Matrix semigroup homomorphisms into higher dimensions

Damjana Kokol Bukovšek *

Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia

Received 26 October 2005; accepted 12 June 2006
Available online 10 October 2006
Submitted by R. Loewy

Abstract

We study non-degenerate irreducible homomorphisms from the multiplicative semigroup of all \(n \)-by-\(n \) matrices over an algebraically closed field of characteristic zero to the semigroup of \(m \)-by-\(m \) matrices over the same field. We prove that every non-degenerate homomorphism from the multiplicative semigroup of all \(n \)-by-\(n \) matrices to the semigroup of \((n + 1)\)-by-\((n + 1)\) matrices when \(n \geq 3 \) is reducible and that every non-degenerate homomorphism from the multiplicative semigroup of all \(3 \)-by-\(3 \) matrices to the semigroup of \(5 \)-by-\(5 \) matrices is reducible.

© 2006 Elsevier Inc. All rights reserved.

Keywords: Matrix semigroup; Semigroup homomorphism; Multiplicative map; Irreducibility

1. Introduction

Let \(\mathbb{F} \) be an algebraically closed field of characteristic zero and let \(\mathcal{M}_n(\mathbb{F}) \) denote all \(n \)-by-\(n \) matrices with entries in \(\mathbb{F} \). In this paper we study non-degenerate matrix semigroup homomorphisms \(\varphi : \mathcal{M}_n(\mathbb{F}) \to \mathcal{M}_m(\mathbb{F}) \), i.e., multiplicative maps, where \(n \geq 3 \) and \(m > n \). One way to obtain a semigroup homomorphism \(\varphi : \mathcal{M}_n(\mathbb{F}) \to \mathcal{M}_m(\mathbb{F}) \) is to take a group homomorphism \(\varphi' : GL_n(\mathbb{F}) \to GL_m(\mathbb{F}) \) and trivially extend it to all matrices taking \(\varphi(A) = 0 \) for every \(A \) with \(\det A = 0 \). These trivial extensions are called degenerate and are known (see for example [13, pp. 115–136] or [1, p. 231]). The problem of homomorphisms \(\varphi : \mathcal{M}_n(\mathbb{F}) \to \mathcal{M}_m(\mathbb{F}) \) is solved

* Fax: +386 1 25 17 281.
E-mail address: damjana.kokol@fmf.uni-lj.si

0024-3795/$ - see front matter © 2006 Elsevier Inc. All rights reserved.
doi:10.1016/j.laa.2006.06.011
for \(m \leq n \) in [5,2]. The case \(n = 1 \) for the field \(\mathbb{C} \) of complex numbers is studied in [7]. The case \(n = 2, m = 3 \) is explored in [3], and the case \(n = 2, m = 4 \) in [4]. Semigroup homomorphisms \(\varphi : \Delta_n(\mathbb{F}) \rightarrow \mathcal{M}_n(\mathbb{F}) \), where \(\Delta_n(\mathbb{F}) \) is a certain subsemigroup of \(\mathcal{M}_n(\mathbb{F}) \), are characterized in [14]. Semigroup homomorphisms \(\varphi : \Delta_n(\mathbb{F}) \rightarrow \mathcal{M}_m(\mathbb{K}) \), where \(\mathbb{K} \) is another field, are explored in [10–12,15] for the case \(m \leq n \). In [9] isomorphisms of subsemigroups of \(\mathcal{M}_n(\mathbb{F}) \) that contain all rank one matrices are studied. The problem of homomorphisms \(\varphi : \mathcal{M}_n(\mathbb{F}) \rightarrow \mathcal{M}_m(\mathbb{F}) \) is connected to the problem of congruences on the semigroup \(\mathcal{M}_n(\mathbb{F}) \), which are characterized in [6].

A semigroup homomorphism \(\varphi : \mathcal{M}_n(\mathbb{F}) \rightarrow \mathcal{M}_m(\mathbb{F}) \) is irreducible if the image of \(\varphi \) is an irreducible semigroup, i.e., it has no proper non-trivial invariant subspace of \(\mathbb{F}^m \) when it is viewed as a set of matrices acting on vector space \(\mathbb{F}^m \). We prove that every non-degenerate homomorphism \(\varphi : \mathcal{M}_n(\mathbb{F}) \rightarrow \mathcal{M}_{n+1}(\mathbb{F}) \) is reducible and that every non-degenerate homomorphism \(\varphi : \mathcal{M}_3(\mathbb{F}) \rightarrow \mathcal{M}_m(\mathbb{F}) \), where \(m \) is 4 or 5, is reducible.

2. Singular matrices

We first look where an non-degenerate irreducible homomorphism sends singular matrices.

Proposition 1. Let \(\varphi : \mathcal{M}_n(\mathbb{F}) \rightarrow \mathcal{M}_m(\mathbb{F}) \) a semigroup homomorphism, which sends 0 to 0 and identity to identity. Let

\[
\begin{align*}
 k &= \min\{\text{rank } A; \varphi(A) \neq 0\}. \\
 \binom{n}{k} &\leq m.
\end{align*}
\]

If \(\text{rank } A = \text{rank } B \) then \(\varphi(A) = \varphi(B) \).

Proof. A semigroup homomorphism which sends \(I \) to \(I \), maps invertible matrices to invertible matrices. If \(\text{rank } A = \text{rank } B \), then there exist such invertible matrices \(P, Q \) that \(A = PBQ \). So \(\varphi(A) = \varphi(P)\varphi(B)\varphi(Q) \) and \(\text{rank } \varphi(A) = \text{rank } \varphi(B) \).

Let \(E_1, E_2, \ldots, E_t \) be \(\binom{n}{k} \) distinct diagonal idempotents of rank \(k \). Then \(\text{rank } \varphi(E_1) = \text{rank } \varphi(E_2) = \cdots = \text{rank } \varphi(E_t) \geq 1 \). Since \(E_iE_j \) for \(i \neq j \) has rank less than \(k \), we have \(\varphi(E_i)\varphi(E_j) = 0 \), and \(\varphi(E_1), \varphi(E_2), \ldots, \varphi(E_t) \) are orthogonal idempotents. We conclude that \(t(\text{rank } \varphi(E_1)) \leq m \), implying \(\binom{n}{k} \leq m. \)

Proposition 2. Assume that \(n \geq 3 \) and \(m < 2n \). Let \(\varphi : \mathcal{M}_n(\mathbb{F}) \rightarrow \mathcal{M}_m(\mathbb{F}) \) be a semigroup homomorphism, which is non-degenerate and sends 0 to 0 and identity to identity. Suppose that \(\text{rank } A = 1 \) implies \(\text{rank } \varphi(A) = 1 \). Then \(\text{rank } A = 2 \) implies \(\text{rank } \varphi(A) = 2 \).

Proof. Denote by \(E_{ij} \) the matrix which has 1 in the \(i \)th row and the \(j \)th column, and 0 elsewhere. Matrices \(\varphi(E_{11}), \varphi(E_{22}), \ldots, \varphi(E_{nn}) \in \mathcal{M}_m(\mathbb{F}) \) are orthogonal idempotents of rank 1. Let

\[
\begin{align*}
P_2 &= E_{11} + E_{22}, & P_3 &= E_{11} + E_{33}, & \ldots, & P_n &= E_{11} + E_{nn}.
\end{align*}
\]

\(\text{Rank } \varphi(P_2) \) cannot be 1, since \(\varphi(E_{11}) \) and \(\varphi(E_{22}) \) are orthogonal. Suppose \(\text{rank } \varphi(P_2) \geq 3 \). Then \(\varphi(P_2), \varphi(P_3), \ldots, \varphi(P_n) \) are commuting idempotents of equal rank by Proposition 1. Their products are \(\varphi(P_i)\varphi(P_j) = \varphi(E_{11}) \). So

\[
\text{rank}(\varphi(P_2) + \varphi(P_3) + \cdots + \varphi(P_n)) \geq 2(n - 1) + 1 \geq m.
\]
Now $\varphi(E_{22} + E_{33})$ has products of rank 1 with $\varphi(P_2)$ and $\varphi(P_3)$, and it is orthogonal to $\varphi(P_4), \ldots, \varphi(P_n)$, so
\[
\text{rank} (\varphi(P_2) + \varphi(P_3) + \cdots + \varphi(P_n) + \varphi(E_{22} + E_{33})) \\
\geq \text{rank} (\varphi(P_2) + \varphi(P_3) + \cdots + \varphi(P_n)) + 1,
\]
which is a contradiction. So rank $\varphi(P_2) = 2$ and, finally, rank $A = 2$ implies rank $\varphi(A) = 2$. □

Some parts of this proof could be done using congruences on matrices [6].

The next proposition is trivially true for $n = 3$ and $m < 6$. We prove it also for larger n.

Proposition 3. Assume that $n > 4$ and $m < 2n$ or that $n = 4$ and $m \leq 5$. Let $\varphi : \mathcal{M}_n(F) \rightarrow \mathcal{M}_m(F)$ be a semigroup homomorphism, which is non-degenerate and sends 0 to 0 and identity to identity. Then we have two possibilities:

(a) if rank $A = 1$ then rank $\varphi(A) = 1$, and if rank $A = 2$ then rank $\varphi(A) = 2$, or

(b) if rank $A < n - 1$ then $\varphi(A) = 0$, and if rank $A = n - 1$ then rank $\varphi(A) = 1$.

Proof. Let
\[
k = \min \{\text{rank} A; \varphi(A) \neq 0\}.
\]
Since φ is non-degenerate, $1 \leq k \leq n - 1$. If $n > 4$, then $m < 2n \leq \binom{n}{2}$. If $n = 4$, then $m \leq 5 < \binom{4}{2}$. So by Proposition 1, $k = 1$ or $k = n - 1$.

Case (a): $k = 1$. The matrices $E_{11}, E_{22}, \ldots, E_{nn} \in \mathcal{M}_n(F)$ are idempotents of rank 1, so $\varphi(E_{11}), \varphi(E_{22}), \ldots, \varphi(E_{nn}) \in \mathcal{M}_m(F)$ are orthogonal idempotents of the same rank, say l. Since they are orthogonal, $nl \leq m$, so $l = 1$. Thus rank $A = 1$ implies rank $\varphi(A) = 1$. Proposition 2 now gives us the asserted result.

Case (b): $k = n - 1$. We have that rank $A < n - 1$ implies $\varphi(A) = 0$. Let $P_1, P_2, \ldots, P_n \in \mathcal{M}_n(F)$ be distinct diagonal idempotents of rank $n - 1$. Then $\varphi(P_1), \varphi(P_2), \ldots, \varphi(P_n) \in \mathcal{M}_m(F)$ are orthogonal idempotents with the same rank, say l. Since they are orthogonal, $nl \leq m$, so $l = 1$. Thus rank $A = n - 1$ implies rank $\varphi(A) = 1$. □

3. Two possibilities

We will now explore the two possibilities which appear in Proposition 3. The first one is that only 0 maps to 0.

Proposition 4. Assume that $n \geq 2$ and $m \geq n$. Let $\varphi : \mathcal{M}_n(F) \rightarrow \mathcal{M}_m(F)$ be a semigroup homomorphism, which is non-degenerate and sends 0 to 0 and identity to identity. Suppose that rank $A = 1$ implies rank $\varphi(A) = 1$ and that rank $A = 2$ implies rank $\varphi(A) = 2$. Then
\[
\varphi(A) = S \begin{bmatrix}
\hat{f}(A) & * \\
* & *
\end{bmatrix} S^{-1},
\]
where $f : F \rightarrow F$ is a field homomorphism and $S \in \mathcal{M}_m(F)$ is an invertible matrix.
This proposition generalizes Theorem 1 in [2] and Corollary 8 in [14] to the case \(m > n \). In the proof we follow the main ideas in [2]. The assumption that \(\varphi \) maps rank 2 matrices to rank 2 matrices is necessary, otherwise function \(f \) may not be additive, as the following example shows.

Example. A non-degenerate semigroup homomorphism \(\varphi : \mathcal{M}_3(\mathbb{F}) \to \mathcal{M}_6(\mathbb{F}) \) defined by
\[
\varphi(A) = \text{Sym}^2 A
\]
maps rank 1 matrices to rank 1 matrices, rank 2 matrices to rank 3 matrices and is of the form
\[
\varphi(A) = \begin{bmatrix}
\hat{f}(A) & * \\
* & *
\end{bmatrix},
\]
where \(f(x) = x^2 \).

Proof (of Proposition 4). Denote by \(E_{ij} \) the matrix which has 1 in the \(i \)th row and the \(j \)th column, and 0 elsewhere.

Matrices \(E_{11}, E_{22}, \ldots, E_{nn} \in \mathcal{M}_m(\mathbb{F}) \) are orthogonal idempotents of rank 1, so \(\varphi(E_{11}), \varphi(E_{22}), \ldots, \varphi(E_{nn}) \in \mathcal{M}_m(\mathbb{F}) \) are orthogonal idempotents of rank 1. It follows that they are simultaneously similar to
\[
E_{11}, E_{22}, \ldots, E_{nn} \in \mathcal{M}_m(\mathbb{F}).
\]
Thus we may assume without loss of generality that
\[
\varphi(E_{ii}) = E_{ii}.
\]
Let \(\delta_{ij} \) be the Kronecker symbol, \(\delta_{ij} = 1 \) if \(i = j \), and \(\delta_{ij} = 0 \) otherwise. We have
\[
\delta_{ki}\delta_{jl}\varphi(E_{ij}) = \varphi(\delta_{ki}\delta_{jl}E_{ij}) = \varphi(E_{kk}E_{ij}E_{ll}) = E_{kk}\varphi(E_{ij})E_{ll},
\]
so
\[
\varphi(E_{ij}) = \begin{bmatrix}
t_{ij}E_{ij} & 0 \\
0 & *
\end{bmatrix}.
\]
Since \(E_{ij}E_{ji} = E_{ij} \), we obtain \(t_{ij} \neq 0 \), and since \(\varphi(E_{ij}) \) has rank 1, we have \(* = 0 \). Thus
\[
\varphi(E_{ij}) = t_{ij}E_{ij}.
\]
We may now apply a simultaneous similarity with a diagonal matrix
\[
\text{diag}(1, t_{12}, \ldots, t_{1n}, 1, \ldots, 1)
\]
to obtain \(\varphi(E_{1j}) = E_{1j} \). Now
\[
E_{1j} = \varphi(E_{1j}) = \varphi(E_{11}E_{ij}) = E_{11}t_{ij}E_{ij} = t_{ij}E_{1j},
\]
so \(t_{ij} \) equals 1 for all \(i, j \) and therefore
\[
\varphi(E_{ij}) = E_{ij}.
\]
Let \(a \) be an element in \(\mathbb{F} \).
\[
\varphi(aE_{11}) = \varphi(E_{11}aE_{11}E_{11}) = E_{11}\varphi(aE_{11})E_{11},
\]
so the only non-zero entry of \(\varphi(aE_{11}) \) is at the \((1, 1)\) position. So there exists such mapping \(f : \mathbb{F} \to \mathbb{F} \) that
\[
\varphi(aE_{11}) = f(a)E_{11}.
\]
Mapping f is obviously multiplicative. Furthermore

$$
\varphi(aE_{ij}) = \varphi(aE_{i1}E_{1j}) = E_{i1}\varphi(aE_{11})E_{1j} = E_{i1}f(a)E_{11}E_{1j} = f(a)E_{ij}.
$$

Now let $A = [a_{ij}]_{i,j=1}^n$ be a matrix in $\mathcal{M}_n(\mathbb{F})$. We have

$$
E_{ii}\varphi(A)E_{jj} = \varphi(E_{ii}AE_{jj}) = \varphi(a_{ij}E_{ij}) = f(a_{ij})E_{ij},
$$

so the ijth entry of $\varphi(A)$ is $f(a_{ij})$ and

$$
\varphi(A) = \begin{bmatrix}
\hat{f}(A) & * \\
* & *
\end{bmatrix}.
$$

Further, the matrix

$$
\varphi(E_{11} + E_{22}) = \begin{bmatrix}
E_{11} + E_{22} & * \\
* & *
\end{bmatrix}
$$

has rank 2; thus we may assume

$$
\varphi(E_{11} + E_{22}) = \begin{bmatrix}
E_{11} + E_{22} & * \\
0 & 0
\end{bmatrix}.
$$

Let $A = [a_{ij}]_{i,j=1}^n$ be a matrix in $\mathcal{M}_n(\mathbb{F})$, such that $a_{ij} = 0$ if $i \geq 3$. Then

$$
\varphi(A) = \varphi((E_{11} + E_{22})A) = \begin{bmatrix}
E_{11} + E_{22} & * \\
0 & 0
\end{bmatrix} \begin{bmatrix}
\hat{f}(A) & * \\
* & *
\end{bmatrix} = \begin{bmatrix}
\hat{f}(A) & * \\
0 & 0
\end{bmatrix}.
$$

Let us now prove that f is additive. For $a, b \in \mathbb{F}$ we have

$$
f(a + b)E_{11} = \varphi((a + b)E_{11}) = \varphi((aE_{11} + bE_{12})(E_{11} + E_{21}))
$$

$$
= \begin{bmatrix}
f(a)E_{11} + f(b)E_{12} & * \\
0 & 0
\end{bmatrix} \begin{bmatrix}
E_{11} + E_{21} & * \\
0 & 0
\end{bmatrix}
$$

$$
= \begin{bmatrix}
(f(a) + f(b))E_{11} & * \\
0 & 0
\end{bmatrix},
$$

so $f(a + b) = f(a) + f(b)$, and thus \hat{f} is multiplicative. □

The second possibility is that only almost full rank matrices map to non-zero matrices. For a matrix $A \in \mathcal{M}_n(\mathbb{F})$ we denote by Cof(A) the so called cofactor matrix of all $(n-1)$-by-$(n-1)$ minors of the matrix A.

Proposition 5. Assume that $n \geq 3$ and $m \geq n$. Let $\varphi : \mathcal{M}_n(\mathbb{F}) \rightarrow \mathcal{M}_m(\mathbb{F})$ be a semigroup homomorphism, which is non-degenerate and sends 0 to 0 and identity to identity. Suppose that rank $A < n - 1$ implies $\varphi(A) = 0$ and that rank $A = n - 1$ implies rank $\varphi(A) = 1$. Then

$$
\varphi(A) = S \begin{bmatrix}
\hat{f}(\text{Cof}(A)) & * \\
* & *
\end{bmatrix} S^{-1},
$$

where $f : \mathbb{F} \rightarrow \mathbb{F}$ is a homomorphism of the multiplicative semigroup (\mathbb{F}, \cdot) and $S \in \mathcal{M}_m(\mathbb{F})$ is an invertible matrix.

This proposition generalizes Theorem 2 in [2] to the case $m > n$ and the methods are similar. Here the obtained homomorphism f is not necessarily additive, as the following example shows.
Example. A non-degenerate semigroup homomorphism \(\varphi : \mathcal{M}_3(\mathbb{F}) \to \mathcal{M}_6(\mathbb{F}) \) defined by \(\varphi(A) = \text{Sym}^2(\text{Cof}(A)) \) maps rank 1 matrices to 0, rank 2 matrices to rank 1 matrices and is of the form
\[
\varphi(A) = \begin{bmatrix}
\hat{f}(\text{Cof}(A)) & * \\
* & *
\end{bmatrix},
\]
where \(f(x) = x^2 \).

Proof (of Proposition 5). Denote by \(E_{ij} \) the matrix which has 1 in the \(i \)th row and the \(j \)th column, and 0 elsewhere. Introduce \(P_{ii} = I - E_{ii} \in \mathcal{M}_n(\mathbb{F}) \), and let \(I_i \) be the identity matrix in \(\mathcal{M}_i(\mathbb{F}) \). Further, let \(N_i \) be the matrix in \(\mathcal{M}_i(\mathbb{F}) \), defined by \(N_i = E_{12} + \cdots + E_{i-1,i} \). Denote \(P_{ij} = I_{i-1} \oplus N^{T}_{i-j+1} \oplus I_{n-j} \) if \(i < j \), and \(P_{ij} = I_{j-1} \oplus N_{i-j+1} \oplus I_{n-i} \) if \(i > j \).

The matrices \(P_{11}, P_{22}, \ldots, P_{nn} \in \mathcal{M}_n(\mathbb{F}) \) are orthogonal idempotents of rank \(n - 1 \), so \(\varphi(E_{11}), \varphi(E_{22}), \ldots, \varphi(E_{nn}) \in \mathcal{M}_m(\mathbb{F}) \) are orthogonal idempotents of rank 1. So they are simultaneously similar to \(E_{11}, E_{22}, \ldots, E_{nn} \in \mathcal{M}_m(\mathbb{F}) \). Without loss of generality we may thus assume that
\[
\varphi(P_{ii}) = E_{ii}.
\]

Observe that \(P_{ij} = P_{ik}P_{kj} \) and \(P_{ik}P_{lj} \) has rank less than \(n - 1 \) if \(k \neq l \). We now have
\[
\delta_{ki}\delta_{jl}\varphi(P_{ij}) = \varphi(\delta_{ki}\delta_{jl}P_{ij}) = \varphi(P_{kk}P_{ij}P_{ll}) = E_{kk}\varphi(P_{ij})E_{ll},
\]
so
\[
\varphi(P_{ij}) = \begin{bmatrix}
t_{ij}E_{ij} & 0 \\
0 & *
\end{bmatrix}.
\]
The matrix \(\varphi(P_{ij}) \) has rank 1, so \(t_{ij} \neq 0 \) and \(* = 0 \). This implies
\[
\varphi(P_{ij}) = t_{ij}E_{ij}.
\]
We may now apply a simultaneous similarity with a diagonal matrix
\[
\text{diag}(1, t_{12}, \ldots, t_{1n}, 1, \ldots, 1)
\]
to obtain \(\varphi(P_{1j}) = E_{1j} \). Now
\[
E_{1j} = \varphi(P_{1j}) = \varphi(P_{1i}P_{ij}) = E_{1i}t_{ij}E_{ij} = t_{ij}E_{1j},
\]
so \(t_{ij} = 1 \) for all \(i, j \) and
\[
\varphi(P_{ij}) = E_{ij}.
\]
For a matrix \(A \in \mathcal{M}_n(\mathbb{F}) \) we denote by \(A_{ij} \in \mathcal{M}_{n-1}(\mathbb{F}) \) the matrix \(A \) with \(i \)th row and \(j \)th column deleted. Let \(A \in \mathcal{M}_{n-1}(\mathbb{F}) \) be arbitrary matrix and \(A' = 0_1 \oplus A \in \mathcal{M}_n(\mathbb{F}) \). Then
\[
\varphi(A') = \varphi(P_{11}A'P_{11}) = E_{11}\varphi(A')E_{11},
\]
so the only non-zero entry of \(\varphi(A') \) is at the \((1, 1) \) position. Thus we have a multiplicative mapping \(\varphi' : \mathcal{M}_{n-1}(\mathbb{F}) \to \mathbb{F} \). So there exists a multiplicative mapping \(f : \mathbb{F} \to \mathbb{F} \) such that
\[
\varphi'(A) = f(\det A)
\]
and
\[
\varphi(A') = f(\det A)E_{11} = f(\det A'_{11})E_{11}.
\]
Now let \(B \in \mathcal{M}_n(\mathbb{F}) \). We have
\[
E_{ii}\varphi(B)E_{jj} = \varphi(P_{ii}BP_{jj}) = \varphi(P_{ii}P_{1i}BP_{j1}P_{j1}) = E_{ii}\varphi(P_{ii}BP_{j1})E_{jj}.
\]
The matrix \(P_{ii}BP_{j1} \) has the form of \(A' \), so \(\varphi(P_{ii}BP_{j1}) = \hat{f}(\det B_{ij})E_{11} \) and
\[
E_{ii}\varphi(B)E_{jj} = E_{ii}\hat{f}(\det B_{ij})E_{11}E_{1j} = E_{ii}\hat{f}(\det B_{ij})E_{jj}.
\]
Thus the \(ij \)th entry of \(\varphi(A) \) is \(\hat{f}(\det A_{ij}) \) and
\[
\varphi(A) = \begin{bmatrix}
\hat{f}(\text{Cof}(A)) & * \\
* & *
\end{bmatrix}.
\]
This ends the proof. \(\square \)

4. Case \(m = n + 1 \)

We will now prove our main theorem. We will assume that \(m = n + 1 \) and show that in this case either of the two possibilities of the previous section gives us reducibility.

Theorem 6. Assume that \(n \geq 3 \). Every non-degenerate semigroup homomorphism \(\varphi : \mathcal{M}_n(\mathbb{F}) \to \mathcal{M}_{n+1}(\mathbb{F}) \) is reducible.

Proof. Suppose \(\varphi : \mathcal{M}_n(\mathbb{F}) \to \mathcal{M}_{n+1}(\mathbb{F}) \) is an irreducible non-degenerate semigroup homomorphism. An irreducible semigroup homomorphism maps 0 to 0, \(I \) to \(I \) and invertible matrices to invertible matrices. By Proposition 3 we have two possibilities:

(a) rank \(A = 1 \) implies rank \(\varphi(A) = 1 \) and rank \(A = 2 \) implies rank \(\varphi(A) = 2 \) or
(b) rank \(A < n - 1 \) implies \(\varphi(A) = 0 \) and rank \(A = n - 1 \) implies rank \(\varphi(A) = 1 \).

In case (a)
\[
\varphi(A) = S \begin{bmatrix}
\hat{f}(A) & * \\
* & *
\end{bmatrix} S^{-1},
\]
where \(f : \mathbb{F} \to \mathbb{F} \) is a field homomorphism and \(S \in \mathcal{M}_{n+1}(\mathbb{F}) \) is an invertible matrix. So for arbitrary \(A \in \mathcal{M}_n(\mathbb{F}) \) we now have
\[
\varphi(A) = \begin{bmatrix}
\hat{f}(A) & \varphi_{12}(A) \\
\varphi_{21}(A) & \varphi_{22}(A)
\end{bmatrix}.
\]
If also \(B \in \mathcal{M}_n(\mathbb{F}) \), then
\[
\varphi(AB) = \begin{bmatrix}
\hat{f}(AB) & \varphi_{12}(AB) \\
\varphi_{21}(AB) & \varphi_{22}(AB)
\end{bmatrix} = \begin{bmatrix}
\hat{f}(A) & \varphi_{12}(A) \\
\varphi_{21}(A) & \varphi_{22}(A)
\end{bmatrix} \begin{bmatrix}
\hat{f}(B) & \varphi_{12}(B) \\
\varphi_{21}(B) & \varphi_{22}(B)
\end{bmatrix}
\]
\[
= \begin{bmatrix}
\hat{f}(A)\hat{f}(B) + \varphi_{12}(A)\varphi_{21}(B) & * \\
* & *
\end{bmatrix}.
\]
So \(\varphi_{12}(A)\varphi_{21}(B) = 0 \) for all \(A, B \in \mathcal{M}_n(\mathbb{F}) \). If \(\varphi_{12}(A) \neq 0 \) for some \(A \in \mathcal{M}_n(\mathbb{F}) \), we have a non-zero linear functional, which is zero on the image of \(\varphi \). So \(\varphi \) is reducible (see [8, p. 27]) If \(\varphi_{12}(A) = 0 \) for every \(A \in \mathcal{M}_n(\mathbb{F}) \), \(\varphi \) is reducible by the same argument.
In case (b)

\[\varphi(A) = S \begin{bmatrix} \hat{f}(\text{Cof}(A)) & * \\ * & * \end{bmatrix} S^{-1}, \]

where \(f : \mathbb{F} \to \mathbb{F} \) is a semigroup homomorphism and \(S \in \mathcal{M}_{n+1}(\mathbb{F}) \) is an invertible matrix.

We consider the images under \(\varphi \) of the permutation matrices. Denote by \(R_i \) the transposition matrix \(I_i - 1 \oplus (E_{12} + E_{21}) \oplus I_{n-i-1} \) for \(i = 1, 2, \ldots, n-1 \). If \(j < i \) or \(j > i + 1 \), we have \(P_{jj}R_i = P_{jj}R_iP_{jj} \), so \(E_{jj}\varphi(R_i) = E_{jj}\varphi(R_i)E_{jj} \), thus the only non-zero element in the \(j \)th row of \(\varphi(R_i) \) is in the \(j \)th position. The same holds for the \(j \)th column. On the other hand, \(P_{ii}R_i = P_{ii(i+1)} \), so \(E_{ii}\varphi(R_i) = E_{ii(i+1)} \), thus the only non-zero element in the \(i \)th row of \(\varphi(R_i) \) is in the \((i+1)\)st position and vice versa. The same holds for the \(i \)th and the \((i+1)\)st column.

We have thus seen that

\[\varphi(R_i) = S \begin{bmatrix} \hat{f}(\text{Cof}(R_i)) & 0 \\ 0 & * \end{bmatrix} S^{-1}. \]

The entry in the last row and column must be \(\pm 1 \), since \(R_i \) is an involution. Since the matrices \(R_i \) generate the whole group of permutation matrices, we have for every permutation matrix \(P \)

\[\varphi(P) = S \begin{bmatrix} \hat{f}(\text{Cof}(P)) & 0 \\ 0 & \pm 1 \end{bmatrix} S^{-1}. \]

Now let \(A = A' \oplus I_{n-2} \), where

\[A' = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathcal{M}_2(\mathbb{F}). \]

So

\[\varphi(A) = S \begin{bmatrix} \hat{f} \left(\begin{bmatrix} d & c \\ b & a \end{bmatrix} \right) & f(ad - bc)I_{n-2} & * \\ * & * \end{bmatrix} S^{-1}. \]

Multiplying \(A \) by \(P_{33}, \ldots, P_{nn} \) on the left or on the right side we obtain

\[\varphi(A)_{n+1,i} = 0 \quad \text{and} \quad \varphi(A)_{i,n+1} = 0 \]

for \(i = 3, \ldots, n \). Thus

\[\varphi(A) = S \begin{bmatrix} \hat{f} \left(\begin{bmatrix} d & c \\ b & a \end{bmatrix} \right) & 0 & * \\ 0 & f(ad - bc)I_{n-2} & 0 \end{bmatrix} S^{-1}. \]

Let \(C_{1,2,(n+1)} \) be a compression to the first, second and last rows and columns of a matrix. Define

\[\psi(A') = C_{1,2,(n+1)}(S^{-1}\varphi(A' \oplus I_{n-2})S). \]

It is obvious that \(\psi \) is multiplicative and we have just seen that

\[\psi \left(\begin{bmatrix} a & b \\ c & d \end{bmatrix} \right) = \hat{f} \left(\begin{bmatrix} d & c \\ b & a \end{bmatrix} \right) \begin{bmatrix} 0 & * \\ * & * \end{bmatrix}. \]

By Theorem 1 in [3] we have two possibilities:

(i)

\[\psi \left(\begin{bmatrix} a & b \\ c & d \end{bmatrix} \right) = \hat{f} \left(\begin{bmatrix} d & c \\ b & a \end{bmatrix} \right) \begin{bmatrix} 0 & * \\ * & * \end{bmatrix}. \]
and f is additive. In this case we have

$$
\varphi(A) = S \left[\hat{f} \left(\begin{bmatrix} d & c \\ b & a \end{bmatrix} \right) \begin{bmatrix} 0 & 0 \\ f(ad - bc)I_{n-2} & 0 \end{bmatrix} \right] S^{-1} = S \left[\hat{f}(\text{Cof}(A)) \begin{bmatrix} 0 & 0 \\ * & \end{bmatrix} \right] S^{-1}
$$

for $A = A' \oplus I_{n-2}$. The same holds for permutation matrices. Since matrices of the form $A = A' \oplus I_{n-2}$ and permutation matrices generate the complete $\mathcal{M}_n(F)$, we obtain

$$
\varphi(A) = S \left[\hat{f}(\text{Cof}(A)) \begin{bmatrix} 0 & 0 \\ * & \end{bmatrix} \right] S^{-1}
$$

for all $A \in \mathcal{M}_n(F)$, and consequently φ is reducible.

(ii) $\psi\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix} \right) = \hat{g} \left(\begin{bmatrix} d^2 & c^2 & dc \\ b^2 & a^2 & ba \\ 2db & 2ca & da + cb \end{bmatrix} \right)$, where $f(x) = g(x^2)$ and g is additive. In this case we have

$$
\varphi(A) = S \hat{g} \left[\begin{bmatrix} d^2 & c^2 & 0 & dc \\ b^2 & a^2 & 0 & ba \\ 0 & 0 & (ad - bc)^2I_{n-2} & 0 \\ 2db & 2ca & 0 & da + cb \end{bmatrix} \right] S^{-1}
$$

for $A = A' \oplus I_{n-2}$. Now let

$$
A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \oplus I_{n-3}
$$

and $B = R_2AR_2$, so

$$
B = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \oplus I_{n-3}.
$$

We have

$$
AB = BA = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \oplus I_{n-3},
$$

but on the other hand

$$
\varphi(A) = S \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & I_{n-3} & 0 \\ 2 & 0 & 0 & 0 & 1 \end{bmatrix} S^{-1},
$$

$$
\varphi(B) = S \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & I_{n-3} & 0 \\ 0 & 0 & 0 & 0 & \pm 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & I_{n-3} & 0 \end{bmatrix} \pm 1.
$$
\[\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & I_{n-3} & 0 \\ 0 & 0 & 0 & 0 & \pm 1 \end{bmatrix} S^{-1} = S \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & \pm 1 \\ 0 & 0 & 0 & I_{n-3} & 0 \\ \pm 2 & 0 & 0 & 0 & 1 \end{bmatrix} S^{-1}, \]

so

\[
\varphi(A)\varphi(B) = S \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & \pm 1 \\ 0 & 0 & 0 & I_{n-3} & 0 \\ 2 & 0 & 0 & 0 & 1 \end{bmatrix} S^{-1}
\]

and

\[
\varphi(B)\varphi(A) = S \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & \pm 1 \\ 2 & 0 & 0 & 0 & 1 \end{bmatrix} S^{-1}.
\]

This is a contradiction, so that the possibility (ii) cannot occur. \(\square\)

Remark 1. Case (a) in the proof is general: If \(n \geq 3, m > n\) and \(\varphi : \mathcal{M}_n(\mathbb{F}) \to \mathcal{M}_m(\mathbb{F})\) is a non-degenerate semigroup homomorphism such that rank \(A = 1\) implies rank \(\varphi(A) = 1\) and rank \(A = 2\) implies rank \(\varphi(A) = 2\), then \(\varphi\) is reducible.

5. Case \(n = 3\) and \(m = 4, 5\)

We will now explore the case \(n = 3\) a little further.

Theorem 7. Assume that \(m = 4\) or \(m = 5\). Every non-degenerate semigroup homomorphism \(\varphi : \mathcal{M}_3(\mathbb{F}) \to \mathcal{M}_m(\mathbb{F})\) is reducible.

Proof. If \(m = 4\), this is a special case of Theorem 6, so let \(m = 5\). Suppose \(\varphi : \mathcal{M}_3(\mathbb{F}) \to \mathcal{M}_5(\mathbb{F})\) is an irreducible non-degenerate semigroup homomorphism.

Again we have two possibilities:

(a) rank \(A = 1\) implies rank \(\varphi(A) = 1\) and rank \(A = 2\) implies rank \(\varphi(A) = 2\) or

(b) rank \(A = 1\) implies \(\varphi(A) = 0\) and rank \(A = 2\) implies rank \(\varphi(A) = 1\).

In case (a) the same proof as in Theorem 6 works.

In case (b)

\[
\varphi(A) = S \begin{bmatrix} \hat{f}(\text{Cof}(A)) & * \\ * & * \end{bmatrix} S^{-1},
\]

where \(f : \mathbb{F} \to \mathbb{F}\) is a semigroup homomorphism and \(S \in \mathcal{M}_5(\mathbb{F})\) is an invertible matrix. Similarly as in Theorem 6 we prove, that if \(P\) is a permutation matrix, then...
\[\varphi(P) = S \begin{bmatrix} \hat{f}(\text{Cof}(P)) & 0 \\ 0 & * \end{bmatrix} S^{-1}, \] (1)

and if
\[A = \begin{bmatrix} a & b & 0 \\ c & d & 0 \\ 0 & 0 & 1 \end{bmatrix}, \]

then
\[\varphi(A) = S \begin{bmatrix} \hat{f} \left(\begin{bmatrix} d & c \\ b & a \end{bmatrix} \right) & 0 & * \\ 0 & f(ad - bc) & 0 \\ * & 0 & * \end{bmatrix} S^{-1}. \]

Let \(C_{1,2,4,5} \) be a compression to the first, second and fourth and fifth rows and columns of a matrix. Define \(\psi : M_2(\mathbb{F}) \rightarrow M_4(\mathbb{F}) \)
\[\psi(A') = C_{1,2,4,5}(S^{-1}\varphi(A' \oplus I_1)S). \]

It is obvious that \(\psi \) is multiplicative and we have just seen that
\[\psi \left(\begin{bmatrix} a & b \\ c & d \end{bmatrix} \right) = \begin{bmatrix} \hat{f} \left(\begin{bmatrix} d & c \\ b & a \end{bmatrix} \right) & * \\ * & * \end{bmatrix}. \]

The map \(\psi \) may be irreducible or reducible. If it is irreducible it has one of the forms (a) or (b) of Theorem 3 in [4]. If it is reducible, its image has an irreducible invariant subspace of dimension at least two, so this irreducible subspace is of dimension two or three. Thus we have four possibilities to explore:

(i)
\[\psi \left(\begin{bmatrix} a & b \\ c & d \end{bmatrix} \right) = \hat{g} \left(\begin{bmatrix} d^3 & c^3 & c^2d & cd^2 \\ b^3 & a^3 & a^2b & ab^2 \\ 3b^2d & 3a^2c & a^2d + 2abc & 2abd + b^2c \\ 3bd^2 & 3ac^2 & 2acd + bc^2 & ad^2 + 2bcd \end{bmatrix} \right), \]

where \(f(x) = g(x^2) \) and \(g \) is additive. In this case we have
\[\varphi(A) = S\hat{g} \begin{bmatrix} d^3 & c^3 & c^2d & cd^2 \\ b^3 & a^3 & a^2b & ab^2 \\ 0 & 0 & (ad - bc)^3 & 0 \\ 3b^2d & 3a^2c & a^2d + 2abc & 2abd + b^2c \\ 3bd^2 & 3ac^2 & 2acd + bc^2 & ad^2 + 2bcd \end{bmatrix} S^{-1} \]

for \(A = A' \oplus I_1 \). Furthermore, we have
\[\varphi(R_1) = S \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix} S^{-1}, \]

and, using (1), it follows that
$\varphi(R_2) = S \begin{bmatrix} -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & e_1 & e_2 \\ 0 & 0 & 0 & e_3 & e_4 \end{bmatrix} S^{-1},$

where the lower-right corner $E = \begin{bmatrix} e_1 & e_2 \\ e_3 & e_4 \end{bmatrix}$ is an involution similar to $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ and the product $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} E$ is of order three or one. In particular, $e_1 + e_4 = 0$ and $e_2 + e_3 \neq 0$, so that $e_1 + e_2 + e_3 + e_4 \neq 0$. Now let

$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

and

$B = R_2 AR_2 = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$

The matrices A and B commute, but

$\varphi(A) = S \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ 3 & 0 & 0 & 1 & 2 \\ 3 & 0 & 0 & 0 & 1 \end{bmatrix} S^{-1},$

$\varphi(B) = S \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 1 & 1 \\ -3 & 0 & 0 \end{bmatrix} E,$

so the upper-left 3-by-3 corner of $S^{-1}\varphi(A)\varphi(B)S$ is equal to

$\begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} -3 & 0 & 0 \\ -3 & 0 & 0 \\ 1 & 2 \end{bmatrix} E = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix}$

and the upper-left 3-by-3 corner of $S^{-1}\varphi(B)\varphi(A)S$ is equal to

$\begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 3 & 0 & 0 \\ 3 & 0 & 0 \\ 3 \end{bmatrix} E = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ -1 + 3 & 1 & 0 \end{bmatrix}$

This is a contradiction, possibility (i) cannot occur.

(ii)

$\psi\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = \begin{bmatrix} g(d)h(d) & g(c)h(c) & g(c)h(d) & g(d)h(c) \\ g(b)h(b) & g(a)h(a) & g(a)h(b) & g(b)h(a) \\ g(b)h(d) & g(a)h(c) & g(a)h(d) & g(b)h(c) \\ g(d)h(b) & g(c)h(a) & g(c)h(b) & g(d)h(a) \end{bmatrix} S^{-1},$
where \(f(x) = g(x)h(x) \) and \(g, h \) are additive. In this case we have

\[
\varphi(A) = S \begin{bmatrix}
g(d)h(d) & g(c)h(c) & 0 & g(c)h(d) & g(d)h(c) \\
g(b)h(b) & g(a)h(a) & 0 & g(a)h(b) & g(b)h(a) \\
0 & 0 & g(ad - bc)h(ad - bc) & 0 & 0 \\
g(b)h(d) & g(a)h(c) & 0 & g(a)h(d) & g(b)h(c) \\
g(d)h(b) & g(c)h(a) & 0 & g(c)h(b) & g(d)h(a)
\end{bmatrix} S^{-1}
\]

for \(A = A' \oplus I_1 \). Again

\[
\varphi(R_2) = S \begin{bmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & e_1 & e_2 \\
0 & 0 & 0 & e_3 & e_4 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix} S^{-1},
\]

where lower-right corner \(E = \begin{bmatrix}
e_1 & e_2 \\
e_3 & e_4
\end{bmatrix} \) is involution similar to \(\begin{bmatrix}
0 & 1 \\
1 & 0
\end{bmatrix} \), and \(e_1 + e_2 + e_3 + e_4 \neq 0 \). For

\[
A = \begin{bmatrix}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\]

and

\[
B = R_2 A R_2 = \begin{bmatrix}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\]

we have

\[
\varphi(A) = S \begin{bmatrix}
1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 1
\end{bmatrix} S^{-1}
\]

and

\[
\varphi(B) = S \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{bmatrix} \begin{bmatrix}
0 & 0 \\
0 & 0 \\
1 & 1
\end{bmatrix} E
\]

so the upper-left 3-by-3 corner of \(S^{-1} \varphi(A) \varphi(B) S \) is equal to

\[
\begin{bmatrix}
1 & 0 & 0 \\
1 + e_1 + e_2 + e_3 + e_4 & 1 & 0 \\
1 & 0 & 1
\end{bmatrix}
\]

and the upper-left 3-by-3 corner of \(S^{-1} \varphi(B) \varphi(A) S \) is equal to

\[
\begin{bmatrix}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 + e_1 + e_2 + e_3 + e_4 & 0 & 1
\end{bmatrix}
\]
Since A and B commute, this is a contradiction, possibility (ii) cannot occur.

(iii) \[\psi \left(\begin{bmatrix} a & b \\ c & d \end{bmatrix} \right) = \begin{bmatrix} \hat{f} \left(\begin{bmatrix} d & c \\ b & a \end{bmatrix} \right) \\ \ast \end{bmatrix} \]

and f is additive. In this case we have

\[\varphi(A) = S \begin{bmatrix} \hat{f}(\text{Cof}(A)) & \ast \\ 0 & \ast \end{bmatrix} S^{-1} \]

for $A = A' \oplus I_1$. The same holds for permutation matrices. Since matrices of the form $A = A' \oplus I_1$ and permutation matrices generate complete $\mathcal{M}_3(F)$, we obtain

\[\varphi(A) = S \begin{bmatrix} \hat{f}(\text{Cof}(A)) & \ast \\ 0 & \ast \end{bmatrix} S^{-1}, \]

for all $A \in \mathcal{M}_3(F)$, and consequently φ is reducible.

(iv) \[\psi \left(\begin{bmatrix} a & b \\ c & d \end{bmatrix} \right) = \hat{g} \begin{bmatrix} d^2 & c^2 & dc & \ast \\ b^2 & a^2 & ba & \ast \\ 2db & 2ca & da + cb & \ast \\ 0 & 0 & 0 & \ast \end{bmatrix}, \]

where $f(x) = g(x^2)$ and g is additive. In this case we have

\[\varphi(A) = S\hat{g} \begin{bmatrix} d^2 & c^2 & 0 & dc & \ast \\ b^2 & a^2 & 0 & ba & \ast \\ 0 & 0 & (ad - bc)^2 & 0 & 0 \\ 2db & 2ca & 0 & da + cb & \ast \\ 0 & 0 & 0 & 0 & \ast \end{bmatrix} S^{-1} \]

for $A = A' \oplus I_1$. Now

\[\varphi(R_1) = S \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & a \\ 0 & 0 & 0 & 0 & \pm1 \end{bmatrix} S^{-1}. \]

If the last entry in the last row is equal to 1, then $a = 0$ and the lower-right 2-by-2 corner of every permutation matrix is equal to I_2, and consequently φ is reducible. So the last entry in the last row is equal to -1. We may now apply a simultaneous similarity with a matrix of the form $I + \alpha E_{45}$ to obtain $a = 0$ and without disturbing the first four columns. Further,

\[\varphi(R_2) = S \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & e_1 & e_2 & \ast \\ 0 & 0 & e_3 & e_4 & \ast \end{bmatrix} S^{-1}, \]

where the lower-right corner

\[E = \begin{bmatrix} e_1 & e_2 \\ e_3 & e_4 \end{bmatrix} \]
is an involution similar to $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ and the product $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} E$ is of order three or one. So either $E = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ or it has the form

$$E = \begin{bmatrix} -\frac{1}{2} & b \\ \frac{3}{4b} & \frac{1}{2} \end{bmatrix}$$

where $b \neq 0$. In the first case again φ is reducible, in the second case we may apply a simultaneous similarity with a diagonal matrix of the form $I_4 \oplus [\beta]$ to obtain $b = \frac{1}{2}$.

So

$$\varphi(R_2) = S \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -\frac{1}{2} & \frac{1}{2} \\ 0 & 0 & 0 & \frac{3}{2} & \frac{1}{2} \end{bmatrix} S^{-1}.$$

For

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

and

$$B = R_2AR_2 = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

we now have

$$\varphi(A) = S \begin{bmatrix} 1 & 0 & 0 & x \\ 1 & 1 & 0 & 1 & y \\ 0 & 0 & 1 & 0 \\ 2 & 0 & 0 & 1 & z \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} S^{-1}.$$

and

$$\varphi(B) = S \begin{bmatrix} 1 & 0 & 0 & \frac{3x}{2} & \frac{x}{2} \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & -\frac{1}{2} + \frac{3y}{2} & \frac{1}{2} + \frac{y}{2} \\ -1 & 0 & 0 & 1 - \frac{3y}{4} & -\frac{z}{4} \\ 3 & 0 & 0 & \frac{9z}{4} & 1 + \frac{3y}{4} \end{bmatrix} S^{-1}.$$

Since A and B commute, $\varphi(A)$ and $\varphi(B)$ must also commute. Thus we obtain $x = 0$, $y = \frac{1}{2}$ and $z = 0$. Now let

$$C = R_1R_2R_1AR_1R_2R_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}. $$
The matrices A and C commute, but
\[
\varphi(A) = S \begin{bmatrix}
1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & \frac{1}{3} \\
0 & 0 & 1 & 0 & 0 \\
2 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix} S^{-1}
\]
and
\[
\varphi(C) = S \begin{bmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & -1 & -\frac{1}{3} \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & -1 & 1 \\
0 & 0 & 0 & -3 & 0 & 1
\end{bmatrix} S^{-1}
\]
do not commute. Again we get a contradiction and this ends the proof. □

6. Case $m = 6$

In this concluding section we will give five examples of irreducible non-degenerate homomorphisms, which go to the dimension 6. We have seen in previous section that every non-degenerate homomorphism from dimension 3 to dimension 5 is reducible. But there exist an irreducible non-degenerate homomorphism from dimension 4 to dimension 6, and two different irreducible non-degenerate homomorphisms from dimension 3 to dimension 6. We also give two non-degenerate homomorphisms from dimension 2 to dimension 6. We define an equivalence relation R on the set of non-degenerate homomorphisms $\varphi : \mathcal{M}_n(\mathbb{F}) \to \mathcal{M}_m(\mathbb{F})$ as the transitive closure of the following relation S. Two non-degenerate homomorphisms $\varphi_1, \varphi_2 : \mathcal{M}_n(\mathbb{F}) \to \mathcal{M}_m(\mathbb{F})$ are S-related, if either

1. $\varphi_2(A) = \hat{f}(\varphi_1(A))$, where $f : \mathbb{F} \to \mathbb{F}$ is a field homomorphism, or
2. $\varphi_2(A) = S\varphi_1(A)S^{-1}$, where S is an invertible matrix, or
3. $\varphi_1(A) = \varphi_3(A) \otimes \varphi_4(A)$ and $\varphi_2(A) = \varphi_5(A) \otimes \varphi_4(A)$, where $\varphi_3, \varphi_5 : \mathcal{M}_n(\mathbb{F}) \to \mathcal{M}_k(\mathbb{F})$ are S-related as in (1) or (2), and $\varphi_4 : \mathcal{M}_n(\mathbb{F}) \to \mathcal{M}_{m/k}(\mathbb{F})$.

Example 1. There exist two R-unrelated irreducible non-degenerate semigroup homomorphisms $\varphi : \mathcal{M}_2(\mathbb{F}) \to \mathcal{M}_6(\mathbb{F})$:

(a) Symmetric power:
\[
\varphi(A) = \text{Sym}^5 A;
\]
(b) Tensor product:
\[
\varphi(A) = \hat{f}(A) \otimes (A \wedge A),
\]
where $f : \mathbb{F} \to \mathbb{F}$ is a field homomorphism and $f \neq id$.

Example 2. There exist two R-unrelated irreducible non-degenerate semigroup homomorphisms $\varphi : \mathcal{M}_3(\mathbb{F}) \to \mathcal{M}_6(\mathbb{F})$:

(a) Symmetric square:
\[
\varphi(A) = \text{Sym}^2 A;
\]
(b) Symmetric square of exterior power:
\[\varphi(A) = \text{Sym}^2(A \wedge A). \]

Example 3. There exists an irreducible non-degenerate semigroup homomorphism \(\varphi : \mathcal{M}_4(\mathbb{F}) \to \mathcal{M}_6(\mathbb{F}) \), the exterior power:
\[\varphi(A) = A \wedge A. \]

To prove that these homomorphisms are irreducible let \(A = \text{diag}(1, 2) \) in Example 1(a), \(A = \text{diag}(1, 2, 3) \) in Example 2, \(A = \text{diag}(1, 2, 3, 4) \) in Example 3, and \(A = \text{diag}(1, a) \) in Example 1(b), where \(a \in \mathbb{F} \) is such that \(f(a) \neq a \), \(f(a) \neq 1/a \) and \(f(a) \neq a^2 \). Then \(\varphi(A) \) is a diagonal matrix with six different diagonal entries. If \(\varphi \) was reducible, then the common invariant subspace would be standard. That is obviously not the case.

Acknowledgment

The author wishes to thank the referee for pointing out some relevant references and for other helpful suggestions.

References

[10] L.Q. Wang, Homomorphisms of \(n \times n \) matrix semigroups over fields into \(m \times m \) (\(m \leq 2 \) and \(n \neq 2 \) for \(m = 2 \)) matrix semigroups, J. Nat. Sci. Heilongjiang Univ. 9 (1) (1992) 1–5.