazaheri and
Jensen, 2006), several lines of evidence suggest that the majority of
the evoked component has been taken out of the data (see Figure S1).
The evoked model of VEP generation has been shown to be
appropriate for early components of the VEP (b175 ms, Becker et al.
2008), and the fact that the regressed data contains very little VEP in
the single trial plots of Figs. 5 and 6 would support this. As is evident
from Figs. 5 and 6, there is very little latency or shape variability in
these early peaks of the VEP, which should at least give the best
chance of removing the evoked component successfully (see also
Figure S1).

This result may also have implications within the context of EEG-
fMRI recordings, and in particular regarding a previous observation
that the area of the VEP was correlated with the area of the BOLD
response, but that the amplitudes were not related (Porcaro et al.,
2010). Given the wealth of evidence that has been accumulated
suggesting that the BOLD response is most strongly correlated with
gamma band EEG (Logothetis et al., 2001, Niessing et al., 2005,
Muthukumaraswamy and Singh, 2008, Zaehle et al., 2009), it is
perhaps surprising that EEG-fMRI studies of evoked potentials have
had such success. One potential explanation suggested by the results
presented in this study is that the evoked potential acts as a surrogate
marker for induced gamma activity. At the single trial level, variability
in the area of the evoked potential was correlated with variability in
the GBA in the time window 0–200 ms (Figs. 5–7), perhaps
representing a mechanism whereby evoked potentials could link
with BOLD. The relationship between scalp EEG and BOLD remains to
be clarified, and this putative intervening link remains speculative and
open to further investigation, and is no doubt complicated by the
presence of a more prolonged gamma band response throughout the
stimulation time period of five seconds (see Fig. 4, FSS Spectral
Constraint in the low gamma band). For example, it would be
important to determine whether the observations that have been
made in primary visual cortex extend to other cortical regions,
although the ideal scenario of examining these issues with concurrent
EEG-fMRI is complicated by the current difficulty in cleanly recording
high frequency activity in the MRI scanner (Mullinger et al., 2008).

In this study, the improvement in data quality provided by ICA and
FSS facilitated a more detailed investigation of the spatiotemporal
properties of the pattern-reversal EEG response than is generally
possible. GBA was not clearly seen in the Raw data (Fig. 3 first row),
perhaps explaining why the gamma band response to checkerboard
stimuli has not been widely investigated. This improvement in the
extraction and characterisation of particular signal properties allowed
the relationship between the GBA and the low-frequency VEP to be
investigated, the results of which suggested common behaviour and
potentially common generators of these two well-studied phenom-
ena. Future work could investigate the effects of stimulus properties
on this link, for example static grating stimuli which are more
effective at generating GBA (Hadjipapas et al., 2007) as well as higher
order cognitive processes such as attention (Womelsdorf and Fries,
2007). More generally, the methodology proposed here suggests a
way in which the links between the two main methods of analysing
EEG and MEG data could be explicitly investigated to provide a much
more complete view of the brain's response to external stimuli.

Supplementarymaterials related to this article can be found online
at doi:10.1016/j.neuroimage.2011.03.008.
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