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For the anisotropic Universe filled with massless vector field in the General Relativity frame we obtain
bouncing solution for one of scale factors. We obtain the Universe with finite maximal energy density,
finite value of R, Rμν Rμν, Rμναβ Rμναβ and non-zero value of a scale factor for directions transverse to a
vector field. Such a bounce can be also obtained for a massive vector field with kinetic initial conditions,
which gives isotropic low energy limit. We discuss the existence of a bounce for a massless vector field
with additional matter fields, such as cosmological constant or dust. We also discuss bouncing solution
for massless vector field domination in n + 2-dimensional space–time.
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0. Introduction

The evolution of Abelian vector fields in cosmology has been
discussed in the context of generating isotropic inflation [1], large
scale structure [2–6], dark energy and background anisotropies
[2,7]. One shall note, that unlike scalar fields, we observe elemen-
tary vector fields in accelerator experiments. Thus, we expect them
to appear in the early Universe, for instance as a gauge bosons.
Since then, they are considered to be a viable alternative for scalar
fields in solving problems of classical cosmology. As we shall show
in this Letter, vector fields may also result in a finiteness of the
energy density of the Universe and generate bouncing evolution of
one of scale factors in the GR frame.

Our original motivation to study the evolution of a massless
vector field in the GR frame was to find the classical limit for its
evolution in Loop Quantum Cosmology [8]. However, it turned out
that the massless vector field domination can generate a bounce
already in the GR frame. Let us note, that bouncing solutions were
found long before LQC [9–11], for example in f (R) theories [12],
in the cycling Universe [13] or as a result of quantum corrections
[14]. In the present Letter we study the detailed model mentioned
already in the previous paper [8]. It turns out, that the model has
several advantages: one does not need to introduce any modifi-
cation of General Relativity (like in f (R) theory) or to introduce
any exotic kinetic terms for fields, which would dominate the Uni-
verse during a bounce (like in ekpyrotic/cyclic Universe). Solutions,
that we have obtained here may form an interesting background
for particle physics models of the early Universe.
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In this Letter we will use convention 8πG = M2
pl = 1.

This Letter is organised as follows: In Section 1 we discuss the
evolution of space–time for a massless vector field domination,
for which we find bouncing solution of the scale factor a(t). In
Section 2 we discuss a massless vector field domination in n + 2-
dimensional space–time. In Section 3 we introduce more realis-
tic (i.e. with isotropic low energy limit) scenarios with a bounce,
such as the domination of a massive vector field with kinetic ini-
tial conditions or the Universe filled with a massless vector field,
cosmological constant and/or dust. Conclusions are presented in
Section 4.

1. Massless vector field domination

1.1. Canonical vector field

The evolution of a subdominant vector field Aμ in FRW space–
time has been analysed in e.g. [2,4]. It has been shown, that the
homogeneous (background) component of a vector field lies in the
space-like part of a four-vector. Then one may choose one of axes
to point in the direction of a background vector field. Let us choose
it to be the z axis, which gives

Aμ = Aμ(t) + δAμ(�x, t), Aμ = A(t)δz
μ,

δAμ = (δAt, δ �A), (1.1)

where δAμ is a vector field perturbation, which may contribute to
the generation of the large scale structure. In this Letter we will
consider the Universe filled with a background vector field and a
perfect fluid. A vector field breaks the isotropy of space, thus the
metric tensor takes the form of

gμν = Diag
(
1,−a(t)2,−a(t)2,−b(t)2), (1.2)
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where a(t),b(t) are scale factors. The action of an abelian, massive
vector field is of the form

S A =
∫

d4x
√−g

(
−1

4
F μν Fμν + m2 Aμ Aν

)

=
∫

dt
a2

2b

(
Ȧ2 − m2 A2), (1.3)

where Fμν = ∂μ Aν − ∂ν Aμ . Then the Einstein equation looks as
follows

H(H + 2H) = ρ = ρ f + ρA, (1.4)

ä

a
+ b̈

b
+ H H = −p⊥ = −p f − p A, (1.5)

2
ä

a
+ H2 = −p‖ = −p f + p A, (1.6)

where ρ f , p f are the energy density and pressure of a perfect fluid

and H = ȧ
a , H = ḃ

b are Hubble parameters along x, y (H) and z (H)
axis. The p⊥ and p‖ are components of the pressure transverse
and parallel to the z axis. Note, that the above decomposition is
anisotropic since p⊥ �= p‖ . The ρA is an energy density of a vector
field and p A is a vector component of transverse pressure defined
by

ρA = 1

2b2

(
Ȧ2 + m2 A2), p A = 1

2b2

(
Ȧ2 − m2 A2). (1.7)

Equations of motion of a vector field and a perfect fluid look as
follow

Ä + (2H − H) Ȧ + m2 A = 0,

ρ̇ f + (2H + H)(ρ f + p f ) = 0. (1.8)

First of all let us consider a massless vector field domination.
This scenario has been briefly analysed in [8]. When the energy-
stress tensor consists only of the massless vector field, then ρA =
ρ = p. From Eqs. (1.4), (1.6) one obtains

H2 + 2H H = 2
ä

a
+ H2 ⇒ ä

ȧ
= ḃ

b
⇒ b = Eȧ, (1.9)

where E = const > 0 has a dimension of time. This shows, that the
Universe shrinks along the z axis if only ä < 0. The equation of
motion for a massless vector field looks as follows

ρ̇A + 4HρA = 0 ⇒ ρA = ρAo

(
ao

a

)4

, (1.10)

where ρo = ρ(to) and to is any fixed moment in the history of the
Universe. To calculate a(t) let us combine Eqs. (1.6), (1.10) which
together give

2äa + ȧ2 = ρoa4
oa−2. (1.11)

The Eq. (1.11) can be simplified to

ẋ =
√

ρI

x

√
x − 1, (1.12)

where ρI is a constant of integration, which has a dimensional-
ity of energy density. The x(t) is defined by x = a(t)/aI , where
ρ(aI ) = ρI . From Eq. (1.12) one can see that x � 1, so ρI is the
maximal allowed energy density of the Universe [8]. So far we
have made no assumptions about ρI , but in this case we restrict
ourselves to consider ρI 	 M4

pl . Under this assumption GR could
be the correct theory of gravity in the whole energy range. The
exact solution of Eq. (1.12) is
x(t) =
[

21/3

(2 + w2 + √
4w2 + w4)1/3

+ (2 + w2 + √
4w2 + w4)1/3

21/3
− 1

]
, (1.13)

where w2 = 9
4 ρI (t − t I )

2. From Eqs. (1.9), (1.13) one obtains
R = 0 for any t . For t → t I one also obtains Rμν Rμν → 4ρ2

I and
Rμναβ Rμναβ → 20ρ2

I . Thus the massless vector field domination
gives no initial curvature singularity of the Universe,1 which to-
gether with aI �= 0, H(t I ) = 0 are features of bouncing solutions,
like e.g. the Big Bounce. On the other hand, from (1.9), (1.12) one
obtains H → ∞,b → 0 for t → t I , which looks alike the Big Bang
scenario. From now on we will set t I to be equal to zero. When we
are very close to the initial value of the energy density one obtains
w 	 1, which gives

x(t) �
(

1 + 1

9
w2

)
=

(
1 + 1

4
ρI t

2
)

, b ∝ t. (1.14)

The Universe expands along the z direction for w ∈ (0,4). For ρ 	
ρI one obtains w � 1. Then

x(t) � w2/3 =
(

9

4
ρI

)1/3

t2/3, b ∝ t−1/3 ∝ a−1/2. (1.15)

The low energy limit gives the Kasner-like solution of diagonal
Bianchi I model, with one direction shrinking and two expanding.
Such predictions are obviously excluded by the astronomical ob-
servations, but in Section 3 we will consider realistic extensions of
this model. The evolution of a(w) and b(w) is shown in Fig. 1.

1.2. Vector field non-minimally coupled to gravity

Let us investigate the case of a vector field with non-minimal
coupling to gravity. This kind of coupling has been introduced to
provide the slow-roll evolution during inflation for the physical
vector field defined by V (t) = A(t)/b [1,2,15]. In such a case a
vector field may survive inflation and dominate the Universe af-
ter reheating. On the other hand, the non-minimal coupling may
cause certain instabilities on the level of vector field’s perturba-
tions, such as ghosts [16]. The action for a non-minimally coupled
background vector field looks as follows [17]

S A =
∫

d4x
√|g|

[
1

2
R + 1

2b2
Ȧ2 − 1

2b2

(
m2 + ξ R

)
A2

]
,

S = S A + S f , (1.16)

where g = det(gμν). Let us assume, that the perfect fluid is min-
imally coupled to gravity. Then one obtains the effective Einstein
equation in the form

H(H + 2H) = ρ f + Ȧ2

2b2
+ 2ξ

b2
(H + 2H)A Ȧ

+ (
m2 + 2ξ

(−2H2 − 2H H + H2)) A2

2b2
, (1.17)

ä

a
+ b̈

b
+ H H = −p⊥

= −p f − (1 − 4ξ)
Ȧ2

2b2
− 2ξ

b2
A
(
(3H − H) Ȧ − Ä

)
+ A2

2b2

(
m2 + 2ξ

(
3H2 − H H + H2 − Ḣ + Ḣ

))
, (1.18)

1 The energy conditions for the vector field domination require ρ > 0, p > 0 and
ρ � |p|. The massless vector field satisfies all of them, since p = ρ = Ȧ2/2b2 > 0.
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Fig. 1. Left and right panels show the evolution of a(w)/aI and b(w)/(aI E) respectively for massless vector field domination. Let us note, that b(0) = 0. In both panels solid
blue lines and dashed red lines represent the evolution of scale factors and its low energy limit respectively.
2
ä

a
+ H2 = −p‖

= −p f + (1 + 4ξ)
Ȧ2

2b2
− 2ξ

b2
A
(
(4H − 2H) Ȧ − Ä

)
− A2

2b2

(
m2 + 2ξ

(−2H2 + 8H H + 3H2 + 4Ḣ + 2Ḣ
))

. (1.19)

The bouncing solution appears only if initially energy of a vector
field’s kinetic term dominates, since we want to avoid b(t) de-
pendence of the parallel pressure and the energy density. From
Eqs. (1.17), (1.19) for Ȧ2 � max{m2 A2, R A2} one obtains approxi-
mate equations of motions of scale factors

ẋ � 1

x

√
(1 + 4ξ)ρI

√
x − 1,

ẍ

x
− ḃ

b

ẋ

x
� 2ξρI x−4. (1.20)

Thus, from Eq. (1.12) one recovers (1.13) as a solution for x(w)

around a bounce, but the definition of w variable is changed to
w2 = 9

4 ρI (1 + 4ξ)t2. We have obtained bouncing solution for x
with slightly changed effective time variable, but we need to as-
sume, that 1 + 4ξ > 0 to keep w real. Let us note, that the non-
minimal coupling violates Eq. (1.9). To find the evolution of b for
energies close to ρI let us consider b = b(x). Then from Eq. (1.20)
one obtains

b ∝ (x − 1)
1

2(1+4ξ) x− 1+2ξ
1+4ξ → 0 for x → 1, (1.21)

so one recovers all features of bounce generated by a minimally
coupled massless vector field.

1.3. Vector field with non-canonical kinetic term

Another way to obtain the slow-roll evolution of ρA during in-
flation is to consider a vector field with a non-canonical kinetic
term. Such a field may dominate the Universe after inflaton and
become the vector curvaton [5,6]. This model does not produce
instabilities, such as ghosts, which is its advantage over the non-
minimally coupled vector field [5]. Let us define the action as

S =
∫

d4x
√−g

(
1

2
R − f

1

4
Fμν F μν + 1

2
m2 Aμ Aμ

)
, (1.22)

where f = f (a,b), m = m(a,b). Time dependence of the mass term
is necessary to obtain a constant value of M = m/

√
f , which is

a mass term of a canonically normalised vector field U = √
f A/b.

Einstein equations, together with the equation of motion of U , look
as follows
H(H + 2H) = ρ f + ρA = ρ f + 1

2b2

(
f Ȧ2 + m2 A2), (1.23)

ä

a
+ b̈

b
+ H H = −p⊥

= −p f + A2

2b2

(
m2 + a

2
m2

,a

)
− Ȧ2

2b2

(
f + a

2
f,a

)
, (1.24)

2
ä

a
+ H2 = −p‖

= −p f − Ȧ2

2b2
( f − bf,b) + A2

2b2

(
m2 − b m2

,b

)
, (1.25)

Ü + (2H + H)U̇

+
(

M2 + 2H H + Ḣ + 1

4

ḟ 2

f 2
− 1

2

f̈

f
− 1

2
(2H − H)

ḟ

f

)
U = 0.

(1.26)

To obtain cancellation of all time dependent mass terms in
Eq. (1.26) one needs f ∝ b2,m ∝ b. For f ∝ a−4,m ∝ a−2 the time
dependent part of the mass term is equal to 2Ḣ + Ḣ, so it is
negligible during inflation. Let us note, that for both sets of f ,m
functions one obtains p⊥ = p‖ , so T μ

ν is fully isotropic.2 The con-
tinuity equation for a vector field is of the form

ρ̇A + (2H + H)(ρA + p A) = 0 for f ∝ b2,

ρ̇A + (2H + H)(ρA − p A) = 0 for f ∝ a−4. (1.27)

One can see, that f ∝ b2 gives T μ
ν identical with a scalar field

domination scenario. On the other hand, for f ∝ a−4 one obtains
surprising results. For the kinetic term domination one obtains
ρA � p A , which means that ρ̇A 	 HρA . This case is similar to the
slow-roll phase of a scalar field. The potential term domination
brings us to ρA � −p A , so ρ̇A � −6HρA , which is the evolu-
tion similar to the massless scalar field scenario. In general, the
behaviour of kinetic and potential terms has been swapped, com-
paring to a massive scalar field scenario.

For example, for a massless vector field (or massive vector field
with kinetic initial conditions) with f ∝ a−4 one obtains ρ̇A = 0 ⇒
ρA = const. Then, from Eq. (1.25), one obtains

2
ä

a
+ H2 = ρA ⇒ ȧ

aI
= ẋ =

√
ρA

3x

√
x3 − 1. (1.28)

2 In [5,6] Dimopoulos et al. consider m ∝ a and f ∝ a−4 or f ∝ a2 to obtain flat
power spectra of initial inhomogeneities.
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Fig. 2. The left panel shows the evolution of scale factors for the domination of a massless vector field with non-canonical kinetic term and f ∝ a−4. The right panel presents
the evolution of Hubble parameters in the same model. One can see, that after w ∼ t

√
ρI ∼ 5 the Universe becomes isotropic and enters the era of exponential expansion.
We have obtained a bounce for a = aI . From now on we shall
replace ρA by ρI , since ρA does not need to be constant in the
massive case. The solution of Eq. (1.28) looks as follows

x(t) = cosh2/3
[

1

2

√
3ρI (t − tI )

]
= cosh2/3

[
w√

3

]
, (1.29)

where w = 3
√

ρI (t − t I )/2. For a massless vector field, from
Eqs. (1.23), (1.25) one obtains b ∝ ȧ ∝ ẋ, so we have found an-
alytical solutions for both scale factors. For such an evolution of
scale factors one obtains no initial curvature singularity, since R →
−51ρI/4, Rμν Rμν → 1413ρ2

I /32, and Rμναβ Rμναβ → 549ρ2
I /16

for x → 1. Let us note, that for big values of w one obtains

a(t) ∝ b(t) ∝ e
√

ρI /3t . (1.30)

This exponential expansion is identical with the one of the FRW
Universe filled with a cosmological constant. Thus, such a vector
field can be a good candidate to play the role of Dark Energy. The
Universe becomes isotropic very fast, even without a vector field’s
mass term, or with the negligible influence of the mass term on
the evolution of the Universe. Let us note, that for a = b the a(t)
from Eq. (1.29) does not satisfy 3H2 = pI = const. Thus, anisotropic
initial conditions for scale factors are necessary to obtain bouncing
solution for a(t).

On the other hand, one can ask about the naturalness of a
kinetic term’s domination at early times. For a scalar field it is
natural from the point of view of the phase space to consider the
kinetic term domination around a bounce. Thus, at early times,
due to analogy with scalar fields, one shall expect the domina-
tion of a vector field’s potential term for f ∝ a−4. This means, that
the bouncing solution is strongly fine tuned if M �= 0. Let us also
note, that the bouncing solution described by Eq. (1.29) may be
also obtained with a cosmological constant. In particular, it may
be obtained for a scalar field with potential initial conditions. Thus,
such a bouncing solution is not a unique feature of vector fields.

The evolution of scale factors and Hubble parameters for a
massless vector field with non-canonical kinetic term is shown in
Fig. 2.

2. Vector field in n + 2 dimensions

As we have proven, a massless vector field generates a bounce
for a(t) and gives the Kasner-like evolution at the low energy limit.
As an interesting theoretical exercise let us consider more generic
case of a massless vector field domination in n + 2 dimensions,
where n is a number of dimensions with a rotation symmetry.3 Let
us assume, that the vector field points xn+1 axis, which gives the
metric tensor of the form glk = Diag(1,−a2,−a2, . . . ,−a2,−b2),
where l,k = 0,1, . . . ,n + 1. Then from Einstein equations one ob-
tains

1

2
n(n − 1)H2 + nH H = n

ä

a
+ 1

2
n(n − 1)H2

⇒ ä

ȧ
= ḃ

b
⇒ b = Eȧ. (2.1)

It is worth to note, that Eq. (2.1) is valid for any n. From the con-
tinuity equation one obtains ρA ∝ a−2n , so from Gn+1

n+1 = p A = ρA

one obtains the equation of motion for a scale factor a(t)

ẍx + 1

2
(n − 1)ẋ2 = ρI

n
x2(n−1), (2.2)

where x(t) = a(t)/aI , aI = a(t I ) and t I is the moment of a bounce.
Let us assume, that n �= 1. Then, from Eq. (2.2) one finds

ẋ = x1−n

√
2ρI

n(n − 1)

√
xn−1 − 1. (2.3)

Eq. (2.3) has the solution of the form of
√

2(n − 1)n

(1 + n)
√

ρI
x(1+n)/2

2 F1

[
1 + n

2(1 − n)
,

1

2
,

n − 3

2(n − 1)
, x1−n

]
= t − tI , (2.4)

where 2 F1 is a hypergeometric function. Analogously to the 4-di-
mensional case a bounce appears for t = t I . The ρI is a constant
of integration and the maximal energy density of the Universe.
Eq. (2.4) can be simplified in two limits. Let us consider the evolu-
tion of scale factors around a bounce (which means, that x−1 	 1)
and in the low energy limit (for which x � 1). Then from Eq. (2.3)
one obtains

x � 1 + ρI

2n
(t − tI )

2 for x − 1 	 1,

x � t
2

n+1 for x � 1. (2.5)

Those simplified solutions are valid for any n. The n = 1 case gives
the equation of motion of the form of

ẋ =
√

2ρI ln
[
x(t − tI )

]
. (2.6)

3 This means, that the 4-dimensional space–time is described by n = 2.
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Thus, for x = 1 one obtains ẋ = 0. In such a case there is no ana-
lytical solution for x(t).

2.1. The initial curvature singularity of the Universe

To discuss the issue of initial singularity in n + 2 dimensions let
us express R, Rμν Rμν and Rμναβ Rμναβ us a function of x. From
Eqs. (2.1), (2.3) one obtains

R = 2

n
(n − 2)x−2nρI , (2.7)

Rμν Rμν = 7
4

n2

(
2n2 − 3n + 2

)
x−4nρ2

I , (2.8)

Rμναβ Rμναβ

= 4ρ2
I x−4n

(n − 1)n2

(
n2(n + 1)x2(n−1) − 4n2(2n − 1)xn−1

+ 2
(
8n3 − 12n2 + 7n − 2

))
. (2.9)

In the limit of a bounce, i.e. for x → 1, one obtains

R → 2

n
(n − 2)ρI , Rμν Rμν → 4

n2

(
2n2 − 3n + 2

)
ρ2

I ,

Rμναβ Rμναβ → 4

n2

(
9n2 − 10n + 4

)
ρ2

I . (2.10)

Let us note, that for n �= 0 all invariants mentioned above are fi-
nite around a bounce. Thus, for any n �= 0 one obtains no initial
curvature singularity of the Universe.

3. Isotropic models with classical bounce

3.1. Massive vector field domination

The fact, that a massive vector field with kinetic initial condi-
tions can give bouncing solution for a(t) has been proven in [8].
During a bounce the kinetic term dominates over the potential
one. Nevertheless, A(t) grows with time, which leads to vector
field’s oscillations. During that period the background anisotropy
(H − H)/(H + H) decreases like t−1 and the Universe becomes
isotropic. To find more about the evolution of space–time in such
a model see [8].

3.2. Massless vector field and cosmological constant

Analytical solutions of Einstein equations for the massless vec-
tor field domination scenario may be obtained also for a massless
vector field with a perfect fluid as long as p f is not a function of
b(t). Then both sides of Eq. (1.6) are functions of a(t) and its time
derivatives. The simplest case is a cosmological constant, which
gives ρ f = −p f = ρΛ = −Λ = const. Then, with a certain choose
of t I , one can simplify Eq. (1.6) to

ẋ(x) = 1

x

√(
ρAI − ρΛ

3

)
x + ρΛ

3
x4 − ρAI . (3.1)

From Eq. (3.1) one obtains ẋ → 0 for x → 1, so aI is a mini-
mal value of a(t). Thus, one obtains a bounce similar to the one
from a massless vector field domination. The ρI = ρΛ + ρAI is
the maximal value of the energy density, since ρΛ = const and
ρA = ρAI x−4. Let us note, that a cosmological constant, together
with a massless vector field, has along the z axis the effective
equation of state p = −ρ . Then, form Eqs. (1.4), (1.6) one obtains
b = Eȧ, so Eq. (1.9) is still valid. Thus, there is a clear analogy be-
tween cases with and without a cosmological constant. Simply, one
expects the cosmological constant to dominate the Universe for en-
ergies much lower than ρI , so it shall not have significant influence
on the evolution of space–time around the bounce. To find the low
energy limit of that model let us assume, that x � 1 and ρΛ > 0.
Then one finds

x(t) ∝ sinh2/3
(√

3ρΛ

4
t

)
→ e

√
ρΛ/3t,

b ∝ ẋ → e
√

ρΛ/3t, (3.2)

so for x � 1 one obtains isotropic Universe even without a vector
field’s oscillations.

For the Universe filled with massive vector field with kinetic
initial conditions and with a cosmological constant one obtains the
following low energy limit for the evolution of space–time: When
a vector field starts to oscillate the Universe becomes isotropic.
Vector field’s oscillations generate particles and radiation, so in the
presence of Λ one obtains the observed Universe. This realistic low
energy limit brings us a chance to consider a situation, in which
there is no need for any theory of gravity wider than GR. Let us
also note, that a cosmological constant may come from the mass-
less vector field with non-canonical kinetic term (see Section 1.3).
Thus, one can obtain a bounce with a good low energy evolution
of the Universe using only vector fields.

3.3. Massless vector field and dust

Eq. (1.13), which is the analytical solution for a(t) obtained for
the massless vector field domination, is also valid for the Universe
filled with a massless vector field and dust, since dust does not
contribute to p‖ . Thus, Eq. (1.12) remains unchanged. On the other
hand, from the continuity equation, one obtains ρA ∼ a−4, ρm ∼
a−2b−1, so the energy density is a function of both scale factors.
This means, that even if one defines ρAI such as ∀a ρA < ρAI , there
may be no ρmI such that ∀a,b ρm < ρmI , so the total energy density
does not need to be finite at all times. Let us note, that Eq. (1.9) is
not valid, since from Eqs. (1.4), (1.6) one obtains

H H − ä

a
= 1

2
ρm �= 0. (3.3)

This equation may be written as an equation of motion of b(t).
Let us define x = a/aI , y = b/bo , xo = ao/aI where aI = a(t I ), bo =
b(to), to �= t I is a certain moment and t I is the moment of a bounce
of a(t). The to needs to be different than t I since we do not know,
if ρm is finite at t = t I . From Eq. (3.3) one obtains

ẋ ẏ − ẍy = ρmo
x2

o

2x
. (3.4)

From Eqs. (1.12), (3.4) one finds the evolution of y as a function
of x

y(x) = ρmo

3ρAI

x2
o

x

(
x2 + 4x − 8

) + C
1

x

√
x − 1, (3.5)

where C is the constant of integration. Thus, for x → 1 one obtains
(x2 + 4x − 8)/x → −3 and

√
x − 1/x → 0, which means, that for x

close enough to 1 one obtains y < 0. This means, that the minimal
allowed value of x need to be larger that 1. Let us define xp such,
as y(xp) = 0. Let us note, that H(xp) > 0, since xp > 1, which to-
gether with H(xp) = ∞ gives H(H + 2H)(x = xp) = ∞. This seems
to be natural, since ρm ∝ (x2 y)−1 ⇒ ρm(xp) = ∞. One cannot ex-
tend the evolution of the Universe for t < tp , so the considered
model has all features of the Big Bang. The only difference is, that
the beginning of space–time is not a point, but a circle described
by y = 0, x = xp .
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Similar results can be found for the Universe filled with mass-
less vector field, cosmological constant and dust. There for x → 1
one obtains y → −ρmo x2

o/(ρAI + Λ), so for Λ < 0 and ρA < −Λ

one obtains y > 0 for x < xp . Thus, one can solve the problem of
negative y at the moment of bounce. However, this generates an-
other problem, since y becomes negative for x > xp . In such a case
the Universe would start with a bounce to immediately end up in
the Big Crunch. This means, that y(x) may be positive for x < xp

or for x > xp , but one cannot obtain y > 0 at all times.

4. Conclusions

In the initial section of this Letter we have shown, that a
massless vector field domination generates bouncing evolution of
space–time in a plane transverse to a vector field’s direction. The
bouncing solution has many features of other bounces known in
cosmology, such as a non-zero initial value of the scale factor a(t),
lack of initial curvature singularity and finite initial (maximal) en-
ergy density. Along the vector field’s direction one obtains the evo-
lution of the scale factor and the Hubble parameter similar to the
Big Bang model, i.e. b → 0 and H → −∞ for t → t I . The Kasner-
like solution with a ∼ t2/3, b ∼ t−1/3 is the low energy limit of the
evolution of space–time.

In Section 2 we have considered bouncing solution for a mass-
less vector field domination in the general n + 2-dimensional case,
where n is a number of dimensions with isotropic evolution. We
have found the analytical solution for the scale factor a(t), as well
as its simple form in the high and low energy limit. We have also
proven, that R, Rμν Rμν and Rμναβ Rμναβ do not diverge for t → t I

for all n �= 0.
In Section 3, to obtain isotropic low energy limit of the evo-

lution of space–time, we have discussed several extensions of
the massless vector field domination scenario. All of them obtain
bounce at (x, y) plane for t = t I . First of all we have considered
massive vector field with kinetic initial conditions. In such a case
the Universe has bouncing solution for ρ ∼ ρI and isotropic low
energy limit, which is generated by the vector field’s oscillations.
Secondly, we have considered the Universe filled with a massless
vector field and a cosmological constant. In this case a cosmolog-
ical constant contributes to ρI and generates isotropic expansion
for a � aI . The massive vector field with cosmological constant
may give realistic low energy limit with particles and radiation
originating from the Aμ and with a Dark Energy coming from Λ.
We have also considered the Universe filled with massless vector
field and dust, for which the bounce appears in the forbidden re-
gion b < 0. The true beginning of space–time appears at b = 0,
H = ∞, a > aI , H �= 0, so the initial energy density diverges and
one obtains all features of the Big Bang. Similar results are given
by a massless vector field, dust and cosmological constant domi-
nation.

Let us also note, that the presented model has several advan-
tages comparing to bounces from e.g. f (R) theories or ekpyrotic/
cyclic Universe. GR remains the only theory of gravity needed
and the matter sector has the standard form known from parti-
cle physics.
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