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We derive the first ε2-correction of the instanton partition functions in 4D N = 2 Super Yang–Mills 
(SYM) to the Nekrasov–Shatashvili limit ε2 → 0. In the latter we recall the emergence of the famous 
Thermodynamic Bethe Ansatz-like equation which has been found by Mayer expansion techniques. Here 
we combine efficiently these to field theory arguments. In a nutshell, we find natural and resolutive the 
introduction of a new operator ∇ that distinguishes the singularities within and outside the integration 
contour of the partition function.
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1. Introduction

The Omega background was first introduced in N = 2 SUSY 
gauge theories to regularise the infinite volume of R4 in the com-
putation of instanton contributions to the partition function by lo-
calisation [1]. More recently, it has also proven to be a formidable 
way to preserve integrability of these theories upon deformation. 
In fact, this background is characterised by two equivariant defor-
mation parameters ε1 and ε2 associated to the breaking of the 
Lorentz invariant four dimensional space into C × C, but still the 
Nekrasov instanton partition function exhibits an integrable struc-
ture in the form of covariance under the Spherical Hecke central 
(SHc) algebra [2,3] (which is formally equivalent to a W∞ algebra). 
The presence of this algebra shed light on the conjecture by [4,5]
of a duality between these four dimensional theories and the fam-
ily of Toda conformal field theories in two dimensions.1 Moreover, 
the SHc algebra is closely related to a tensorial version of the in-
tegrable Calogero–Moser Hamiltonian and led to the construction 
of one of the most basic objects of quantum integrable theories, 
namely an (instanton) R-matrix [9].

In the Nekrasov–Shatashvili (NS) limit ε2 → 0, the theory pos-
sesses only one (non-zero) equivariant parameter ε1 and, besides, 
its 2D underlying integrable structure is better understood [10]. 
The latter defines, indeed, a quantisation of a Hitchin system as-
sociated to the Seiberg–Witten curve (see [11] and the references
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therein) which can now be characterised by a quantum curve [12]. 
And this curve is, actually, equivalent to a TQ-relation upon a 
(quantum) change of variables [13], while the new integrable sys-
tem is the bi-spectral dual of the previous one [14]. Of course, of 
great interest for integrable model theory is the TQ-relation, which 
can also be obtained directly from the Nekrasov partition function 
by extremising the sum over Young diagrams [15], a technique that 
goes back to [16]. Moreover, another key feature of integrability 
has come out of the blue since the original paper [10] in the form 
of a non-linear integral equation (NLIE) in the complex plane [17]
resembling a Thermodynamical Bethe Ansatz (TBA) equation [18]. 
Subsequently, this equation was derived in full detail by [19,20]
upon using Mayer cluster expansion techniques [21,22].

In the present letter, we go beyond this limit and present an 
explicit formula for the first ε2-correction to the prepotential. This 
result should pave the way to a better understanding of the full 
ε2-deformation and its meaning as quantum integrable system 
characterised by a TBA/NLIE. This should ultimately lead to a richer 
algebraic structure similar to the SHc Hopf algebra as we know 
how, along the other way around, the NS limit of the SHc algebra 
can be obtained [23]. For convenience, we focus on N = 2 SYM 
with a single SU(Nc) gauge group and a number of fundamental 
flavours. However, we believe that our mathematical construction 
and results will be easily generalisable to arbitrary quivers (along 
the lines of [23]).

In fact, with respect to the latter reference (exploiting the 
methods of Mayer cluster expansion) we shall add an efficient field 
theory argument. The latter is firstly used to disentangle the long-
and short-range interactions between instantons: this is performed 
in Section 2. Then, we treat the short-range interactions by the 
Mayer cluster expansion technique in Section 3 and achieve for-
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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mulæ (3.6) and (3.28) concerning the (short-range) prepotential.2

Eventually, the two arguments are combined in Section 4 to build 
up our proposal for the prepotential at the order O (ε2). In the last 
section, this proposal is checked in the simple case of pure U (1)

SYM up to the order O (�4). A more detailed computation involv-
ing only the combinatorics of the Mayer expansion is to appear 
shortly [24].

2. Nekrasov partition function as Gaussian correlation of 
exponential fields

In the expression derived by N. Nekrasov in [1], the gauge 
coupling expansion of the instanton partition function for N = 2
SU(Nc) SQCD takes the form of a series over coupled integrals

Z =
∞∑

N=0

�N

N!
(

ε+
ε1ε2

)N ∫ N∏
i=1

Q (φi)
dφi

2iπ

N∏
i, j=1
i< j

K (φi − φ j) , (2.1)

where the �-background equivariant deformation parameters 
ε1, ε2 are supposed to have a positive imaginary part, � is the 
dynamical scale and ε+ = ε1 + ε2. In formula (2.1) and then in 
the following, integrations are performed along a contour that sur-
rounds the upper half-plane, including the real axis but excluding 
possible singularities at the complex infinity. The potential Q (x)
is a rational function that can be expressed as the ratio of matter 
and gauge polynomials,

Q (x) =
∏N f

f =1(x − m f )∏Nc
l=1(x − al)(x + ε+ − al)

, (2.2)

where N f and Nc denote respectively the number of flavors (fun-
damental massive hypermultiplets) and colors (adjoint gauge mul-
tiplets). The coulomb branch vacuum expectation values (vevs) 
are assumed to be real but inside the integration contour, i.e. 
al ∈ R + i0. The universal kernel for N = 2 SYM with a single gauge 
group (A1 quiver) is

K (x) = x2(x2 − ε2+)

(x2 − ε2
1)(x2 − ε2

2)
. (2.3)

Since we consider nested integrals, we need a prescription for the 
poles at φi = φ j ± ε1 and φi = φ j ± ε2: we assume that the vari-
able φ j is real, taking the poles at φi = φ j + ε1 and φi = φ j + ε2, 
but not their counterparts at φi = φ j − ε1 and φi = φ j − ε2. For 
other gauge groups, the prescription is more subtle and has been 
discussed in [25].

In order to exploit quantum field theory methods, we factorise 
the kernel into two pieces

K (x) = (1 + ε2 p(x))eε2k(x), with

p(x) = ε2

x2 − ε2
2

, k(x) = ε−1
2 log

(
1 − 2ε1 + ε2

x2 − ε2
1

ε2

)
, (2.4)

where the ‘universal’ kernel p(x) contains singularities at x = ±ε2
that pinch the integration contour only in the NS limit ε2 → 0. 
It can be interpreted as a strong short-range interaction responsi-
ble for the formation of bound states of instantons [19,20]. On the 
contrary, the long-range interaction k(x) is free of such singulari-
ties and can be treated by standard Mayer expansion methods [26]. 
Note that the logarithmic branch cut is not relevant in our context 

2 This part is rather technical and its details could be skipped at first reading.
since at a finite order in ε2, the kernel k(x) is a rational function 
of x of order O (1).

Now, long- and short-range interactions can be separated by 
the introduction of a Gaussian field X(x) with propagator

〈X(x)X(y)〉 = ε2k(x − y). (2.5)

The corresponding action is a kinetic term with a kernel being the 
inverse of the propagator,

Slong[X] = 1

2ε2

∫
dxdy

(2iπ)2
t(x − y)X(x)X(y),∫

t(x − z)k(z − y)
dz

2iπ
= 2iπδ(x − y), (2.6)

and any correlator · · · is understood as Gaussian functional integral 
average,

〈· · · 〉 = 1

Nlong

∫
D Xe−Slong[X] · · · ,

Nlong =
∫

D Xe−Slong[X]. (2.7)

As a consequence of the Wick theorem or Gaussian integration,3〈
N∏

i=1

e X(φi)

〉
= e

1
2 k(0)ε2 N

N∏
i, j=1
i< j

eε2k(φi−φ j). (2.10)

This property allows us to perform a Hubbard–Stratonovich trans-
formation on the instanton partition function (2.1)

Z = 〈Zshort[X]〉 , with

Zshort[X] =
∞∑

N=0

qNε−N
2

N!
∫ N∏

i=1

Q (φi)e X(φi)
dφi

2iπ

×
N∏

i, j=1
i< j

(
1 + ε2 p(φi j)

)
, (2.11)

where we introduced the (finitely) renormalised gauge coupling 
q = e− 1

2 k(0)ε2�ε+/ε1 and the shortcut notation φi j = φi − φ j . Be-
fore performing the ε2-expansion of the quantity Zshort[X] in the 
next section, we would like to make a remark. It is possible to in-
troduce a second field χ(x) with Gaussian action

Sshort[χ ] = 1

2ε2

∫
dxdy

(2iπ)2
τ (x − y)χ(x)χ(y), (2.12)

3 Alternatively, this identity can be obtained by simple Gaussian integration of 
the partition function with a source term

Zlong[ J (x)] =
∫

D Xe−Slong[X]+∫
J (x)X(x)dx

=Zlong[0]e ε2
2

∫
dxdy J (x) J (y)k(x−y). (2.8)

For this formula is the infinite dimensional d → ∞ version of

〈e X1 J1 e X2 J2 · · · e Xd Jd 〉 = √
det T

∫ d∏
i=1

dXi√
2π

e
− 1

2

d∑
i, j=1

Xi Ti j X j

e

d∑
i=1

Xi J i

= e

1
2

d∑
i, j=1

J i Gi j J j

, (2.9)

with propagator G = T −1, where we choose, for the continuum limit of the external 
field J i → J (x), the configuration of point-like sources J (x) = ∑N

i=1 δ(x − φi), cf.
[28] for the connected application to gluon scattering amplitudes (cf. also the last 
section, Perspectives).
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and the kinetic kernel being the inverse of the logarithm of the 
p-propagator,∫

τ (x − z)κ(z − y)
dz

2iπ
= 2iπδ(x − y),

κ(x) = ε−1
2 log (1 + ε2 p(x)) . (2.13)

The Nekrasov partition function takes the form of a Gaussian aver-
age with respect to the two independent fields,

Z =
〈〈

exp

(
q

ε2

∫
Q (φ)e X(φ)eχ(φ) dφ

2iπ

)〉〉
. (2.14)

In this expression the usual Wick regularisation (e.g. no equal 
times contractions) will be needed for the logarithmic divergence 
of κ(x) in x = 0, as for the Coulomb gas case of 2D conformal field 
theories. Instead, without pinching, i.e. p ≡ 0, then χ ≡ 0 and the 
(combinatorial) results by [26] can be easily obtained by saddle 
point method (cf. also below). This simple fact gave us inspiration 
for the following methodology.

3. Treatment of the short range interaction

In order to derive the expression of Zshort[X] at subleading or-
der in ε2, we will treat the quantity U (x) = qQ (x)e X(x) as a mero-
morphic potential. This treatment is at the moment not fully justi-
fied since X(x) is actually a quantum field, but the result we obtain 
coincide with an alternative, rigorous derivation by performing the 
Mayer cluster expansion of the original partition function Z [24].

The Mayer expansion [21,22] of the short-range prepotential 
Fshort[X] = ε2 logZshort[X] is a sum over connected clusters �l
with l vertices in which two vertices are connected by at most one 
link. To each vertex i ∈ V (�l) is associated the integration mea-
sure U (φi)dφi/2iπ , and to each link < i j >∈ E(�l) the short range 
interaction ε2 p(φi − φ j),

Fshort[X] =
∞∑

l=1

∑
�l

ε
−(l−1)
2

σ(�l)

×
∫ ∏

i∈V (�l)

U (φi)
dφi

2iπ

∏
<i j>∈E(�l)

ε2 p(φi − φ j). (3.1)

The symmetry factor σ(�l) is the cardinal of the group of au-
tomorphisms of the cluster �l . It is also useful to introduce the 
dressed vertex Yshort(x) obtained as the functional derivative

Yshort(x) = 2iπU (x)
δFshort

δU (x)
. (3.2)

This quantity expands as a sum over rooted clusters �x
l with 

root x,

Yshort(x) = U (x)
∞∑

l=1

∑
�x

l

ε
−(l−1)
2

σ(�x
l )

×
∫ ∏

i∈V (�x
l )

i �=x

U (φi)
dφi

2iπ

∏
<i j>∈E(�x

l )

ε2 p(φi − φ j).

(3.3)

There are two main differences with respect to the prepotential 
(3.1) both due to the fact that we are dealing with rooted clusters: 
we do not integrate on the root variable x, and σ(�x

l ) ≤ σ(�l)

as, of course, the automorphisms of a rooted cluster keep the root 
fixed. The short-range free energy Fshort[X] can also be expanded 
over rooted clusters due to the property (B.3) of [26],
Fshort[X] =
∫

U (x)
dx

2iπ

∞∑
l=1

1

l

∑
�x

l

ε
−(l−1)
2

σ(�x
l )

×
∫ ∏

i∈V (�x
l )

i �=x

U (φi)
dφi

2iπ

∏
<i j>∈E(�x

l )

ε2 p(φi − φ j). (3.4)

It was shown in [20] that at first order in ε2 the potentials can 
be transferred to the root of the clusters �x

l , and the remaining 
integral evaluated exactly to give4

F (0)

short =
∞∑

l=1

∫
1

l
Il U (x)l dx

2iπ
=

∫
Li2(U (x))

dx

2iπ
,

Y (0)

short(x) =
∞∑

l=1

Il U (x)l = − log(1 − U (x)). (3.6)

The first of these gives rise to the Nekrasov–Shatashvili action (and 
thus prepotential as ε2 → 0) once inserted in the first of (2.11). 
Here we want to go beyond this order and give a proposal, which 
has a little conjectural basis, for the sub-leading ε2 order. A naive 
approach would consist in employing a linear approximation for 
the potential,

U (φi)  U (x) + (φi − x)U ′(x) + O (ε2
2). (3.7)

However, this does not work because it overlooks the contributions 
of the poles of the potential. For instance, the contribution of a 
rooted cluster with a single p-link and two vertices reads

U (x)

∫
p(x − y)U (y)

dy

2iπ

= 1

2
U (x)U (x)+ = 1

2
U (x)

[
U (x) + ε2∇U (x) + O (ε2

2)
]
, (3.8)

where, for any meromorphic function U (x), we define U (x)+ =
U reg.(x +ε2) + Using.(x −ε2) or at infinitesimal level the operator ∇
∇U (x) = U ′

reg.(x) − U ′
sing.(x) , (3.9)

by means of the decomposition U (x) = U reg.(x) + Using.(x) with 
U reg.(x) analytic inside the contour of integration while Using.(x)
analytic outside. If U (x) had no singularities inside the integration 
contour, we could replace the symbol ∇ with a partial derivative 
∂x and the result would be the same as in the linear approxima-
tion (3.7). In this case, a formula for Yshort(x) exact in ε2 has been 
derived in [29] based on an earlier formula obtained by Moore, 
Nekrasov and Shatashvili in [30]. Unfortunately, this case is not 
relevant to the computation of Zshort[X] and we present here an 
alternative method.

3.1. Articulation links and irreducible clusters

In the clusters �l it is important to distinguish two types of 
links. An articulation link of a connected cluster is a link whose 
removal break the cluster into two disconnected pieces [31]. The 
cluster is said to be (1 particle) reducible. Note that if the cluster 
is a tree, all its links are articulation links. A cluster without any 

4 The integral

Il = ε
−(l−1)
2

∑
�x

l

1

σ(�x
l )

∫ l−1∏
i=1

dφi

2iπ

∏
<i j>∈E(�x

l )

ε2 p(φi j) = 1

l
(3.5)

has been computed in [20].
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articulation link is said to be (1 particle) irreducible. An exam-
ple of irreducible clusters is the necklace, i.e. a ring of l vertices 
and l links. In [24], we have computed the contributions of all 
necklaces and observed that they do not exhibit any corrections 
of order O (ε2). We have further computed the irreducible clusters 
with four vertices for a potential corresponding to U (1) SYM and 
we have found the same conclusion. It led us to conjecture that ir-
reducible clusters do not provide any correction at the subleading 
order (although higher order corrections are present).

We need a stronger form of this conjecture. The ε2-corrections 
we are trying to compute are associated to the links of the clus-
ter. Heuristically, the total ε2-correction is the sum of the cor-
rections brought by each link and due to a sort of linearisation. 
Links of a generic cluster can be either articulation links or not. 
We claim that only articulation links bring non-zero subleading 
ε2-corrections. To justify this claim, we consider a link of an arbi-
trary cluster which is not an articulation link, and we compute its 
contribution to Fshort at the order O (ε2). We denote the two ex-
tremities of the link x and y, and �x,y

l the bi-rooted cluster with 
l vertices obtained by removing this link. Since we are interested 
in the ε2-correction of a specific link, it is enough to consider the 
leading order of the integrals associated to the cluster �x,y

l . At this 
order, the potential of each vertex can be transferred to a root, say 
x, and produces U (x)l . The remaining integral contribution will be 
denoted �l(x, y), and the integral associated to the original cluster 
reads

�l =
∫

dxdy

(2iπ)2
p(x − y)U (x)l�l(x, y),

�l(x, y) = ε2−l
2

∫ ∏
i∈V (�

x,y
l )

x�=i �=y

dφi

2iπ

∏
<i j>∈E(�

x,y
l )

ε2 p(φi − φ j).

(3.10)

It is useful to rewrite this expression as

�l =
∫

dx

2iπ
U (x)lνl(x, x),

νl(x, z) =
∫

dy

2iπ
�l(x, y)p(y − z), (3.11)

where the function νl(x, x) would contain possible ε2-corrections 
coming from the p-link we singled out.

Due to the invariance under translations of the φi , �l(x, y) must 
be a function of the difference (x − y): �l(x, y) = �l(x − y), and 
hence νl(x, z) = νl(x − z) as well. Moreover, �l(x) is even as can be 
shown using the sign flip φi → −φi . Convolution with p-kernels 
shift the poles in the upper half plane of +ε2 and in the lower half 
plane of −ε2. It turns out that �l(x − y) can only have (multiple) 
poles at x − y = ±nε2 with n = 1, 2, . . . . In particular it has no pole 
at the complex infinity. We deduce the expansion

�l(x − y) =
∞∑

n=1
m=0

γn,m

[
ε2

2

(x − y)2 − n2ε2
2

]m+1

, (3.12)

where due to the scale invariance under x, y → αx, αy, ε2 → αε2
and φi → αφi , the coefficients γn,m are C-numbers independent of 
ε2. Their value depends on the explicit form of the cluster �x,y

l , 
but at fixed l only a finite amount of coefficients are non-zero. 
Thanks to the formula
[
ε2

2

x2 − n2ε2
2

]m+1

= (−2n)−(m+1)

m∑
k=0

(
m + k

k

)
εm+1−k

2

(2n)k

×
[

1

(x + nε2)m+1−k
+ (−1)m+1−k

(x − nε2)m+1−k

]
,

(3.13)

it is possible to separate �l(x − y) into regular and singular part 
with respect to one of its variables, and perform the integration 
over the p-link that has been singled out to obtain νl(0). We ob-
serve that νl(0) is a C-number independent of ε2:

νl(0) =
∞∑

n=1
m=0

γn,m (−1)m+1
m∑

k=0

(
m + k

k

)
1

(2n(n + 1))m+1−k
.

(3.14)

This is a strong hint that p-links that are not articulation link do 
not provide any ε2-correction.

3.2. Considering only trees

To obtain a better insight on the contributions of articulation 
links, we first restrict the summation over clusters with a tree 
structure �x

T ,l and examine the corresponding (tree) dressed ver-
tex

Y T (x) = U (x)
∞∑

l=1

∑
�x

T ,l

ε
−(l−1)
2

σ(�x
T ,l)

×
∫ ∏

i∈V (�x
T ,l)

i �=x

U (φi)
dφi

2iπ

∏
<i j>∈E(�x

T ,l)

ε2 p(φi − φ j).

(3.15)

Due to the restriction upon tree clusters, this function obeys the 
following functional equation [20],

Y T (x) = U (x)exp

(∫
p(x − y)Y T (y)

dy

2iπ

)

= U (x)e
1
2 Y T (x)+ , (3.16)

the second equality being obtained by an explicit computation of 
the convolution with the kernel p. Expanding in ε2 with the po-
tential U (x) considered finite, we find

Y T (x) = Y (0)
T (x) + ε2Y (1)

T (x) + O (ε2
2),

Y (0)
T (x) = U (x)e

1
2 Y (0)

T (x),

Y (1)
T (x) = Y (0)

T (x)

2 − Y (0)
T (x)

∇Y (0)
T (x), (3.17)

with the operator ∇ defined in (3.9). At first order, the generating 
function can also be expressed in terms of the tree function T (z)5

Y (0)
T (x) = 2T (U (x)/2). (3.19)

5 The tree function is related to the Lambert W function on the principal branch 
as T (z) = −W (−z). It satisfies

z = T (z)e−T (z), T (z) =
∞∑

n=1

znnn

n × n! , zT ′(z) = T (z)

1 − T (z)
. (3.18)
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It is enlightening to recover this result from a direct computation. 
In fact, we have the property that the potential at each vertex can 
be transferred to the root, giving

Y (0)
T (x) =

∞∑
l=1

U (x)l
∑
�x

T ,l

ε
−(l−1)
2

σ(�x
T ,l)

×
∫ ∏

i∈V (�x
T ,l)

i �=x

dφi

2iπ

∏
<i j>∈E(�x

T ,l)

ε2 p(φi − φ j). (3.20)

As shown in [20], the remaining integral depends only on the 
number of links and not on the explicit form of the tree. It eval-
uates to (ε2/2)l−1. The remaining sum over rooted trees with the 
appropriate symmetry factors can be evaluated using the Cayleigh 
formula, as done again in [20] (formula B.1). We obtain

Y (0)
T (x) = 2

∞∑
l=1

(
U (x)

2

)l ∑
�x

T ,l

1

σ(�x
T ,l)

= 2
∞∑

l=1

(
U (x)

2

)l ll−1

l! , (3.21)

which is indeed the Taylor expansion of the tree function.
Actually, this direct derivation of the leading order provides 

us a nice interpretation of next-to-leading contribution, the last 
of (3.17)

Y (1)
T (x) = T (U (x)/2)

1 − T (U (x)/2)
∇Y (0)

T (x)

= 1

2
U (x)T ′(U (x)/2)∇Y (0)

T (x)

=
∞∑

l=1

(
U (x)

2

)l ll

l!∇Y (0)
T (x) , (3.22)

where, for the last equality, we have used the above Taylor ex-
pansion (of the derivative) of the tree function. In fact, following 
back in the reverse order the steps to the derivation of the formula 
(3.21), we can engineer a cluster expansion formula for Y (1)

T (x),

Y (1)
T (x)  1

2
U (x)

∞∑
l=1

ε
−(l−1)
2

∑
�x

T ,l

l

σ(�x
T ,l)

×
∫ ∏

i∈V (�x
T ,l)

i �=x

U (φi)
dφi

2iπ

×
∏

<i j>∈E(�x
T ,l)

ε2 p(φi − φ j)∇Y (0)
T (x), (3.23)

where we denoted A  B for A = B + O (ε2). The extra symmetry 
factor l corresponds to the possibilities to graft a leaf to the tree 
�x

T ,l on any of its vertices, i.e.

Y (1)
T (x)  U (x)

∞∑
l=1

ε
−(l−1)
2

∑
�x

T ,l

1

σ(�x
T ,l)

×
∫ ∏

i∈V (�x
T ,l)

i �=x

U (φi)
dφi

2iπ

∏
<i j>∈E(�x

T ,l)

ε2 p(φi − φ j)

×
∫ ∑

α∈V (�x )

p(φ − φα) ∇Y (0)
T (φ)

dφ

2iπ
. (3.24)
T ,l
Fig. 1. A rooted tree decomposed into two rooted subtrees (black and red) by choos-
ing a link (in blue). (For interpretation of the references to color in this figure, the 
reader is referred to the web version of this article.)

In this formula, the extra vertex φ is grafted to the tree at the 
vertex φα via a p-link. This vertex bears the potential ∇Y (0)

T (φ)

instead of U (φ). But our formula can also be obtained in another 
way: consider a tree �x

T ,l and select a link that will later corre-
spond to p(φ − φα). Removing this link, one obtains two clusters, 
one which is rooted by x called T x

1 (in black in Fig. 1), and a sub-

tree of the original tree denoted T φ
2 with a new root φ where the 

link we removed used to end (in red on Fig. 1). To compute the 
ε2-correction to this specific p-link, we can approximate at first or-
der each of the two clusters and the generating function associated 
to T2 is Y (0)

T (φ). The correction from the p-link in blue appears in 
the integral∫

p(φα − φ)Y (0)
T (φ)

dφ

2iπ

= 1

2
Y (0)

T (φα)+

= 1

2
Y (0)

T (φα) + 1

2
ε2∇Y (0)

T (φα) + O (ε2
2), (3.25)

where φα is any vertex of T x
1. The second term in the RHS is inter-

preted as the subleading ε2-correction brought by the blue p-link. 
It only remains to compute at first order the integral associated to 
the vertices of T x

1 which exactly corresponds to the formula (3.24).

3.3. Contributions from articulation links

The ε2-corrections provided by the articulation links are similar 
to those obtained in (3.24) for the trees. The only difference is that 
now the articulation link splits the cluster into two generic clusters 
instead of two trees. The correction Y (1)

short(x) is thus obtained by 
grafting to a rooted cluster a leaf with the potential ∇Y (0)

short that 
generates the second cluster:

Y (1)

short(x)  1

2
U (x)

∞∑
l=1

ε
−(l−1)
2

∑
�x

l

l

σ(�x
l )

×
∫ ∏

i∈V (�x
l )

i �=x

U (φi)
dφi

2iπ

∏
<i j>∈E(�x

l )

p(φi − φ j)∇Y (0)

short(x) ,

(3.26)

upon recalling (3.6) and U (x) = qQ (x)e X(x) . Transferring the poten-
tial to the root, we find (by also using Il = 1/l and (3.6))

Y (1)

short(x) = 1

2

∞∑
l=1

lIlU (x)l∇Y (0)

short(x)

= 1

2

U (x)

1 − U (x)
∇Y (0)

short(x)

= 1 (
eY (0)

short(x) − 1
)

∇Y (0)

short(x). (3.27)

2
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The correction to the free energy Fshort presents an extra factor 
(1/l and) 1/2 due to the possibility to exchange the two sub-
clusters in absence of a root

F (1)

short = 1

4

∫
dx

2iπ
U (x)

∞∑
l=1

ε
−(l−1)
2

∑
�x

l

1

σ(�x
l )

×
∫ ∏

i∈V (�x
l )

i �=x

U (φi)
dφi

2iπ

∏
<i j>∈E(�x

l )

p(φi − φ j)∇Y (0)

short(x).

(3.28)

By factorisation of the potential, we recover the integral Il , which, 
eventually, leads us to the correction

F (1)

short[X] = 1

4

∫
dx

2iπ
Y (0)

short(x)∇Y (0)

short(x) . (3.29)

4. Prepotential at subleading order

Upon plugging the previous result for Zshort into the first of 
(2.11), we can give an explicit path integral expression for the 
Nekrasov partition function6

Z 
〈
exp

(
1

ε2

∫
Li2

(
qQ (x)e X(x)

) dx

2iπ

+ 1

4

∫
log

(
1 − qQ (x)e X(x)

)

× ∇ log
(

1 − qQ (x)e X(x)
) dx

2iπ

)〉
, (4.1)

where the term involving the operator ∇ (whose action on the log-
arithm is well-defined only perturbatively in q, at any finite order) 
yields the exact subleading correction.

In the previous expression we may re-introduce the initial ker-
nel k(x − y) in place of its inverse t(x − y) via a ghost field ρ(x)
(Hubbard–Stratonovich transform)7; moreover, to better see the 
correction to the Nekrasov–Shatashvili action (which indeed con-
tains two fields), we shall perform a change of variable ϕ(x) =
−X(x), so that

Z 
∫

DρDϕ exp

(
1

2ε2

∫
k(x − y)ρ(x)ρ(y)dxdy

+ 1

ε2

∫
ρ(x)ϕ(x)dx + 1

ε2

∫
Li2

(
qQ (x)e−ϕ(x)

) dx

2iπ

+ 1

4

∫
log

(
1 − qQ (x)e−ϕ(x)

)

× ∇ log
(

1 − qQ (x)e−ϕ(x)
) dx

2iπ

)
. (4.4)

6 In principle this procedure could be carried on at any order in ε2.
7 Although convenient, the introduction of the extra field ρ(x) is not strictly nec-

essary. It is indeed possible to perform directly a semi-classical treatment of the 
quantum field X . The equations of motion associated to the variation of X reads, at 
leading order, upon performing a convolution with the original kernel k(x), as the 
following TBA-NLIE

X(x) +
∫

k(x − y) log
(

1 − qQ (y)e X(y)
) dy

2iπ
= 0. (4.2)

Deriving once more, the Hessian kernel reads

δ2S[X]
δX(x)δX(y)

= 1

(2iπ)2
t(x − y) − 1

2iπ
δ(x − y)

qQ (x)e X(x)

1 − qQ (x)e X(x)
. (4.3)

Once convoluted with the kernel k(x − y) this gives the same as the Hessian kernel 
with two fields ρ and ϕ as computed below.
In the r.h.s., the term of the second line is subleading in ε2 and 
will be neglected in the derivation of the equations of motion. The 
remaining term defines the action S0[ρ, ϕ] that gives8

δS0[ρ,ϕ]
δρ(x)

= −
∫

k(x − y)ρ(y)dy − ϕ(x) = 0,

δS0[ρ,ϕ]
δϕ(x)

= −ρ(x) − 1

2iπ
log

(
1 − qQ (x)e−ϕ(x)

)
= 0. (4.5)

These equations allow to determine the classical fields by solving 
a TBA-NLIE,

ϕ(x) =
∫

k(x − y) log
(

1 − qQ (y)e−ϕ(y)
) dy

2iπ
,

2iπρ(x) = − log
(

1 − qQ (x)e−ϕ(x)
)

. (4.6)

Once the classical fields are known, i.e. on-shell, we can compute 
(minus) the Hessian kernel defined by

H(x, y) = −
∫

dz

[
δ2S0

δρ(x)δρ(z)

δ2S0

δϕ(z)δϕ(y)

− δ2S0

δϕ(x)δρ(z)

δ2S0

δρ(z)δϕ(y)

]
, (4.7)

and find

H(x, y) = δ(x − y) − 1

2iπ
k(x − y)�(y),

�(x) = qQ (x)e−ϕ(x)

1 − qQ (x)e−ϕ(x)
. (4.8)

The same result could be obtained from the Hessian kernel with 
only one field X (4.3) upon convolution with the kernel k(x − y), 
which is the contribution to the measure from the introduction of 
the field ρ according to (2.8), (2.9). Note that on-shell we also have 
� = e2iπρ − 1. Eventually, taking into account both classical action 
and one-loop corrections, we find for the prepotential F = ε2 logZ
in terms of the classical solutions to (4.6)

F = 1

2

∫
ρ(x)ϕ(x)dx +

∫
Li2

(
qQ (x)e−ϕ(x)

) dx

2iπ

+ iπ

2
ε2

∫
ρ(x)∇ρ(x)dx − ε2

2
log det H(x, y) + O (ε2

2) ,

(4.9)

where, for instance, the logarithm of the determinant of H(x, y)

enjoys a Fredholm infinite series formula

log det H(x, y)

= −
∞∑

n=1

1

n

∫ n∏
i=1

�(φi)
dφi

2iπ

n−1∏
i=1

k(φi − φi+1) k(φn − φ1).

(4.10)

5. Study of U (1) N = 2 SYM

The Nekrasov instanton partition function of U (1) SYM without 
matter is particularly simple,

ZU (1) = exp

(
�

ε1ε2

)
. (5.1)

8 At this order, it is not necessary to compute the variation of the term involving 
the operator ∇ .



J.-E. Bourgine, D. Fioravanti / Physics Letters B 750 (2015) 139–146 145
However, the evaluation of each term contributing to the prepo-
tential exhibits a non-trivial dependence on the gauge coupling, 
which is remarkably canceled out order-by-order so to provide the 
simple result given above. This theory is thus a very good candi-
date to test our formula (4.9) for the subleading corrections in ε2
to the prepotential. Here we perform this verification up to the or-
der O (�4), i.e. four vertices. In particular, this is a good test of our 
conjecture about the non-contribution of irreducible p-clusters at 
the origin of our formula for Zshort[X].

The potential associated to vertices for pure U (1) SYM reads

Q (x) = 1

(x − a)(x − a + ε1 + ε2)
. (5.2)

Note that the Coulomb branch vev a can be set to zero due to 
the invariance under translations of the instantons position. Fur-
thermore, at the order of interest q and � can be identified since 
q = � + O (ε3

2). The field ϕ(x) is determined at the order O (q3) and 
O (ε2) after solving by iterations the TBA-NLIE (4.6). Plugging the 
result in the second equation produces ρ(x) at the order O (q4). 
Isolating the singularities in the upper half plane at x = a + nε1
with n = 0, 1, 2, 3 that contributes to the singular part ρsing. , it is 
possible to compute ∇ρ(x). From these expressions we deduce the 
following contributions after evaluating the integrals as sum over 
residues,

1

2

∫
ρ(x)ϕ(x)dx = − q2

2ε3
1

+ q3

12ε5
1

− q4

36ε7
1

+
(

11q2

8ε4
1

− 49q3

72ε6
1

+ 1583q4

3456ε8
1

)
ε2

+ O (q5, ε2
2),∫

Li2

(
qQ (x)e−ϕ(x)

) dx

2iπ

= q

ε1
+ q2

2ε3
1

− q3

12ε5
1

+ q4

36ε7
1

+
(

− q

ε2
1

− 5q2

4ε4
1

+ 5q3

8ε6
1

− 371q4

864ε8
1

)
ε2 + O (q5, ε2

2),

iπ

2
ε2

∫
ρ(x)∇ρ(x)dx =

(
q2

2ε4
1

− 5q3

8ε6
1

+ 22q4

27ε8
1

)
ε2 + O (q5, ε2

2),

−ε2

2
log det H(x, y) =

(
q

ε2
1

− 5q2

8ε4
1

+ 49q3

72ε6
1

− 2915q4

3456ε8
1

)
ε2

+ O (q5, ε2
2). (5.3)

The determinant of the Hessian kernel is obtained by a consistent 
truncation of the Fredholm expansion (4.10) at the order n = 4. 
Taking the sum of these terms, we match (5.1) with FU (1) =
ε2 logZU (1) = �/ε1 + O (�5, ε2

2).

6. Perspectives

We have proposed a formula for the subleading corrections to 
the prepotential of SU(Nc) N = 2 SYM in the Nekrasov–Shatashvili 
limit. However, two physically justified assumptions are used for 
the derivation and shall deserve deeper analysis in the near future. 
First, the field theory argument rest upon the treatment of the ex-
ponential of the field as a meromorphic potential. This assumption 
can be bypassed by a treatment of the full partition function by 
Mayer expansion. Since this derivation is rather lengthy, we de-
cided to present it elsewhere [24]. The second point that requires 
a closer examination, in the close future, is the ε2-expansion of 
Zshort from which the full partition function can now be derived.

The results presented here are very general and may find ap-
plication in numerous problems. For instance, the computation of 
planar amplitudes in N = 4 SYM involves series of nested integrals 
that are similar to those defining the Nekrasov instanton partition 
function [27]. In particular, they also exhibit at strong coupling 
a phenomenon where some poles pinch the integration contours, 
which is responsible for the formation of a heavy ‘meson’ and its 
bound states [28]. Hopefully, the formulæ presented here might 
be generalised for computing the one-loop correction to classical 
minimal area result, namely the contribution at order of the in-
verse string tension ε2 ∼ 1/

√
λ (

√
λ is also the ’t Hooft coupling).

The presence of the TBA-like NLIE at leading order connects the 
supersymmetric gauge theories to the realm of quantum integrable 
systems. Turning on the ε2 parameter defines an integrable defor-
mation of these systems that is characterised by the presence of 
the SHc algebra. However, this deformation is still poorly under-
stood in the perspective of integrable theories. With the derivation 
of the first order correction, we hope to clarify the situation and 
find a physical interpretation of the integrable deformation. It is 
noted that in the Nekrasov–Shatashvili dictionary ε2 plays the role 
of the inverse length of the thermodynamic limit. It suggests to 
interpret the ε2-corrections as further finite size corrections to the 
Yang–Yang functional. It would be interesting to find this interpre-
tation in a simple integrable system, also for the development of 
the integrability theory.

The possible connections with Painlevé sixth equations and 
isomonodromy problems also deserve further investigation [32,
33]. In the case of an SU(2) gauge group, the NS prepotential is 
related under the AGT correspondence to the semi-classical con-
formal block of Liouville field theory. This conformal block can 
be obtained by solving in the classical limit b → 0 the null vec-
tor decoupling equation (NVDE) obeyed by a five-points correlator 
with a degenerate operator of level two inserted. This operation 
corresponds to insert a surface operator in the AGT dual instan-
ton partition function [34]. The NVDE is identified in [32] with a 
Schrödinger equation obtained in a quantised version of the sixth 
Painlevé equation [35]. Our result should be connected to the O (h̄)

corrections to the WKB solution of this Schrödinger problem.
Still in the case of SU(2) SYM, it is possible to take the colliding 

limit of the potential Q (x) in which the leading order prepotential 
compute the classical irregular conformal blocks [36]. This quan-
tity is related to the accessory parameter of a Mathieu equation 
(i.e. the energy in the Schrödinger form) obtained as the afore-
mentioned classical limit of the NVDE [37]. The formula presented 
here allows the computation of the first semi-classical correction 
to the irregular conformal block. This correction could be related 
to a deformation of the Mathieu equation.
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