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Abstract

Energy densities of the quantum states that are superposition of two multi-electron–positron states are examined. I
that the energy densities can be negative when two multi-particle states have the same number of electrons and p
when one state has one more electron–positron pair than the other. In the cases in which negative energy could aris
that the energy is that of a positive constant plus a propagating part which oscillates between positive and negative
energy can dip to negative at some places for a certain period of time if the quantum states are properly manipula
demonstrated that the negative energy densities satisfy the quantum inequality. Our results also reveal that for a give
content, the detection of negative energy is an operation that depends on the frame where any measurement is to be
This suggests that the sign of energy density for a quantum state may be a coordinate-dependent quantity in quantum
 2003 Published by Elsevier B.V.
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1. Introduction

Although the energy density of a field in clas
cal physics is strictly positive, the local energy dens
in quantum field theory can be negative due to qu
tum coherence effects [1]. The Casimir effect [2] a
squeezed states of light [3] are two familiar examp
which have been studied experimentally. As a res
all the known pointwise energy conditions in classi
general relativity, such as the weak energy condit
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and null energy condition, are allowed to be violat
However, if the laws of quantum field theory place
restrictions on negative energy, then it might be po
ble to produce gross macroscopic effects such as
lation of the second law of thermodynamics [4,5], t
versable wormholes [6,7], “warp drive” [8], and ev
time machines [7,9]. Therefore, a lot of effort has be
made toward determining the extent to which these
olations of local energy are permitted in quantum fi
theory. One powerful approach is that of the qu
tum inequalities constraining the magnitude and
ration of negative energy regions [4,10–15]. Quant
inequalities have been derived for scalar and elec
nse.
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magnetic fields in flat as well as curved spacetim
[13,16–18] and they have also been examined in
background of evaporating black holes [19,20]. Ho
ever, as far as the Dirac field is concerned, not as m
work has been done. In this respect, Vollick has sho
that the superposition of two single particle electr
states can give rise to negative energy densities
demonstrated that the resulting energy densities o
quantum inequalities which are derived for scalar a
electromagnetic fields [21]. He has also given a qu
tum inequality for Dirac fields in two-dimension
spacetimes [22] using arguments similar to those
Flanagan’s [23]. However, there does not seem m
hope of generalizing this argument beyond the two
mensions. It is worth noting that the existence of qu
tum inequalities for the Dirac (and Majorana) field
general 4-dimensional globally hyperbolic spacetim
was recently established [24].

In this Letter, we will examine the negative ener
densities for more general states that are the supe
sition of two multi-electron–positron states, and d
cuss whether there are any inequalities constrain
the magnitude of negative energy when it appears
its life time. We will work in the units wherec= h̄= 1
and take the signature of the metric to be(−+++).

2. Quantum states with negative energy densities

For the Dirac field Lagrange density is

(1)L= i

2
ψ̄γ µ(

←−
∂µ +−→∂µ )ψ −mψ̄ψ.

The symmetrized stress tensor is given by

(2)Tµν = i

4

[
ψ̄γ µ

(←−
∂ν +−→∂ν )ψ + ψ̄γ ν

(←−
∂µ +−→∂µ )ψ].

The field operator can be expanded as

ψ(x)=
∑
k

∑
α=1,2

[
bα(k)u

α(k)eik·x

(3)+ d†
α(k)v

α(k)e−ik·x
]
,

where the mode functions are taken to be

(4)uα(k)=
( √

ω+m
2ωV φα

σ ·k√
2ω(ω+m)V

φα

)
,

-

(5)vα(k)=
( σ ·k√

2ω(ω+m)V
φα√

ω+m
2ωV φα

)
,

andφ1†= (1,0), φ2†= (0,1). Herebα(k) andb†
α(k)

are the annihilation and creation operators for
electron, respectively, whiledα(k) and d†

α(k) are
the respective annihilation and creation operators
the positron. The four operators anticommute
cept in the cases{bα(k), bα′(k′)} = {dα(k), dα′(k′)} =
δα,α′δk,k′ . The renormalized expectation value of t
energy density, i.e.,〈:T00:〉, in an arbitrary quantum
state, is

〈ρ〉 = 1

2

∑
k,k′

∑
α,α′

(ωk +ωk′)

× [〈b†
α(k)bα′(k

′)
〉
u†α(k)uα

′
(k′)e−i(k−k′)·x

+ 〈d†
α′(k
′)dα(k)

〉
v†α(k)vα

′
(k′)ei(k−k′)·x

]
+ 1

2

∑
k,k′

∑
α,α′

(ωk′ −ωk)

× [〈dα(k)bα′(k′)〉v†α(k)uα
′
(k′)ei(k+k′)·x

− 〈b†
α(k)d

†
α′(k
′)
〉
u†α(k)vα

′
(k′)e−i(k+k′)·x

]
.

(6)

Now consider a state vector of the form

(7)|Ψ 〉 = 1√
1+ λ2

[∣∣a(q; j)〉+ λ
∣∣b(l;n)〉],

where |a(q; j)〉 and |b(l;n)〉 are two multi-particle
states with the first symbol in the bracket indic
ing the number of electrons and the second sym
the number of positrons. For example, we can w
|a(q; j)〉 = |k1s1, k2s2, . . . , kqsq; k′1s1, k′2s2, . . . , k′j sj 〉
and |b(l;n)〉 = |k′1s′1, k′2s′2, . . . , k′ls′l; k1s

′
1, k
′
2s
′
2, . . . ,

k′ns′n〉. Plugging Eqs. (7), (4) and (5) into Eq. (6), w
find

〈ρ〉 = 1

1+ λ2

[
1

V

(
q∑

r=1

ωkr +
j∑

t=1

ωk̄t

)

+ (f1+ f2+ f3+ f4)λ

(8)+ 1

V

(
l∑

f=1

ωkf +
n∑

g=1

ωk̄g

)
λ2

]
,
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f1= 1

2

∑
k,k′

∑
α,α′

(ωk +ωk′)

× [〈a(q, j)∣∣b†
α(k)bα′(k

′)
∣∣b(l, n)〉

+ 〈b(l, n)∣∣b†
α(k)bα′(k

′)
∣∣a(q, j)〉]

(9)× u†α(k)uα
′
(k′)e−i(k−k′)·x,

f2= 1

2

∑
k,k′

∑
α,α′

(ωk +ωk′)

× [〈a(q, j)∣∣d†
α′(k
′)dα(k)

∣∣b(l, n)〉
+ 〈b(l, n)∣∣d†

α′(k
′)dα(k)

∣∣a(q, j)〉]
(10)× v†α(k)vα

′
(k′)ei(k−k′)·x,

f3= 1

2

∑
k,k′

∑
α,α′

(ωk′ −ωk)

× [〈a(q, j)∣∣dα(k)bα′(k′)∣∣b(l, n)〉
× v†α(k)uα

′
(k′)ei(k+k′)·x

− 〈b(l, n)∣∣b†
α(k)d

†
α′(k
′)
∣∣a(q, j)〉

(11)× u†α(k)vα
′
(k′)e−i(k+k′)·x

]
,

and

f4= 1

2

∑
k,k′

∑
α,α′

(ωk′ −ωk)

× [〈b(l, n)∣∣dα(k)bα′(k′)∣∣a(q, j)〉
× v†α(k)uα

′
(k′)ei(k+k′)·x

− 〈a(q, j)∣∣b†
α(k)d

†
α′(k
′)
∣∣b(l, n)〉

(12)× u†α(k)vα
′
(k′)e−i(k+k′)·x

]
.

Obviously, the first and the last term in Eq. (8) a
always positive. Therefore,〈ρ〉 can be negative onl
when the second term is nonvanishing. There are o
four such cases.

Case 1. The number of electrons and the numb
of positrons in |a〉 are the same as those in|b〉,
respectively. And there is only one different sing
electron state in these two states. Here onlyf1 is
nonzero.

Case 2. The number of electrons and the numb
of positrons in |a〉 are the same as those in|b〉,
respectively. And there is only one different sing
positron state in these two states. Here onlyf2
survives.

Case 3. Two states are the same except for that th
is one more single electron state and one more si
positron state in|b〉. Here onlyf3 does not vanish.

Case 4. Two states are the same except for that th
is one more single electron state and one more si
positron state in|a〉. Here onlyf4 is not equal to zero

Only in these four cases can the energy den
of the superposition state be negative and all o
possible cases all give rise to positive results. N
we will discuss Case 1 and Case 3 in detail to
how negative energy can arise and if certain quan
inequalities can be satisfied. It is easy to see
Case 2 and Case 4 are similar to Case 1 and Ca
respectively.

(a) Case 1. Let the two different single electr
states in|a(q; j)〉 and|b(l;n)〉 to be characterized b
(kε, sε) and (kτ , sτ ), respectively, and for simplicity
take kε = kεy , kτ = kτz , sε = 2, sτ = 1. Eq. (8) now
reads

〈ρ〉 = 1

(1+ λ2)V

(13)× [λ2(E0+ωkτz )+ λβ1+ (E0+ωkεy )
]
,

where

(14)E0=
q−1∑
r=1

ωkr +
j∑

t=1

ωk̄t
,

(15)β1=
kεykτz (ωkεy +ωkτz )sinθ1

2
√
ωkεy ωkτz (ωkεy +m)(ωkτz +m)

,

andθ1= (kεy − kτz)x. E0 is the total energy ofq − 1
electrons andj positrons. Note that the energy dens
〈ρ〉 is that of a positive constant part plus a p
propagating at the speed of light in the spacetim
Therefore, the sign of the energy could depend
the location and time where any measurement is to
taken. From Eq. (13) we know that〈ρ〉will be negative
if

(16)β2
1 > 4(E0+ωkτz )(E0+ωkεy ),
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−β1−
√
β2

1 − 4(E0+ωkτz )(E0+ωkεy )

2(E0+ωkτz )
< λ

(17)<
−β1+

√
β2

1 − 4(E0+ωkτz )(E0+ωkεy )

2(E0+ωkτz )
.

Let us now discuss if the quantum states could
manipulated to satisfy Eq. (16). In order to sho
that this is possible, consider the ultrarelativistic lim
kτz , kεy �m. It then follows that

(18)β1= 1

2
(ωkτz +ωkεy )sinθ1.

Substituting Eq. (18) into Eq. (16), we have

(19)sin2 θ1 >
16(E0+ωkτz )(E0+ωkεy )

(ωkτz +ωkεy )
2 .

For Eq. (19) to hold, it is necessary that

(20)16(E0+ωkτz )(E0+ωkεy ) � (ωkτz +ωkεy )
2.

Eq. (20) is satisfied if

ωkεy � 7ωkτz + 8E0

(21)− 4
√
(3ωkτz + 5E0)(ωkτz +E0),

or

ωkεy � 7ωkτz + 8E0

(22)+ 4
√
(3ωkτz + 5E0)(ωkτz +E0).

Therefore, if the quantum states are manipulated
such a way that the above conditions are met
λ is chosen according to Eq. (17), then the ene
density for a quantum state of the form (7) can be m
negative at some places in space at some time.

(b) Case 3. Let the single positron and elect
states in|b(l, n)〉 that do not exist in|a(q, j)〉 with be
characterized by(k̄τ , s̄τ ) and(kε, sε) respectively and
further takekε = kεy , k̄τ = k̄τz , sε = 1 ands̄τ = 2 as an
example to study how negative energy density arise
this case. Now, the energy density becomes

〈ρ〉 = 1

(1+ λ2)V

(23)× [λ2(Ea +ωkεy +ωk̄τz
)+ λβ3+Ea

]
,

where

(24)Ea =
q∑

r=1

ωkr +
j∑

t=1

ωk̄t
,

(25)β3=
(ωk̄τz

−ωkεy )kεy

2
√
ωkεy (ωkεy +m)

√√√√ωk̄τz
+m

ωk̄τz

sinθ3,

andθ3= (k̄τz + kεy )x. Note that here again the ener
density〈ρ〉 is that of a positive constant part plus a p
propagating at the speed of light in the spacetime.
easy to see that〈ρ〉 will be negative if

(26)β2
3 > 4(Ea +ωkεy +ωk̄τz

)Ea

and

−β3−
√
β2

3 − 4(Ea +ωkεy +ωk̄τz
)Ea

2(Ea +ωkεy +ωk̄τz
)

< λ

(27)<
−β3+

√
β2

3 − 4(Ea +ωkεy +ωk̄τz
)Ea

2(Ea +ωkεy +ωk̄τz
)

.

In the ultrarelativistic limit,

(28)β3= 1

2
(ωk̄τz

−ωkεy )sinθ3.

Substituting Eq. (28) into Eq. (26) yields

(29)sin2 θ3 >
16(Ea +ωkεy +ωk̄τz

)Ea

(ωk̄τz
−ωkεy )

2
.

For the above inequality to admit a solution, we m
require that

(30)16(Ea +ωkεy +ωk̄τz
)Ea � (ωk̄τz

−ωkεy )
2.

And this is satisfied if

(31)ωk̄τz
� ωkεy + 8Ea4

√
2ωkεy Ea + 5E2

a,

or

(32)ωk̄τz
� ωkεy + 8Ea4

√
2ωkεy Ea + 5E2

a.

Henceforth, if the quantum states are manipulate
such a way that the above conditions are met anλ
is chosen according to Eq. (27), then it is possi
to produce energy density for a quantum state of
form (7) at some places in space at some time.
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It is interesting to note that the conditions deriv
above do not apply whenωk̄τz

= ωkεy , and when this
happensβ3 is zero, thus the energy density is positiv
This reveals that in the center of mass frame of
electron–positron pair in the state|b(l, n)〉, the local
energy density for the superposition state of the fo
(7) is always a positive constant. Therefore for a giv
particle content of the state, whether it is possible
detect negative energies is dependent upon the fr
in which any measurement is to be carried out. T
suggests that the sign of the energy density fo
quantum state may well be a coordinate-depen
quantity. It is worth noting that the question of th
observer dependence of negative energy for sc
fields was also discussed in two dimensions [25].

3. Negative energy and quantum inequalities

In the last section, we have found that under c
tain conditions, the energy density of the superposi
state of two multi-particle states can be negative. N
we want to demonstrate that the larger the magnit
of this negative energy, the shorter the duration t
it persists. For simplicity, we will consider the ultr
relativistic limit with ωkτz � ωkεy andωkτz � E0 for
Case 1 andωkτz �Ea for Case 3, then both Eqs. (1
and (23) become

(33)〈ρ〉 = λωkτz

(1+ λ2)V

[
λ+ 1

2
sinωkτz (t − x)

]
and the condition for negative energy to arise is n
−1/2< λ< 0. Therefore, the energy density is that
a constant positive background plus propagating w
at the speed of light that alternates between nega
and positive. At a fixed spatial point, the total ener
can dip to negative for a certain period of time. T
minimum value of〈ρ〉 at a fixed pointx is given by

(34)〈ρ〉min=
λωkτz

(1+ λ2)V

(
λ+ 1

2

)
.

At the same time, the length of time when the ene
density is negative is

4t = (π − 2 sin−1 2|λ|)
ωkτz

= 2

ωkτz

cos−1(2|λ|)
(35)= 2φ

ωk

,

τz
whereφ ∈ (0,π). One can see that the larger the ma
nitude of the negative energy−〈ρ〉minV (or equiva-
lently the largerωkτz ), the shorter its duration. In fac
we have

V
∣∣〈ρ〉min

∣∣4t =−λ(2λ+ 1)

(1+ λ2)
φ �−λ(2λ+ 1)π

(1+ λ2)

(36)= πg(λ).

The functiong(λ) attains a maximum value of
√

5/
2− 1, leading to thatπg(λ) ≈ 0.37. Therefore, the
negative energy satisfies the following quantum
equality

(37)E4t � 1,

where we have defined thatE = V |〈ρ〉min|. This im-
plies that the amount of negative energy that passe
a fixed point in time4t is less than the quantum e
ergy uncertainty on that time scale,4t−1. It prevents
attempts of using quantum matter to produce biza
macroscopic effects. Finally, let us note that we c
show, in essentially the same way as in Ref. [21], t
the sampled energy density for the superposition st

(38)ρ̂ = t0

π

∞∫
−∞

〈ρ〉
t2+ t20

dt

in the limits we considered above satisfies the quan
inequality which was originally proven for scalar a
electromagnetic fields.

4. Conclusion

We have examined the energy densities of quan
states that are the superposition of two multi-electr
positron states. We have found that the energy de
ties can be negative only when these two states h
the same number of electrons and positrons or w
one state has one more electron–positron pair than
other and they are just positive constants for all
other possible cases. In the cases in which negative
ergy could arise, we have shown that the energy is
of a positive constant plus a propagating part which
cillates between positive and negative, and if the qu
tum states are properly manipulated, the energy
dip to negative at some places for a certain period
time. It has been demonstrated that the negative en
densities satisfy the quantum inequality, which me
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5)

7

8)

98)

1.
2)
that the product of its magnitude and its duration
less than unity. Last but not the least, we would like
note that in the case in which one state has one m
electron–positron pair, the energy density is a posi
constant in the center-mass frame of the pair in
state even it can be negative in other frames. Th
fore, for a given particle content, the detection of n
ative energy is an operation that depends on the fr
where any measurement is to be performed. This s
gests that the sign of energy density for a quan
state may be a coordinate-dependent quantity in q
tum theory.
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