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Abstract

Duadic codes are a class of cyclic codes that generalize quadratic residue codes from prime to composite lengths. For every
prime power q , we characterize integers n such that there is a duadic code of length n over Fq2 with a Hermitian self-dual parity-
check extension. We derive asymptotic estimates for the number of such n as well as for the number of lengths for which duadic
codes exist.
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Duadic codes are a family of cyclic codes over fields that generalize quadratic residue codes to composite lengths.
For a general introduction, see [2,5] and [13]. It can be determined when an extended duadic code is self-dual for the
Euclidean scalar product [2]. In this work, we study for which n there exist duadic codes over Fq2 of length n the

extension of which by a suitable parity-check is self-dual for the Hermitian scalar product
∑n+1

i=1 xi yq
i .

First, we characterize the Hermitian self-orthogonal cyclic codes by their defining sets (Proposition 3.6), then the
duadic codes (Proposition 4.4). Next, we study under what conditions the extension by a parity-check of a duadic
code is Hermitian self-dual (Proposition 4.8). Finally, we derive by elementary means an arithmetic condition bearing
on the divisors of n (Theorem 5.7) for the previous situation. This condition was arrived at in [7] using representation
theory of groups. In Appendix, we derive asymptotic estimates for x large on Aq(x), the number of integers ≤ x that
are split by the multiplier µ−q , and on Dq(x), the number of possible lengths ≤ x of a duadic code. The proofs are
based on analytic number theory.

2. Preliminaries

We assume the reader is familiar with the theory of cyclic codes (see, e.g., [1,2]). Let q be a power of a prime
p and let Fq denote the Galois field with q elements. Let n be a positive integer such that gcd(n, q) = 1. Let
Rn = Fq [x]/(xn

− 1). We view a cyclic code over Fq of length n as an ideal inRn .
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Let 0 < s < n be a non-negative integer. Let Cs = {s, sq, sq2, . . . , sqrs−1
}, where rs is the smallest positive

integer such that sqrs ≡ s(mod n). The coset Cs is called the q-cyclotomic coset of s modulo n. The subscript of
Cs is usually taken to be the smallest number in the set and is also taken as the coset representative. The distinct
q-cyclotomic cosets modulo n partition the set {0, 1, 2, . . . , n − 1}.

Let α be a primitive nth root of unity in some extension field of Fq . A set T ⊆ {0, 1, 2, . . . , n − 1} is called the
defining set (relative to α) of a cyclic code C whenever c(x) ∈ C if and only if c(αi ) = 0 for all i ∈ T . In this paper,
we assume implicitly that an nth root of unity has been fixed when talking of defining sets.

A ring element e such that e2
= e is called an idempotent. Since gcd(n, q) = 1, the ringRn is semi-simple. Thus,

by invoking the Wedderburn structure theorems, we can say that each cyclic code inRn contains a unique idempotent
element which generates the ideal. Alternatively, this fact has also been proven directly in [2, Theorem 4.3.2]. We call
this idempotent element the generating idempotent (or idempotent generator) of the cyclic code.

Let a be an integer such that gcd(a, n) = 1. We define the function µa , called a multiplier, on {0, 1, 2, . . . , n − 1}

by iµa ≡ ia (mod n). Clearly, µa gives a permutation of the coordinate positions of a cyclic code of length n. Note
that this is equivalent to the action of µa onRn by f (x)µa ≡ f (xa) (mod xn

− 1).
If C is a code of length n over Fq , we define a complement of C as a code Cc such that C + Cc

= Fn
q and

C ∩ Cc
= {0}. In general, a complement of a code is not unique. But it is easy to show that if C is cyclic, then Cc is

unique and that it is also cyclic (see, e.g., Exercise 243, [2]). In this case, we call Cc the cyclic complement of C .

3. Cyclic codes over Fq2

We now consider cyclic codes over the Galois field Fq2 , where q is a power of a prime p. In this case, we note that
Rn = Fq2 [x]/(xn

− 1).

3.1. Idempotents inRn

Consider the involution ¯ : z 7→ zq defined on Fq2 . We extend this map componentwise to Fn
q2 . For an element

a(x) = a0 + a1x + · · · + an−1xn−1 inRn , we set a(x) = aq
0 + aq

1 x + · · · + aq
n−1xn−1.

Let C be a code of length n over Fq2 . We define the conjugate of C to be the code C = {c | c ∈ C}. It can easily be
shown that if C is a cyclic code with generating idempotent e(x), then C is also cyclic and its generating idempotent
is e(x).

Suppose we list all the distinct q2-cyclotomic cosets modulo n in the following way:

C1, C2, . . . , Ck, D1, D2, . . . , Dl , E1, E2, . . . , El ,

such that

Ci = qCi for 1 ≤ i ≤ k and Ei = q Di for 1 ≤ i ≤ l.

By Corollary 4.3.15 of [2], an idempotent inRn has the form

e(x) =

k∑
j=1

a j

∑
i∈C j

x i
+

l∑
j=1

b j

∑
i∈D j

x i
+

l∑
j=1

c j

∑
i∈E j

x i . (1)

Thus,

e(x) = e(x)q

=

k∑
j=1

aq
j

∑
i∈C j

xqi
+

l∑
j=1

bq
j

∑
i∈D j

xqi
+

l∑
j=1

cq
j

∑
i∈E j

xqi

=

k∑
j=1

aq
j

∑
i∈C j

x i
+

l∑
j=1

bq
j

∑
i∈E j

x i
+

l∑
j=1

cq
j

∑
i∈D j

x i .
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Hence,

aq
j = a j 1 ≤ j ≤ k;

bq
j = c j 1 ≤ j ≤ l,

which implies

e(x) =

k∑
j=1

a j

∑
i∈C j

x i
+

l∑
j=1

b j

∑
i∈D j

x i
+

l∑
j=1

bq
j

∑
i∈D j

xqi . (2)

Thus,

e(x) =

k∑
j=1

aq
j

∑
i∈C j

x i
+

l∑
j=1

bq
j

∑
i∈D j

x i
+

l∑
j=1

bq2

j

∑
i∈D j

xqi

=

k∑
j=1

a j

∑
i∈C j

xqi
+

l∑
j=1

c j

∑
i∈E j

xqi
+

l∑
j=1

b j

∑
i∈D j

xqi

= e(x)µq .

This gives C = 〈e(x)〉 = 〈e(x)µq〉 = Cµq by Theorem 4.3.13 of [2].
The discussion above is summarized in the following proposition.

Proposition 3.1. Let C be a cyclic code over Fq2 with generating idempotent e(x). The following hold:

1. e(x) has the form given in (2).
2. C is cyclic with generating idempotent e(x).
3. e(x) = e(x)µq .
4. C = Cµq .

3.2. Euclidean and Hermitian duals

Let x = (x0, x1, . . . , xn−1) and y = (y0, y1, . . . , yn−1) be any vectors in Fn
q2 . Consider the involution ¯ : z 7→ zq

defined on Fq2 . The Hermitian scalar product of x and y is given by x · y =
∑n−1

i=0 xi yi . If C is a linear code over Fq2 ,
the Euclidean dual of C is denoted as C⊥E . The Hermitian dual of C is C⊥H = {u ∈ Fn

q2 | u · w = 0 for all w ∈ C}.

We say that a code C is Euclidean self-orthogonal if C ⊆ C⊥E , and that C is Euclidean self-dual if C = C⊥E .
Similarly, C is said to be Hermitian self-orthogonal if C ⊆ C⊥H , and C is Hermitian self-dual if C = C⊥H .

Let f (x) = f0 + f1x + · · · + fr xr
∈ Fq2 [x]. The reciprocal polynomial of f (x) is the polynomial f ∗(x) =

xr f (x−1) = xr ( f (x)µ−1) = fr + fr−1x + · · · + f0xr .

Lemma 3.2. Let a = (a0, a1, . . . , an−1), b = (b0, b1, . . . , bn−1) be vectors in Fn
q2 with associated polynomials a(x)

and b(x). Then a is Hermitian orthogonal (similarly Euclidean orthogonal) to b and all its cyclic shifts if and only if
a(x)b∗(x) = 0 (similarly a(x)b∗(x) = 0) inRn .

Proof. See Lemma 4.4.8 of [2] for the Euclidean case. The proof for the case of Hermitian orthogonality follows a
similar argument and is omitted. �

Recall that a vector a = (a0, a1, . . . , an−1) of Fn
q2 is called an even-like vector if

∑n−1
i=0 ai = 0. A code C is called

an even-like code if all its codewords are even-like; otherwise it is called odd-like. The following lemma appears as
Exercise 238 of [2] and its proof is left to the reader.

Lemma 3.3. Let C be a cyclic code over Fq2 with defining set T and generator polynomial g(x). Let Ce be the
subcode of C consisting of all the even-like vectors in C. Then:
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1. Ce is cyclic and has defining set T ∪ {0}.
2. C = Ce if and only if 0 ∈ T if and only if g(1) = 0.
3. If C 6= Ce, then the generator polynomial of Ce is (x − 1)g(x).

The following propositions generalize some results on Euclidean duals of cyclic codes over an arbitrary finite field
to Hermitian duals of cyclic codes over Fq2 .

Proposition 3.4. Let C be a cyclic code of length n over Fq2 with generating idempotent e(x) and defining set T . The
following hold:
1. C⊥H is a cyclic code and C⊥H = Ccµ−q .
2. C⊥H has generating idempotent 1 − e(x)µ−q .
3. If N = {0, 1, 2, . . . , n − 1}, then N \ (−q)T mod n is the defining set for C⊥H .
4. Precisely one of C and C⊥H is odd-like and the other is even-like.

Proof. Let a = (a0, a1, . . . , an−1) ∈ C . Denote by a(i) the i th cyclic shift of a. By assumption a(i)
∈ C for all i .

Let b = (b0, b1, . . . , bn−1) ∈ C⊥H . For i = 0, 1, . . . , n − 1, we have b(i) · a = b · an−i = 0. Thus C⊥H is cyclic.
Note that C⊥H = C⊥E and C⊥E

= C
c
µ−1 (Theorem 4.4.9 of [2]). It can easily be shown that C

c
= Cc and so using

Proposition 3.1 we have C
c

= Ccµq . Hence C⊥H = C
c
µ−1 = Ccµqµ−1 = Ccµ−q , proving part 1.

Using Theorem 4.4.6 and Theorem 4.3.13 of [2], the generating idempotent for C⊥H = Ccµ−q is (1−e(x))µ−q =

1 − e(x)µ−q . Thus part 2 holds.
The defining set for Cc is N \ T (Theorem 4.4.6 of [2]) and hence applying Corollary 4.4.5 of [2] the defining

set for C⊥H is (−q)−1(N \ T ) = N \ (−q)−1T mod n. Since µ2
−q = µ(−q)2 = µq2 fixes each q2-cyclotomic

coset and (−q)−1T is a union of q2-cyclotomic cosets (using Theorem 4.4.2 of [2]), it follows that (−q)−1T =

(−q)2(−q)−1T = (−q)T mod n. Thus the defining set for C⊥H is N \ (−q)T mod n. This proves part 3.
Lastly, since exactly one of T and N \ (−q)T contains 0, part 4 follows from part 3 and Lemma 3.3. �

The following lemma is from Exercise 239 of [2].

Lemma 3.5. Let Ci be a cyclic code of length n over Fq2 with defining sets Ti for i = 1, 2. Then:
1. C1 ∩ C2 has defining set T1 ∪ T2.
2. C1 + C2 has defining set T1 ∩ T2.
3. C1 ⊆ C2 ⇐⇒ T2 ⊆ T1.

Proposition 3.6. Let C be a Hermitian self-orthogonal cyclic code over Fq2 of length n with defining set T . Let
C1, C2, . . . , Ck, D1, D2, . . . , Dl , E1, E2, . . . , El be all the distinct q2-cyclotomic cosets modulo n partitioned such
that Ci = Ciµ−q for 1 ≤ i ≤ k and Di = Eiµ−q for 1 ≤ i ≤ l. Then the following hold:
1. Ci ⊆ T for 1 ≤ i ≤ k, and at least one of Di or Ei is contained in T for each 1 ≤ i ≤ l.
2. C is even-like.
3. C ∩ Cµ−q = {0}.

Conversely, if C is a cyclic code with defining set T that satisfies part 1, then C is a Hermitian self-orthogonal
code.

Proof. Let N = {0, 1, 2, . . . , n − 1}. By Proposition 3.4, T ⊥
= N \ (−q)T mod n is the defining set for C⊥H .

By assumption, C ⊆ C⊥H and so N \ (−q)T ⊆ T by Lemma 3.5. If Ci 6⊆ T for some i , then Ciµ−q 6⊆ (−q)T .
Since Ci = Ciµ−q , it follows that Ci ⊆ N \ (−q)T ⊆ T , a contradiction. Thus Ci ⊆ T for all i . If Di 6⊆ T , then
Ei = Diµ−q 6⊆ (−q)T mod n. Thus Ei ⊆ N \ (−q)T ⊆ T . Hence part 1 holds.

To prove part 2, note that {0} = Ci for some i . Hence 0 ∈ T by part 1. By Lemma 3.3, C is even-like.
As noted in the proof of Proposition 3.4, (−q)−1T = (−q)T mod n. Using Corollary 4.4.5 of [2], Cµ−q has

defining set (−q)−1T = (−q)T . SinceN \ (−q)T ⊆ T , it follows that T ∪ (−q)T = N . By Lemma 3.5, T ∪ (−q)T
is the defining set for C ∩ Cµ−q . Thus C ∩ Cµ−q = {0}, which proves part 3.

For the converse, assume T satisfies part 1. We will show that T ⊥
⊆ T which will imply that C is Hermitian

self-orthogonal. By Proposition 3.4, T ⊥
= N \ (−q)T mod n. Note that Ci ⊆ T H⇒ Ci = Ciµ−q ⊆ (−q)T H⇒

Ci 6⊆ T ⊥. Hence T ⊥ is a union of some Ei ’s and Di ’s. If Di ⊆ T ⊥
= N \ (−q)T , then Di 6⊆ (−q)T mod n,

implying that (−q)Di 6⊆ T . Since (−q)Di = Ei , it follows that Ei 6⊆ T . By part 1, Di ⊆ T . By a similar argument,
it can be shown that if Ei ⊆ T ⊥, then Ei ⊆ T . �
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4. Duadic codes

Let n be an odd positive integer. We let j(x) =
1
n (1 + x + x2

+ · · · + xn−1), the generating idempotent for the
repetition code of length n over Fq .

We first define duadic codes over arbitrary finite fields. Then we proceed to examine duadic codes over finite fields
of square order. The goal of this section is to present some results concerning Hermitian orthogonality of duadic codes
over such finite fields.

4.1. Definitions and basic properties

Definition 4.1. Let e1(x) and e2(x) be a pair of even-like idempotents and let C1 = 〈e1(x)〉 and C2 = 〈e2(x)〉. The
codes C1 and C2 form a pair of even-like duadic codes if the following properties are satisfied:

(a) the idempotents satisfy e1(x) + e2(x) = 1 − j(x),
(b) there is a multiplier µa such that C1µa = C2 and C2µa = C1.

With the pair of even-like codes C1 and C2, we associate a pair of odd-like duadic codes D1 = 〈1 − e2(x)〉 and
D2 = 〈1 − e1(x)〉. We say that the multiplier µa gives a splitting for the even-like duadic codes or for the odd-like
duadic codes.

Theorem 4.2 ([2]). Let C1 and C2 be cyclic codes over Fq with defining sets T1 = {0} ∪ S1 and T2 = {0} ∪ S2,
respectively, where 0 6∈ S1 and 0 6∈ S2. Then C1 and C2 form a pair of even-like duadic codes if and only if the
following conditions are satisfied:

(a) S1 and S2 satisfy S1 ∪ S2 = {1, 2, . . . , n − 1} and S1 ∩ S2 = ∅,
(b) there is a multiplier µb such that S1µb = S2 and S2µb = S1.

If the conditions in the preceding theorem are satisfied, we say that S1 and S2 give a splitting of n by µb over Fq .
This gives us another way of describing duadic codes. Note that for a fixed pair of duadic codes over Fq of length n,
we can use the same multiplier for the splitting in Definition 4.1 and the splitting of n in Theorem 4.2.

Theorem 4.3 ([2]). Duadic codes of length n over Fq exist if and only if q is a square mod n.

4.2. Hermitian orthogonality of duadic codes over Fq2

From this point onwards, we consider codes over the Galois field Fq2 , where q is a power of some prime p. Again
we assume that n is an odd positive integer and gcd(n, q) = 1. Thus duadic codes of length n over Fq2 always exist
by Theorem 4.3. The following theorem is the Hermitian analogue of Theorem 6.4.1 of [2], where the Euclidean
self-orthogonality of duadic codes over Fq is considered.

Proposition 4.4. Let C be any [n, n−1
2 ] cyclic code of length n over Fq2 . Then C is Hermitian self-orthogonal if and

only if C is an even-like duadic code whose splitting is given by µ−q .

Proof. (⇐) Suppose C = C1 is an even-like duadic code whose splitting is given by µ−q . Let e(x) be the generating
idempotent for C . By Theorem 6.1.3(vi) of [2], C = C1 ⊆ D1 = 〈1 − e(x)µ−q〉. By Proposition 3.4, the generating
idempotent for C⊥H is also 1 − e(x)µ−q . Thus D1 = C⊥H and so C is Hermitian self-orthogonal.

(⇒) Let C = C1 be a Hermitian self-orthogonal cyclic code. Let e1(x) be the generating idempotent for C1 and
T1 its defining set. Since C1 is Hermitian self-orthogonal and j(x) is not orthogonal to itself, j(x) 6∈ C1. Hence by
Lemma 6.1.2(iii) of [2], C1 is even-like. Let e2(x) = e1(x)µ−q and let C2 = 〈e2(x)〉. By Theorem 4.3.13 of [2],
C2 = C1µ−q .

Let (a0, a1, . . . , an−1) ∈ C1. Since C1 is even-like, it follows that
∑n−1

i=0 ai = 0. Thus (1, 1, . . . , 1) ·

(a0, a1, . . . , an−1) = (1, 1, . . . , 1) · (aq
0 , aq

1 , . . . , aq
n−1) =

∑n−1
i=0 aq

i =

(∑n−1
i=0 ai

)q
= 0 which implies that j(x) ∈

C⊥H
1 . Since C⊥H

1 has dimension n+1
2 and C1 ⊆ C⊥H

1 , we have C⊥H
1 = C1 + 〈 j(x)〉. Using Theorem 4.3.7 of [2] and

Lemma 6.1.2(i) of [2], C⊥H
1 has generating idempotent e1(x) + j(x). By Proposition 3.4, the generating idempotent
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for C⊥H
1 is 1−e1(x)µ−q . By the uniqueness of the idempotent generator, we must have 1−e1(x)µ−q = e1(x)+ j(x)

which implies 1 − j(x) = e1(x) + e1(x)µ−q = e1(x) + e2(x). Clearly e1(x) = e2(x)(µ−q)−1
= e2(x)(µ−q).

Therefore C1 and C2 form a pair of even-like codes whose splitting is given by µ−q . �

Lemma 4.5. Let C be a cyclic code. Then (Cµa)⊥H = C⊥H µa .

Proof. Use Proposition 3.4 above and Theorem 4.3.13 of [2] to show that (Cµa)⊥H and C⊥H µa have the same
idempotent generator. �

Proposition 4.6. Suppose that C1 and C2 are a pair of even-like duadic codes over Fq2 , having D1 and D2 as their
associated odd-like duadic codes. Then the following are equivalent.

1. C⊥H
1 = D1.

2. C⊥H
2 = D2.

3. C1µ−q = C2.
4. C2µ−q = C1.

Proof. From the definition of duadic codes and Theorem 6.1.3(vii) of [2], we obtain C1µa = C2, C2µa = C1,
D1µa = D2 and D2µa = D1 for some a. Hence by Lemma 4.5, if part 1 holds, then

C⊥H
2 = (C1µa)⊥H = C⊥H

1 µa = D1µa = D2

and if part 2 holds, then

C⊥H
1 = (C2µa)⊥H = C⊥H

2 µa = D2µa = D1.

Hence parts 1 and 2 are equivalent.
Part 3 is equivalent to part 4 since (µ−q)−1

= µ−q .
If part 1 holds, then by Theorem 6.1.3(vi) of [2], C1 is Hermitian self-orthogonal. Hence by Proposition 4.4, part 3

holds.
If part 3 holds, then µ−q gives a splitting for C1 and C2. Let ei (x) be the generating idempotent for Ci . By

Theorem 4.3.13 of [2], e1(x)µ−q = e2(x). Hence by Proposition 3.4, the generating idempotent for C⊥H
1 is

1 − e1(x)µ−q = 1 − e2(x). Thus, part 1 holds, completing the proof. �

Proposition 4.7. Suppose that C1 and C2 are a pair of even-like duadic codes over Fq2 , having D1 and D2 as their
associated odd-like duadic codes. Then the following are equivalent.

1. C⊥H
1 = D2.

2. C⊥H
2 = D1.

3. C1µ−q = C1.
4. C2µ−q = C2.

Proof. From the definition of duadic codes and Theorem 6.1.3(vii) of [2], we obtain C1µa = C2, C2µa = C1,
D1µa = D2 and D2µa = D1 for some a. Hence, by Lemma 4.5, if part 1 holds, then

C⊥H
2 = (C1µa)⊥H = C⊥H

1 µa = D2µa = D1

and if part 2 holds, then

C⊥H
1 = (C2µa)⊥H = C⊥H

2 µa = D1µa = D2.

Hence parts 1 and 2 are equivalent.
Let ei (x) be the generating idempotent for Ci . By Proposition 3.4, C⊥H

1 has generating idempotent 1 − e1(x)µ−q .
Thus C⊥H

1 = D2 if and only if 1−e1(x)µ−q = 1−e1(x) if and only if e1(x)µ−q = e1(x) if and only if C1µ−q = C1
by Theorem 4.3.13 of [2]. Hence parts 1 and 3 are equivalent. It can be shown by an analogous argument that parts 2
and 4 are equivalent. �
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4.3. Extensions of odd-like duadic codes

Odd-like duadic codes have parameters [n, n+1
2 ]. Hence it is interesting to consider extending such codes because

such extensions could possibly be Hermitian self-dual codes. The goal of this section is to give a way of extending
odd-like duadic codes and to give conditions under which these extensions are Hermitian self-dual. We also prove that
any cyclic code whose extended code is Hermitian self-dual must be an odd-like duadic code.

Let D be an odd-like duadic code. The code D can be obtained from its even-like subcode C by adding j(x)

to a basis of C (Theorem 6.1.3(ix), [2]). Hence it is natural to define an extension for which the all-one vector 1 is
Hermitian orthogonal to itself.

In Fq2 consider the equation

1 + γ q+1n = 0. (3)

Since q is a power of a prime p and n ∈ Fp ⊆ Fq , we have nq
= n, or nq+1

= n2 in Fq2 . So 1 + γ q+1n = 0 ⇐⇒

n + γ q+1n2
= 0 ⇐⇒ n + γ q+1nq+1

= 0 ⇐⇒ n + (γ n)q+1
= 0. Thus Eq. (3) is equivalent to

n + γ q+1
= 0. (4)

Note that {aq+1
| a ∈ Fq2} = Fq . Thus Eq. (4) will always have a solution in Fq2 , which implies that Eq. (3) is

solvable in Fq2 .
We are now ready to describe the extension. Let γ be a solution to (3). Let c = (c0, c1, . . . , cn−1) ∈ D. Define the

extended codeword c̃ = (c0, c1, . . . , cn−1, c∞), where

c∞ = −γ

n−1∑
i=0

ci .

Let D̃ = { c̃ | c ∈ D} be the extended code of D.

Proposition 4.8. Let D1 and D2 be a pair of odd-like duadic codes of length n over Fq2 . The following hold:

1. If µ−q gives the splitting for D1 and D2, then D̃1 and D̃2 are Hermitian self-dual.
2. If D1µ−q = D1, then D̃1 and D̃2 are Hermitian duals of each other.

Proof. Let C1 and C2 be the even-like duadic codes associated with D1 and D2.
Note that

j̃(x) j̃(x) =

(
1
n
,

1
n
, . . . ,

1
n
, −γ

)
·

(
1
n
,

1
n
, . . . ,

1
n
, −γ

)
=

(
1
n
,

1
n
, . . . ,

1
n
, −γ

)
·

(
1
n
,

1
n
, . . . ,

1
n
, (−γ )q

)
=

1
n

+ γ q+1

=
1
n
(1 + γ q+1n)

= 0,

by our choice of γ . This shows that j̃(x) is Hermitian orthogonal to itself. Since Ci is even-like, C̃i is obtained by

adding a zero coordinate to Ci and so j̃(x) is also orthogonal to C̃i .
We first prove part 1. Proposition 4.4 ensures that C1 is Hermitian self-orthogonal, and so C̃1 is Hermitian self-

orthogonal. Since j̃(x) is orthogonal to C̃1, the code spanned by 〈C̃1, j̃(x)〉 is Hermitian self-orthogonal. However, by

Theorem 6.1.3(ix) of [2], D1 = 〈C1, j(x)〉. Clearly D̃1 = 〈C̃1, j̃(x)〉. Thus D̃1 is Hermitian self-orthogonal. Since the
dimension of D̃1 is n+1

2 , D̃1 is Hermitian self-dual. Analogous arguments will prove that D̃2 is Hermitian self-dual.
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We now prove part 2. Suppose D1µ−q = D1. It follows that C1µ−q = C1. By Proposition 4.7, C⊥H
2 = D1 and

so by Theorem 6.1.3(vi) of [2], C1 ⊆ C⊥H
2 . Therefore C̃1 and C̃2 are orthogonal to each other and consequently the

codes spanned by 〈C̃1, j̃(x)〉 and 〈C̃2, j̃(x)〉 are orthogonal. By Theorem 6.1.3(v) and (vi) of [2], these codes must be

D̃1 and D̃2 of dimension n+1
2 . Therefore D̃1 and D̃2 are duals of each other. �

Corollary 4.9. Let C be a cyclic code over Fq2 . The extended code C̃ is Hermitian self-dual if and only if C is an
odd-like duadic code whose splitting is given by µ−q .

Proof. (⇐) This follows directly from the preceding proposition.
(⇒) Since the extended code C̃ has length n + 1, the dimension of C is n+1

2 and therefore C cannot be Hermitian
self-orthogonal. The assumption that C̃ is self-dual implies that the even-like subcode of C is necessarily Hermitian
self-orthogonal. Since C is not Hermitian self-orthogonal, C cannot be even-like. Let Ce be the even-like subcode of
C . The code Ce is an [n, n−1

2 ] Hermitian self-orthogonal cyclic code and so by Proposition 4.4, Ce is an even-like
duadic code with splitting by µ−q . Thus C is an odd-like duadic code with a splitting by µ−q . �

5. Lengths with splittings by µ−q

Throughout this section, we let q be a power of a prime p and we assume that n is an odd integer with
gcd(n, q) = 1. Define ordr (q) to be the smallest positive integer t such that q t

≡ 1 (mod r). In view of Proposition 4.4
and Corollary 4.9, it is natural to ask under what conditions we get a splitting of n by µ−q . We note that the study of
the feasibility of an integer in [6] becomes a special case of this with q = 2.

The main result of this section is the following theorem.

Theorem 5.1. The permutation map µ−q gives a splitting of n if and only if ordr (q) 6≡ 2 (mod 4) for every prime r
dividing n.

Our proof of this theorem will be based on several lemmas. Lemma 5.2 is a well-known fact from elementary
number theory, see e.g. Proposition 3 in [8], and we leave its proof as an exercise to the reader.

Lemma 5.2. Let r be a prime distinct from p. Then r divides qk
+ 1 for some positive integer k if and only if ordr (q)

is even.

Lemma 5.3. Let r be a prime distinct from p. Then r divides q2i−1
+ 1 for some integer i ≥ 1 if and only if

ordr (q) ≡ 2 (mod 4).

Proof. By Lemma 5.2, r divides qk
+ 1 for some positive integer k if and only if ordr (q) is even. If ordr (q) is even,

then

r | qk
+ 1 ⇐⇒ qk

≡ −1 (mod r) ⇐⇒ k ≡
ordr (q)

2
(mod ordr (q)).

Thus r divides q2i−1
+ 1 if and only if ordr (q) is even and

2i − 1 ≡
ordr (q)

2
(mod ordr (q)). (5)

But (5) has a solution i if and only if ordr (q) ≡ 2 (mod 4). �

Proposition 5.4. Assume gcd(n, q) = 1. Then gcd(n, q2i−1
+ 1) = 1 for every integer i ≥ 1 if and only if

ordr (q) 6≡ 2 (mod 4) for every prime r dividing n.

Proof. Write n = re1
1 re2

2 · · · res
s . Then, using Lemma 5.3, ordr j (q) 6≡ 2 (mod 4) for all j = 1, . . . , s if and only if for

all j = 1, . . . , s, r j does not divide q2i−1
+ 1 for every i ≥ 1 if and only if for all j = 1, 2, . . . , s, gcd(r j , q2i−1

+

1) = 1 for every i ≥ 1 if and only if gcd(n, q2i−1
+ 1) = 1 for every i ≥ 1. �
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Proposition 5.5. Let t be an integer such that t 6≡ (q2) j (mod n) and t2
≡ (q2) j (mod n) for some non-negative

integer j . Suppose gcd(t, n) = 1. Then µt gives a splitting of n if and only if gcd(n, q2i
− t) = 1 for every integer

i ≥ 1.

Proof. Clearly by the assumptions on t , (µt )
2(Cs) = Cs for every q2-cyclotomic coset Cs . Thus µt gives a splitting of

n if and only if it does not fix any q2-cyclotomic coset. Let Ca be a q2-cyclotomic coset. Then µt fixes Ca if and only
if ta ≡ (q2)i a (mod n) for some positive integer i . Thus µt gives a splitting of n if and only if ta 6≡ (q2)i a (mod n)

for every i ≥ 1 if and only if gcd(n, q2i
− t) = 1 for every i ≥ 1. �

Theorem 9 of [12] is a special case of Proposition 5.5 with q = 2.

Corollary 5.6. The permutation map µ−q gives a splitting of n if and only if gcd(n, q2i−1
+ 1) = 1 for every integer

i ≥ 1.

Proof. This follows immediately from Proposition 5.5 since gcd(n, q) = 1 by assumption. �

We are now ready to prove the main theorem of this section.

Proof of Theorem 5.1. By Corollary 5.6, the permutation map µ−q gives a splitting of n if and only if gcd(n, q2i−1
+

1) = 1 for every integer i ≥ 1. By Proposition 5.4, gcd(n, q2i−1
+ 1) = 1 for every integer i ≥ 1 if and only if

ordr (q) 6≡ 2 (mod 4) for every prime r dividing n. �

We remark that Theorem 5.1 says that µ−q gives a splitting of n if and only if for every prime r dividing n, either
ordr (q) is odd or ordr (q) is doubly even. However, it is easy to show that ordr (q) is doubly even if and only if ordr (q2)

is even. Thus we can restate Theorem 5.1 as:

Theorem 5.7. The permutation map µ−q gives a splitting of n if and only if for every prime r dividing n, either
ordr (q) is odd or ordr (q2) is even.

Lastly, we arrive at the following result which gives sufficient and necessary conditions for the existence of a
Hermitian self-dual extended cyclic code. We note that the same result was obtained in [7] for the more general case
of group codes.

Theorem 5.8. Cyclic codes of length n over Fq2 whose extended code is Hermitian self-dual exist if and only if for
every prime r dividing n, either ordr (q) is odd or ordr (q2) is even.

Proof. This follows directly from Corollary 4.9 and Theorem 5.7. �

Table 1 enumerates all the splittings (up to symmetry between S1 and S2) of n by µ−q over Fq2 for 5 ≤ n ≤ 45 and
q = 3, q = 4 and q = 5 by listing all the possible sets for the S1 in Theorem 4.2. The Ci ’s are q2-cyclotomic cosets
modulo n. We omit those n for which no such splitting exists for all values of q.
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Table 1
Splittings of n by µ−q

n S1

q = 3 q = 4 q = 5

5 C1
a – –

7 – C1
a –

9 – C1 ∪ C3, C1 ∪ C6 –

11 C1
a C1

a C1
a

13 C1 ∪ C2, C1 ∪ C7 – C1 ∪ C2 ∪ C4, C1 ∪ C2 ∪ C6,

C1 ∪ C3 ∪ C4
a , C1 ∪ C3 ∪ C6

17 C1
a C1 ∪ C2 ∪ C3 ∪ C6, C1 ∪ C2 ∪ C3 ∪ C7, C1

a

C1 ∪ C2 ∪ C5 ∪ C6, C1 ∪ C2 ∪ C5 ∪ C7,

C1 ∪ C3 ∪ C6 ∪ C8, C1 ∪ C3 ∪ C7 ∪ C8,

C1 ∪ C5 ∪ C6 ∪ C8, C1 ∪ C5 ∪ C7 ∪ C8,

19 – C1
a C1

a

21 – C1 ∪ C2 ∪ C3 ∪ C7, C1 ∪ C2 ∪ C3 ∪ C14, –

C1 ∪ C2 ∪ C7 ∪ C9, C1 ∪ C2 ∪ C9 ∪ C14,

C1 ∪ C3 ∪ C7 ∪ C10, C1 ∪ C3 ∪ C10 ∪ C14,

C1 ∪ C7 ∪ C9 ∪ C10, C1 ∪ C9 ∪ C10 ∪ C14

23 C1
a C1

a –

25 C1 ∪ C5, C1 ∪ C10 – –

27 – C1 ∪ C3 ∪ C9, C1 ∪ C3 ∪ C18, C1 ∪ C6 ∪ C9, C1 ∪ C6 ∪ C18 –

29 C1
a – –

31 – C1 ∪ C3 ∪ C5, C1 ∪ C3 ∪ C11, C1 ∪ C2 ∪ C3 ∪ C4 ∪ C8,

C1 ∪ C5 ∪ C7
a , C1 ∪ C7 ∪ C11, C1 ∪ C2 ∪ C3 ∪ C4 ∪ C17,

C1 ∪ C2 ∪ C3 ∪ C8 ∪ C11,

C1 ∪ C2 ∪ C3 ∪ C11 ∪ C17,

C1 ∪ C2 ∪ C4 ∪ C8 ∪ C16
a ,

C1 ∪ C2 ∪ C4 ∪ C16 ∪ C17,

C1 ∪ C2 ∪ C8 ∪ C11 ∪ C16,

C1 ∪ C2 ∪ C11 ∪ C16 ∪ C17,

C1 ∪ C3 ∪ C4 ∪ C8 ∪ C12,

C1 ∪ C3 ∪ C4 ∪ C12 ∪ C17,

C1 ∪ C3 ∪ C8 ∪ C11 ∪ C12,

C1 ∪ C3 ∪ C11 ∪ C12 ∪ C17,

C1 ∪ C4 ∪ C8 ∪ C12 ∪ C16,

C1 ∪ C4 ∪ C12 ∪ C16 ∪ C17,

C1 ∪ C8 ∪ C11 ∪ C12 ∪ C16,

C1 ∪ C11 ∪ C12 ∪ C16 ∪ C17,

33 – C1 ∪ C3 ∪ C5 ∪ C11, C1 ∪ C3 ∪ C5 ∪ C22, –

C1 ∪ C3 ∪ C7 ∪ C11, C1 ∪ C3 ∪ C7 ∪ C22,

C1 ∪ C5 ∪ C6 ∪ C11, C1 ∪ C5 ∪ C6 ∪ C22,

C1 ∪ C6 ∪ C7 ∪ C11, C1 ∪ C6 ∪ C7 ∪ C22,

37 – – C1
a
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Table 1 (continued)

n S1

q = 3 q = 4 q = 5

41 C1 ∪ C2 ∪ C4 ∪ C7 ∪ C8, – C1 ∪ C3, C1 ∪ C6

C1 ∪ C2 ∪ C4 ∪ C7 ∪ C11,

C1 ∪ C2 ∪ C4 ∪ C8 ∪ C16
a ,

C1 ∪ C2 ∪ C4 ∪ C11 ∪ C16,

C1 ∪ C2 ∪ C7 ∪ C8 ∪ C12,

C1 ∪ C2 ∪ C7 ∪ C11 ∪ C12,

C1 ∪ C2 ∪ C8 ∪ C12 ∪ C16,

C1 ∪ C2 ∪ C11 ∪ C12 ∪ C16,

C1 ∪ C4 ∪ C6 ∪ C7 ∪ C8,

C1 ∪ C4 ∪ C6 ∪ C7 ∪ C11,

C1 ∪ C4 ∪ C6 ∪ C8 ∪ C16,

C1 ∪ C4 ∪ C6 ∪ C11 ∪ C16,

C1 ∪ C6 ∪ C7 ∪ C8 ∪ C12,

C1 ∪ C6 ∪ C7 ∪ C11 ∪ C12,

C1 ∪ C6 ∪ C8 ∪ C12 ∪ C16,

C1 ∪ C6 ∪ C11 ∪ C12 ∪ C16,

43 – C1 ∪ C3 ∪ C7, C1 ∪ C3 ∪ C9, C1 ∪ C6 ∪ C7, C1 ∪ C6 ∪ C9
a –

a Splittings of quadratic residue codes.

Appendix. Quantitative aspects

A.1. Counting integers that are split by µ−q

Theorem 5.1 raises the question of counting the number of integers n ≤ x such that µ−q gives a splitting
of n. In other words, we are interested in counting those integers n such that n is coprime with the sequence
S(q) := {q2i−1

+ 1}
∞

i=1. We let Aq(x) denote the associated counting function. We are interested in sharp estimates
for Aq(x) as x gets large. We use the shorthand GRH to denote the Generalized Riemann Hypothesis. The best we
can do in this respect is stated in the following theorem:

Theorem A.1. Let q = pt be a prime power. Put λ = ν2(t).

1. For some positive constant cq we have

Aq(x) = cq
x

logδ(q) x
+ Oq

(
x(log log x)5

log1+δ(q) x

)
,

where the implicit constant depends at most on q.
2. Let ε > 0 and v ≥ 1 be arbitrary. Assuming GRH we have that

Aq(x) =

∑
0≤ j<v

b j x

logδ(q)+ j x
+ Oε,q

(
x

logδ(q)+v−ε x

)
,

where the implied constant depends at most on ε and q, and b0(=cq), . . . , bv are constants that depend at most on
q.

The constant δ(q) is the natural density of primes r such that ordr (q) ≡ 2 (mod 4) and is given as follows:

δ(pt ) =


7/24 if p = 2 and λ = 0;

1/3 if p = 2 and λ = 1;

2−λ−1/3 if p = 2 and λ ≥ 2;

2−λ/3 if p 6= 2.
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Our proof of Theorem A.1 rests on various lemmas. Let χq(n) be the characteristic function of the integers n that are
coprime with the sequence S(q), i.e.

χq(n) =

{
1 if (n, S(q)) = 1;

0 otherwise.

Clearly Aq(x) =
∑

n≤x χq(n). Note that χq(n) is a completely multiplicative function in n, i.e., χq(nm) =

χq(n)χq(m) for all natural numbers n and m. This observation reduces the study of χq(n) to that of χq(r) with r
a prime. Using Lemma 5.3 we infer the following lemma.

Lemma A.2. We have χq(r) = 1 if and only if r = p or ordr (q) 6≡ 2 (mod 4) in the case r 6= p.

This result allows one to count the number of primes r ≤ x such that (r, S(q)) = 1. Recall that Li(x), the logarithmic
integral, is defined as

∫ x
2 dt/ log t .

Lemma A.3. Write q = pt . Let λ = ν2(t).

1. We have ∑
r≤x, (r,S(q))=1

1 =

∑
r≤x

χq(r) = (1 − δ(q))Li(x) + Oq

(
x(log log x)4

log3 x

)
. (6)

2. Assuming GRH, the estimate (6) holds with error term Oq(
√

x log2 x), where the index q indicates that the implied
constant depends at most on q.

Proof. 1. The number of primes r ≤ x such that ordr (q) ≡ 2 (mod 4) is counted in Theorem 2 of [8]. On invoking
the Prime Number Theorem in the form π(x) = Li(x) + O(x log−3 x), the proof of part 1 is then completed.

2. The proof of this part follows from Theorem 3 of [9] together with the well-known result (von Koch, 1901) that
the Riemann Hypothesis is equivalent to π(x) = Li(x) + O(

√
x log x). �

We are now ready to prove Theorem A.1.

Proof of Theorem A.1. 1. This is a consequence of part 1 of Lemma A.3, Theorem 4 of [8] and the fact that χq(n)

is multiplicative in n.
2. By part 2 of Lemma A.3 we have

∑
r≤x χq(r) = (1 − δ(pt ))Li(x) + Oq

(
x log−1−v x

)
. Now invoke Theorem 6

of [10] with f (n) = χq(n). �

A.2. Counting duadic codes

Theorem 4.3 allows one to study how many duadic codes of length n ≤ x (with (n, q) = 1) over Fq exist as x
gets large. We let Dq(x) be the associated counting function. Indeed, we will study the more general function Da(x)

which is defined similarly, but where a is an arbitrary integer. The trivial case arises when a is a square and thus we
assume henceforth that a is not a square.

At first glance it seems that

Da(x) =
1
2

∑
n≤x,(n,a)=1

(
1 +

(a

n

))
,

with (a/n) the Jacobi symbol. However, it is not true that (a/n) = 1 if and only if a is a square modulo n, e.g.,
(2/15) = (2/3)(2/5) = (−1)(−1) = 1, but 2 is not a square modulo 15. It is possible, however, to develop a criterion
for a to be a square modulo n in terms of Legendre symbols. To this effect first note that if a is a square modulo n,
then a must be a square modulo all prime powers in the factorization of n. This is a consequence of the following
lemma.

Lemma A.4. Let n and m be coprime integers. Then a is a square modulo mn if and only if it is a square modulo m
and a square modulo n.
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Proof. By the Chinese Remainder Theorem Z/mnZ → Z/m ⊕ Z/n is an isomorphism of rings and hence a is a
square in the ring on the left if and only if a is a square in the ring on the right. Now note that the multiplication in the
second ring is coordinatewise. �

It is a well-known result from elementary number theory that if p is an odd prime and if x2
≡ a (mod p) is

solvable, then so is x2
≡ a (mod pe) for all e ≥ 1; see e.g. [3, Proposition 4.2.3]. Using this observation together

with Lemma A.4 one arrives at the following criterion for a to be a square modulo n.

Lemma A.5. Let a and n be coprime integers. Put

ga(n) =

∏
p|n

(
1 + ( a

p )

2

)
.

Let e = ν2(n). Put

fa(n) =

0 if a ≡ 3 (mod 4) and e ≥ 2;

0 if a ≡ 5 (mod 8) and e ≥ 3;

ga(n) otherwise.

Then

fa(n) =

{
1 if a is a square modulo n;

0 otherwise.

By Lemma A.5 we have that Da(x) =
∑

n≤x, (n,a)=1 fa(n). Note that ga(n) is a multiplicative function, but that fa(n)

is a multiplicative function only on the odd integers n (generically). For this reason let us first consider

Ga(x) :=

∑
n≤x, (n,a)=1

ga(n).

As a consequence of the law of quadratic reciprocity, the primes p for which ga(p) = 1 are precisely the primes
p in certain arithmetic progressions with modulus dividing 4q. On using the Prime Number Theorem for arithmetic
progressions one then infers that for every v > 0 the following estimate holds true:∑

p≤x
ga(p) =

1
2

Li(x) + Oq

(
x

logv x

)
. (7)

On using this one sees that the conditions of Theorem 6 of [10] are satisfied and this yields the truth of the following
assertion.

Lemma A.6. Let ε > 0 and v ≥ 1 be arbitrary. Suppose that a is not a square. We have

Ga(x) =

∑
0≤ j<v

d j x

log1/2+ j x
+ Oε,q

(
x

log1/2+v−ε x

)
,

where the implied constant depends at most on ε and a, and d0 (>0), . . . , dv are constants that depend at most on a.

Now it is straightforward to derive an asymptotic formula for Da(x). Using Lemma A.5 one infers that

Da(x) =

G2a(x) + G2a(x/2) if a ≡ 3 (mod 4);

G2a(x) + G2a(x/2) + G2a(x/4) if a ≡ 5 (mod 8);

Ga(x) otherwise.
(8)

From this and Lemma A.6 it then follows that we have the following asymptotic formula for Da(x).

Theorem A.7. Let ε > 0 and v ≥ 1 be arbitrary. Suppose that a is not a square. We have

Da(x) =

∑
0≤ j<v

e j x

log1/2+ j x
+ Oε,q

(
x

log1/2+v−ε x

)
,

where the implied constant depends at most on ε and a, and e0 (>0), . . . , ev are constants that depend at most on a.
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In particular we have, as x tends to infinity,

Da(x) ∼ Da
x√

log x
and Ga(x) ∼ Ga

x√
log x

,

where Da and Ga are positive constants. We now consider the explicit evaluation of these constants. Note that by (8)
it suffices to find an explicit formula for the constant Ga .

In the case where a = D is a negative discriminant of a binary quadratic form this constant can be easily computed
using results from the analytic theory of binary quadratic forms. We say an integer D is a discriminant if it arises as
the discriminant of a binary quadratic form. This implies that either 4|D or D ≡ 1 (mod 4). On the other hand, it can
be shown that any number D satisfying 4|D or D ≡ 1 (mod 4) arises as the discriminant of a binary quadratic form.
Now let D be a discriminant and ξD be the multiplicative function defined as follows:

ξD(pe) =


1 if

(
D

p

)
= 1;

1 if
(

D

p

)
= −1 and 2|e;

0 otherwise.

Let n be any integer coprime to D. Then ξD(n) = 1 if and only if n is represented by some primitive positive
integral binary quadratic form of discriminant D. Let BD(x) denote the number of positive integers n ≤ x which
are coprime to D and which are represented by some primitive integral form of discriminant D ≤ −3. Note that
BD(x) =

∑
n≤x ξD(n). It was proved by James [4] that

BD(x) = J (D)
x√

log x
+ O

(
x

log x

)
,

where J (D) is the positive constant given by

π J (D)2
=

ϕ(|D|)

|D|
L(1, χD)

∏
( D

p )=−1

1

1 −
1
p2

, (9)

and p runs over all primes such that (D/p) = −1. (Recall that the Dirichlet L-series L(s, χD) is defined by
L(s, χD) =

∑
∞

n=1 χD(n)n−s .) Since the behaviour of ξD is so similar to that of fD , James’ result can in fact be
used to determine the asymptotic behaviour of G D(x) for negative discriminants D and, in particular, to determine
G D . Using a classical result of Wirsing, see e.g. Theorem 3 of [10], one infers that

G D(x)

BD(x)
∼

∏
p≤x

( D
p )=−1

(
1 −

1

p2

)
.

From this and the identity (9) it follows that G D is the positive solution of

πG2
D =

ϕ(|D|)

|D|
L(1, χD)

∏
( D

p )=−1

(
1 −

1

p2

)
. (10)

For more details on BD(x) and related counting functions the reader is referred to a preprint by Moree and Osburn [11].
In [11] it is also pointed out that BD(x) in fact satisfies an asymptotic result similar to the one given for Da(x) in
Theorem A.7.

The fact that the characteristic functions ξd and fD are so closely connected can be exploited to give a criterion for
the existence of duadic codes in terms of representability by quadratic forms.

Lemma A.8. Let q be an odd prime power, say q = pe
1 with p1 ≡ 3 (mod 4). Let n be an odd square-free integer

satisfying (n, q) = 1 and suppose, moreover, that n can be written as a sum of two integer squares. A duadic code of
length n over Fq exists if and only if n can be represented by some primitive positive integral binary quadratic form
of discriminant −p1.
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Proof. By assumption −p1 ≡ 1 (mod 4) and hence is a discriminant. The assumption that n is odd and square-free
ensures that ξ−p1(n) = f−p1(n) = f−pe

1
(n). The assumption that n can be represented as a sum of two squares,

together with the assumption that n is square-free ensures that n is a product of primes p satisfying p ≡ 1 (mod 4).
For every prime p ≡ 1 (mod 4) we have (−pe

1/p) = (pe
1/p). It thus follows that ξ−p1(n) = f−pe

1
(n) = f pe

1
(n). The

result then follows on invoking Theorem 4.3, Lemma A.5 and the fact that, for (n, D) = 1, ξD(n) = 1 if and only if
n is represented by some primitive positive integral binary quadratic form of discriminant D. �

It remains, however, to determine Ga for a general number a. It is well known from Tauberian theory that one has

Ga =
1

Γ (1/2)
lim
s↓1

√
s − 1F(s),

where F(s) =
∑

∞

n=1 ga(n)n−s . An easy computation shows that

(s − 1)F(s)2
= (s − 1)ζ(s)

ϕ(|a|)

|a|
L(s, χa)

∏
( a

p )=−1

(
1 −

1

p2

)
.

On using that the Riemann zeta function, ζ(s), has a simple pole at s = 1 of residue 1, one obtains that

πG2
a =

ϕ(|a|)

|a|
L(1, χa)

∏
( a

p )=−1

(
1 −

1

p2

)
.

Notice that Eq. (10) is a special case of this.
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