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Let L be any one of W(n, 1), S(n, 1), H(n, 1), and K(n, 1) over an algebraically
closed field F of characteristic p > 3. In this paper, we extend the results concerning
modular representations of classical Lie algebras and semisimple groups to the case
of L and obtain some properties of principal indecomposable modules of wu(L)
which parallel closely those of classical Lie algebras. 1993 Academic Press. Inc

INTRODUCTION

Let G be a semisimple, simply connected algebraic group over an
algebraically closed field F of characteristic p >0, g its Lie algebra, and
u(g) the restricted universal enveloping algebra of g. Let h= (h,, .., h,) be
a Cartan subalgebra of g, b is a Borel subalgebra such that A< b. Let A
denote the collection of p' restricted weights A characterized by the condi-
tions 0 < A(h;)<p, 1 <i< 1. For each i€ A, we can canonically obtain the
one-dimensional h-module which is denoted by F,. The induced module

Z(;‘) = “(g)®ulhi F/',

is an indecomposable universal highest weight module. Let ¥(4) denote the
restricted irreducible g-module of highest weight 4 and Q,(4) the projective
cover (= injective hull) of ¥(4). In [6], Humphreys proved that the prin-
cipal indecomposable module (PIM) Q,(4) of u(g) has a filtration with
quotients isomorphic to various Z(u) and Z{(u) occurs as many times as
V(4) occurs as a composition factor of Z(u) (cf. [6, 12]).

Let W be the restricted generalized Jacobson-Witt algebra, S the
restricted special algebra, H the restricted Hamiltonian algebra, and K the
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restricted contact algebra. Let L be any one of W, S, H, and K, and u(L)
the restricted universal enveloping algebra of L. In this paper, we extend
these studies of [6, 12] to L and get the properties of PIMs for »(L) which
parallel closely those of u(g).

According to the results of Shen Guangyu [17-19], any irreducible
graded L-module is completely determined by its base space which is an
irreducible L4, (=gl(n), sl(n), or sp(n))-module. This enables us to exploit
certain techniques in the representation theory of reductive algebraic
groups. In Section 2, we study certain induced u(L)-modules, denoted by
u(L)®,,, Z(4), which play an important role in the description of the
PIMs QO(2) of u(L). In Section 3, we study an artificial category of
u(L¢)-T°-modules, inspired by Jantzen’s method in [12]. In Section 4, we
discuss some properties of projective u(L*)-T*-modules. Finally, we show in
Section 5 that Q(4) has a filtration with quotients isomorphic to various
W(L)®,.,,, Z(p) and obtain a relation between the number of times of
w(L)®, ., Z(p) occurring as a quotient and the multiplicity of M{(4) (the
top composition factor of w(L)®,,, Z(4)) as a composition factor of
u(L)® ) Z(p) (see Theorem 5.1). In particular, we know that in general,
the former is greater than the latter.

I express my gratitude to Professors G. Y. Shen and J. E. Humphreys,
who read the manuscript and made many valuable suggestions.

1. PRELIMINARIES

Let F be an algebraically closed field, char F=p > 3. All Lie algebras and
modules treated in the present article are assumed to be finite-dimensional
and restricted.

In the following our notations agree with those in [20, Chap.4]. We
write W=W(n, 1), S=8(n, 1), H=H(n,1), and K=K(n,1). If L is any
one of W, S, and H, then L=@,, , L is a Z-graded Lie algebra of
depth 1 and under the linear map x'*'D,— E,;, L, is isomorphic to gl/(n),
sl{n), and sp(n), respectively, where E is the matrix whose (k, /) compo-
nent is 8,6, Write /:=Y/_ x'"'D,and I':=37_, x*“' D+ x"*'D,. If
L=K let K;;;=A(n 1), then L=@,, ,K[;isa Z-graded Lie algebra
of depth 2 and L, is isomorphic to sp(2r)@® FI".

Let u(a) be the restricted universal enveloping algebra of a Lie algebra
a. Then the notions of g-module and u(a)-module are equivalent. We have

ProrosiTioN 1.1. [18]. Every irreducible u(L)-module V is graded and
the map V(= @ ;.o V) V, (base space) induces a bijection hetween the
sets of isomorphism classes of irreducible u(L)-modules and irreducible
u( L oy)-modules, respectively.

481/155/1-10
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Let L;=¢,.,L;;; and o: L,— F be the Lie algebra homomorphism
given by a(x):= tr(ad,,, x), Vxe L,, and V' an L,-module. We introduce
a twisted action on V by setting x-v:= xv+a(x)v. The new L,-module
will be called V. Note that if L, =sl(n) or sp(n), then 6=0. If V' is an
L;4-module, then we can extend the operations on V to L, by letting L,
act trivially and regard it as an L,-module. By [5, Corollary 1.6], there
exists an isomorphism of u(L)-modules

W(L)® 1, Vez=Hom,,  (u(L), V)

By [5, Proposition 1.5; 4, Proposition 2.4], Hom, (u(L), V) is a
positively graded L-module whose base space is isomorphic to V. Hence we
have

ProposITION 1.2, If V is an irreducible u(Lpyy)-module, then the
irreducible graded L-module with base space V' is isomorphic to the (unique)
minimum submodule of u(L)® ,,,, V,. denoted by (u(L)®,,,,, V)

min -

2. THE u(L)-MODULES u(L)® .., Z(4)

Let L be any one of W, S, H and K, h (resp. #(L4,)) the standard Car-
tan subalgebra of g(:= L), # (or n ) the sum of positive (or negative)
root spaces of g, h=h®n the Borel subalgebra of g, b =hPn ,
N =0@®Y,, Ly, A=h@. 4 =n @Y, oLy, and A =
h@® 4" . Let {x;,..x,} and {y,,...y,} be the bases of .+ and .4
respectively, such that {x,,..,x,} and {y,, ... v,.} (m<s 1) are the
standard bases of n and n . respectively, where dim . ¢ =5, dim .4~ =1,
and dimnr=m. Let A, (i=1,.., n) be the linear functions on A(gl(n)) =
(E,. .., E, > such that

ANE; )=0

il ije

The restriction of A, on every A(L,;) will also be denoted by A,. Let

‘
Jo=0, A=Y A, i=1..1
i=1

Then the sets of the fundamental weights of Ly, (= gltn), si(n), sp(n),
spn— DY@ FI'Y are { Ay, s 2ty J A1y v An 1 )s 141w Ana ), and {4, .,
A 1y2s A,/2}, respectively. We denote the lattice of all weights of #(L4;)
by A. Each A€ A is a linear combination of the fundamental weights. We
denote the canonical one-dimensional h-module by F, and extend the



RESTRICTED LIE ALGEBRAS 145

operations on F, to # by letting L, act trivially which is also denoted
by F,. Denote

Z(A)= u(g)@,u/n F;.

LEMMA 2.1. If i€ A, then

WL)Y® 1) Z(A)Zu(L)® ) F;
and dim w(L)®,,.,, Z(Z)=p"

Proof. Let L :=3%,_, L Since the F-vector spaces u(L)®,,,, Z(4)
and u(L )® . u(n~) are isomorphic, we have dimy w(L}® ., Z(A)=p' =
dim; u(L)Y® 4, F;. The map u(L)x F; = u(L)® 1, Z(4) that sends (i, )
onto u®1®a is u(#) balanced and thus induces ¢ a u(L)-linear map
@ U(L)® 1) Z(A) > u(L)®, 4, F,. An application of the Poincaré-
Birkhoff-Witt Theorem shows that ¢ is injective. Consequently, ¢ is an
isomorphism. [

We refer to a nonzero vector v in an L-module as maximal (resp. mini-
mal) if v is killed by all x,, i=1,.. s (resp. y;, j=1, .. 1). u(L)® ., Z(4)
has a maximal vector v,, (resp. minimal vector v,,) corresponding to the
coset of 1 (resp. y# '..-37 '). Obviously, u(L)®,,, Z(A) = u(L)(1®1)
(i.e., is standard cyclic) and any L-module generated by a maximal vector
of weight 4 relative to 4 is a homomorphic image of W(L)®,,,,, Z(A).

LEmMAa 2.2. Let ieA. Then u(LY® ., Z(4) is indecomposable.

Proof. The remark of [4, p. 720] in conjunction with [5, (1.4) and
{1.5)] implies that the functor w(L)®,,,- sends indecomposables to
indecomposables. Since Z(4) is as an indecomposable L,,-module,
L-indecomposable our assertion follows. |

3. THE CATEGORY OF u(L‘)-T*-MODULES

Let L=W, A=A(n,1), and Aut W and Aut A be the automorphism
group of W and the automorphism group of A respectively. By [ 11, or 16,
Theorem 8], we have

Aut W=Aut 4,
that is, if @€ Aut W then there i1s a unique ¢ € Aut 4 such that
B(x)=pxe ' Vxe W(= Der, 4). 3.1

Obviously, Aut 4 is a closed subgroup of GL(A). Note that any ¢ € Aut 4
is uniquely determined by the action on {x", .., x'"']. Clearly,

fre Aut 4 | (x")=1x" e F* i=1, ..n|
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is both a Cartan subgroup and a maximal torus of the algebraic group
Aut A4, denoted by T(W), which is isomorphic to

{diag (1,, ... 1,) | 1,eF* i=1, ., n}|

and whose Lie algebra is A(W ). For ae F*, we define £, e Aut 4 by
E(x"") = ax", i=1,...nifL=W,SorH,
E (x')y=ax'"", E(x"}=a’x" i=1,.,n—1,if L=K.

Write T, .= {E,|ae F*}. We set
| L e TW) | 1=diag(z,, . 1) T 1= 1],
if L=3S,
T(L):=< e T(W) | r=diag(t,, ..t L 1, =1 j=1,..r],
if L=H,

(te T(W) | t=diag(t,, . ts,, 1) 1,8, ,=1,
j=1,r)xT,, if L=K,
whose Lie algebra is A(L ().

Let L=W, S, H,or Kand T=T(W), T(S), T(H), or T(K). Let 4 be the
set of simple roots of L,,, X(T) the character group of T(ie., the group
of all homomorphisms 7'— F*) which may be identified with the lattice
of all weights of T, X(T)"* the set of dominant weights in X(7), and
XUy=1ieX(T)" |0< {4 ay<p, for all xeA}. More precisely we
ought to replace X (T) by X(7)/pX{(T). Then X,(T)=A. Let

A, () =1, i=1,..n,
where te 7 such that ((x'"')=r,x"". Then

ZA,® - ®ZA,, if L=W,

{ Z aiAl

=1

Z A/.:(),(JIEZ,I'ZI....,H} if L=S§,

j=1

{ Y aA A+ A,,,=0,a€Z,i=1.,nj=1 r}.
i=1

X(T)=
if L=~H,

no 1
{ Y aA | A+ A,,,=0aq€Z,i=1 ., n—1,

i=1

Ji=1, .. r} ®Z(4,/2), if L=K



RESTRICTED LIE ALGEBRAS 147

To define certain partial orderings of weights, we extend 7. Let 7% := TT,
and A := h+h,, where h, is the Lie algebra of T,. Note that if L= W or
K, then T=Tand h=h". If L = S or H, then we define y € X(T7*) by means

of
(1) = 1, if reT,
BO=V4,),  if reT,.

Then
X(T,)z{ Y ad A= =4,a¢€li=1,., n}ng.
i=1
For convenience, let y=0 for L= W or K. Then the character group of
T is
X(TY=X(TY® Zy.

Note that for L=S§, X(T)=74,® --- ®ZA,,
By (3.1), the action of te T“ on L (= W, S, H, or K) is conjugation by
1, which is denoted by Ad r. For ¢t =diag(t,, .., 7,)€ T and he h‘, we have

Ad([)(x*x’D’):(n ,?z) 3 |>\.(MD’=<Z A, — A,-)([)A\‘(“DI,

(W) '
[A, me’_]_—.<Z 1’/1,__/1,) (h)_,(le_’
Ad(r)(D,;,(x"')>=<i %M—A,-—A»,)(t)D,;,(x"’),
(S) e
LA Dl.j(-\‘m)]:( 2. 9‘kAk_Ai_A/> (h) D (x'™),
A:I" (3.2)
AJD N =( T 2= 22) (1) Dy (')
(H) ke
Ch D (x ™11 =( 3 50— 22) (1) D15,
=1
Ad(r)(DK(x“"))=< Z ozkAk+(a,,—2)/2A,,)(t)DK(x""),
(K) ke

n

A Dk(x‘*')]=( Y amman—zvzm,) (1) Di(x'™),

k=1

i.e., the action of T¢ coincides with that of A°.
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Let LC:= L+ h), #:= #+hy, and L, := L,+ h,. By (3.2), the adjoint
Lmodule L is also a T%-module and = (= x'D;, D, (x'*), D,(x'"), or
D (x™"}) is not only a weight vector relative to A¢ but also a weight vector
relative to T°. Let u=z,--- -, e u(L"), we define

Ad(D)(u)=Ad(r)(z,)---Ad(1)(z ) = tut ', for reT
Then u(L?) is also a T9-module.

DerFINITION 3.1. A finite dimensional vector space V is called a u(L®)-
T°-module (for convenience, we just call it a &(L)-module), if V is both
u(L*)-module and 79-module and satisfies:

(a) The actions of A coming from L and from T¥ coincide;
(by r-(u-v)y=(Ad(t)u) -(t-v), forveV, teT", ucu(lL).

Let V=@, V* be the weight space decomposition (relative to 7). Then
(a) means that for he h’, ve V* h-v=JA(h)v, where 4e X(T¢) induces the
weight ie X(T¢)/pX(T*) (relative to h°), while (b) means that u -V < V*+#
for A€ X(T¥) and ue u{L)". Obviously, L* and u(L*) are #(L)-modules.

Now we define a partial ordering on X(7*). Let Z” be the set of n-tuples
of integers, which is ordered lexicographically. For a=(q,, .., a,)eZ",
write |ag| := 327_, a;,. We define a partial ordering on X(7¥):(a) For
L=W or S, Za,A,<2bh,A; if and only if |(a(, .. a,)| <|(by,...b,)| Or
l(a,, .. a,)l=1(by, ... b,)| and (a,, .., a,) < (b, ... b,). (b) For L= H or K,
let 4, ueX(T*) and 4|, =3"_, a4, Wf,=%5_, b4, then A<y if and
only if A(E,)<u(E,) or A(E,)=puE,) and (a,, ...a,)<{(b,, .., b,).

Let the T9-weight if x,e 47, i=1, ., s (resp. y,e. 4" ,j=1,.,1)be pu(x;)
(resp. u(y;)). By (3.2), we have

Lemma 3.1 (a) O<plx,), i=1, ., 8 u(y)<0,j=1,.,1
(b) Let V=@ V* be a a(L)-module and ve V’. Then the T -weight
A+ u(x;) (resp. A+ u(y,)) of x;v (resp. y,v) is greater (resp. less) than /.

We can canonically define the category of #(L)-modules and easily
obtain

Lemma 3.2. (a) The kernel and image of u(L)-homomorphisms are
a(L)-modules.
(b) Given a u(L)-submodule V' of a u(L)-module V, the quotient V/V"
has a canonical structure of u(L)-module for which the map V — V/V' is a
u(L)-homomorphism.

Similar to [12, Sect. 2.4], other standard constructions can be done in
the category of &(L)-modules, e.g., dual modules and tensor products. Thus
Hom . (V,, V,)= V¥® V, has a a(L)-module structure if V|, V, do.
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LeMMA 33, Let V, V,, and V, be u(L)-modules. Then
(a) V4P ={veV|x-v=0, for all xeL} and Hom,, (V,, V,) are
u( L)-modules.

(b) The set of T*-weights of Hom,, (V,, V) is contained in pX(T) +
Zy and if Ae pX(T)+ Zy, then

Hom, . (V,, V,)*=Hom,  (V,, V,®F ;). (3.3)
Proof. (a) Clearly, for L =S or H, we have
x(J-v)=[x, v+ 1{x-v)=0, forall xe L and ve V%)
Let x=x"'D,, D, (x"*"), D, (x**"), or Dy(x"*'} and re T*. Then
Ad(t) x=cx, for some ce F*.
Thus we have
x(t-v)y=c VAd() x(t-v)=c " "H(x-v)=0, for ve V&),
Hence V“Y is a da(L)module and so is Hom,, ,(V,, V,) =
Hom (V,, V,)“*4),
(b) Since the 4(L)-module Hom,,,(V,, V,) is a trivial u(L)-module,
any T*-weight of Hom,, ,(V,, V/,) on restriction to / is trivial, whereas it
is contained in pX(T)+ Zy. In particular, Hom,,,(V,, V,) is just the

0-weight space of Hom,, (V,, V).
If AepX(T)+ Zy, then

Vo=2V,®F (as u(L)-modules)
and

Hom,,,(V,, V;)=Hom,,(V,, V,® F_;) (as vector spaces).

Also Hom,, (V,, V,)" consists of the maps ¢ €e Hom,, (V,, V,) such that
¢ maps (V)" into (V,)*** for all ueX(T°), so its image in
Hom,,(V,, V;® F_;) consists of the maps y e Hom,,,(V,, V.®@F ;)
such that y maps (V)* into (V,)***Q@F _;=(V,®F ;)" thatis, y is a
i{ L)-homomorphism. This concludes the proof. §

One further construction is as follows. Take a subalgebra 4 of u(L*) con-
taining #(4¢) and stable under Ad(7T") (such as u(h¢), u(#°), u(Lg)). Let M
be an A-module (defined similar to a i#(L)-module), and we consider the
“induced” module (L) ® , M, where u(L*) acts on the left factor via mul-
tiplication, and 7¥ acts on the left factor via Ad(7*) and on the right factor
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by the given action. This is easily seen to be a #(L)-module. Moreover, for
all 4(L)-modules ¥ we get a canonical vector space isomorphism.

Hom,,, (u(L)® , M, V)= Hom (M, V). (3.4)

An arbitrary e X(7T°) (resp. X(T)), viewed as a homomorphism 4: u(h*)
(resp. u(h))— F, can be extended to a homomorphism A:u(#¢) (resp.
u(#4)) — F by setting A(x;)=0 for i=1, .., 5 So via A we can give F the
structure of 1-dimensional wu(#¢) (resp. wu(#))-module F;. Define
ZA(}M)zu(L")®,AV,,y)F,-V. (In the case Ae X (T), its restriction to u(L) is
essentially the same as the previous u(L)® ., Z(A)=u(L)® 4, F;. But
here 4 can be arbitrary in X(7¢).) Then Z(4) is a 4(L)-module of highest
weight 1 and has an obvious basis consisting of weight vectors 3| --- " ® 1
(0<i,,..,1,<p) Morecover, the i-weight vector 1® 1 generates Z(A).
Clearly each proper i(L)-submodule of Z(4) lies in the sum of weight
spaces for weights # 4, so there is a unique maximal #(L)-submodule and
a unique irreducible quotient which is denoted by M(}).

On the other hand, let ¥V be an arbitrary irreducible #(L)-module. Its
finite set of weights has at least one maximal element A. Choose a nonzero
element ve V4, since x;-v=0, i=1, .., s, Fv is stable under u(#°) and T*.
Set V'=u(L)v=u(.4" )v. Then V' is a #(L)-submodule of V. Hence
V'=V and we have

<A, for any weight p of V,

that is, 4 is the highest weight of V. Obviously, dim V* =1, that is, V* is
the unique stable line under u(:4#“) and T*. Since Hom,;(L,(Z‘(}t), V)=~
Hom, 4,(F;, ¥)#0, ¥ must be isomorphic to a quotient of Z(4), hence to
M(J). Note finally that, because their highest weights differ, the modules
M(4), i€ X(T*), are non-isomorphic to each other.

For any arbitrary #(L)-module ¥V, let [V : M(4)] be the number of times
of M(L) occurring as a composition factor of V. The results in [12,
Sect. 2.8 can be applied to the case of #(L)-modules as follows.

PROPOSITION 3.1, If Ae X(T*) and ue pX(T)+ Zy, then

(a) M(u) is l-dimensional, with trivial u(L)-action.
(b) M2+ p)=M(2)®, M(y).

(©) ZU+p=Z()®; Mn).

(d) (VM) : M(A)I=[V:M(i—w].

It is useful to attach a formal charactor ch(V) to a 4(L)-module V. Let
Z[X(T*)] be the group ring of X(7T*) with basis consisting of symbols e(4)
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in 1 — 1 correspondence with the elements of X(7*), and with multiplica-
tion determined by the rule e(i)e(u)=e(A+ u). Let m,.(4) be the multi-
plicity of 4 as a T*-weight of V(the dimension of the corresponding
Tv-weight space V%), and set ch(V)=3, v m(4)e(A)e Z[X(T)].
The sum is of course finite.

4. PROJECTIVE u(L)}-MODULES

For £€ X(T°), we view F; as a u(h“)-module and form an induced #(L)-
module /(A)=u(L)®,, F; with basis consisting of all yi'---yixi...
@1 (0<iy, i, jirmj,<p), hence dim I(Z)=p**" Note that let
4y=4lp, then I(A) = u(L)®,u, F,, (regarded as u(L)-modules).

LEmMA 4.1. I(A) is a projective u(L)-module (resp. projective u(L)-
module).

Proof. For any 4(L)-module (resp. u(L)-module) V, by (3.4), we have

Hom,, (/(4), Vy=Hom,,,(F,, V];,)
~ Hom n(F;, V) (4.1)

(resp. Hom,, (I(%), V)=Hom,,(F, . V].,)) Since any i(h)-module
(resp. u(h)-module) is completely reducible, the functor Hom,,,(F,, )
(resp. Hom,,(F;, -)) is exact. Hence Hom,, (/(4), ) (resp.
Hom,,((#), - ~)) is also exact. This completes the proof. ||

Now for an arbitrary #(L)-module V, we get an epimorphism
@, I(4)*™ " — V (here we take the homomorphism /(i) — ¥ correspond-
ing to elements of a basis for ¥'*). So the #(L)-module V is the quotient of
a projective module @ ; 7(A)*™ """, hence the category of i(L)-modules has
enough projectives. Since all modules in the category have a finite composi-
tion series, standard arguments show that each projective #(L)-module is a
direct sum of indecomposable projectives, each irreducible #(L)-module
M(/.) has an indecomposable projective cover O(4) with M(4) as its unique
irreducible quotient and each indecomposable projective u(L)-module is
isomorphic to some Q(4). Moreover, for any A€ X(7*) and an arbitrary
a(L)-module V, we have

[V : M(A)]=dim Hom,,, (Q(4), V). (4.2)

LEMMA 4.2. O(Ai+pu)=00)®, M(u). for all ieX(T") and ue
pX(T)+ Zy.
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Proof. For an arbitrary u#(L)-module V, there is a natural isomorphism
of vector spaces

Hom,, (0(4)®, M(u), V)= Hom,, (Q(4), V®, M(—p)).

It impies that the functor Hom,,‘,‘,(QA(/l)®,, M(u), - ) is exact. Hence
O(A)®, M(y) is a projective u(L)-module, which is indecomposable
(on account of Proposition 3.1{a}), with M(/’.)@,-M(u);/ﬂ(i+u) as
quotient. Hence O, M) =(i+pn). 1

DEFINITION 4.1, A j(L)-module V is a Z-filtered module, if there is a
filtration
0=Vy,cV,c..-clV, =V

such that the filtration quotients V,;/V, 1 ~ Z(y,) for some u, e X(T),
i=1, .., r. The above filtration is called a Z-filtration.

Obviously, ch ¥=Y"_,ch Z(y,) and the various ch Z(u) are linearly
independent in Z[ X(7*)], since each involves a distinct highest weigtht.
So the number (V: Z(u)) of indices with u,= u is well determined by V,
independent of which Z-filtration we choose.

LEMMA 4.3.  Each G(L)-module 1(A) has a Z-filtration. Moreover

(I(A) - Z(y)) =m, (p—4), for all pe X(T).

Proof. First we arrange the monomials x!-.-x" (0<i,,...i,<p) in
u(.4") in a certain order X, .. X, such that the T“-weight yx; of X, is
maximal in {g,, @, ., .., pu,}. Let

i

=Y uL)X,®1) <)

i=1

Then
O=lyclic--cl,.=1),

each [/, is a #(L)-submodule and /;//, | is generated just by the coset of
X,®1. By Lemma 3.1, x, X, equals a linear combination of certain X, of
higher weight than X, for k=1, ..., s, so j<i. Thus we get x, (X, ® 1)el, |,
x, annthilates the coset of X,® 1 in /,/1, . Hence I,/I; | is a quotient of
Z(A+u,;) and

dim(7,/1, ) <dim Z(i+p,)=p"
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Since

o
p'=dim (A=) dim(L/], )<p't,

i=1

we have dim(/;/I, |)=p' and
I/, (=Z0i+u). i=1..p"
Thus /(4) has a Z-filtration, and by construction the multiplicities

(I(4): Z(u)) are as claimed.

To show that all projective #(L)-modules have Z-filtrations, we must see
how to handle direct summands.

LEMMA 44. (a) Let V have a Z-filtration 0=V,cV,c ---c ¥V, =V.
Let 4 be a maximal weight of V, ve V*, and v #0. Then u(L)-v=Z(3) and
Viu(L)-v has a Z-filtration,

(b) Suppose a direct sum V @V, of two u(L)-modules has u
Z-filtration. Then V|, V, also do.

Proof. This follows from the same argument as [12, Lemma 3.5
and 3.6]. |

COROLLARY 4.1.  Every projective a(L)-module has a Z-filtration.
Proof. 1t is already proved for /(). By (4.1),
Homy,, ,(/(4), M(4)) = M(A)" #0,
so M(4)is a quotient of /(4), forcing O(4) to be a direct summand of I(4).

By Lemmas 4.3 and 4.4(b), QA(Z) has a Z-filtration. The same is true for
direct sums, i.e., for all projective #(L)-modules. |}

Now we prove the reciprocity theorem for the category of 1#(L)-modules.

THEOREM 4.1. Let /, ue X(T°). Then

M, (A= pNO(A) : Z(p)) =my  (u— D[ Z(n) : M(4)).

Proof. By (4.2), we have

[Z(x) : M(5)] =dim Hom,, (Q(2). Z(u)).
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We must show

Mo A= O(4) : Z(p))
=m, , (u—4)dim Hom,, (Q(4), Z(p)).
forall 2, ue X(T°). (4.3)

This follows from the more general statement: for arbitrary projective P,

My (A= )P Z(;t))
=m, , (u—2)dim Hom, (P, Z(u)). (4.4)

Note that both sides are additive in the first variable. First we verify (4.4)
for P=1I(4). Note that

dim Hom,,, (/(2), Z(p)) =dim Z(p) =m,, (2~ p).

But (/(2): Z(u))=m, , (u—4). Hence (4.4) holds for P=/(i). Next
we note that the number of times that Q(r) appears in a direct sum
decomposition of /() into indecomposable projective modules equals
dim Hom,,,(/(4). M(t})=dim M(t)*, A<t If 2 €y, then

(Q(4) 1 Z(u)) < (I(4) : Z(u)) =0,
since m,, (e — A)=0. At the same time, if A € u. then

dim Hom,,, (O(}), Z(u)) = [Z(u) : M(+)] =0.

So for A <:u, we get (4.3).

Now we must still prove (4.3) when £ < pu. Fix ¢ and we use induction
on i from above. If i=yu, since I(A)=0(1)®P,_, O(x)"" where
m(t)=dim M(t)*, then > 4=y and (4.4) holds for O(1), using (4.4) for

I(4) along with the fact that (4.4) is additive in the first variable P. If 4 < g,
by induction (4.4) holds for P= @, ., O(t)""", since (4.4) is now known
for I(4), the additivity of (4.4) yields the same conclusion for O(4). |

Let 7I(V') be the set of all T“-weights of a #(L)-module V. By the proof
of Theorem 4.1, we have
COROLLARY 4.2.  Let 4, pe X(T°). Then we have
(a) my (u—=Ay=zmy,  (A—u)>0,if A—pell(u(.4 )
(by [Z(p): M(A)]=0,if i—pu¢ ITu(.+" ) and p—ie Mu(.1)).
(€) (Q(A): Z())=[2(n): M(A)]=0,if 4 —pd Mu(. V" )0 IHu(.1)).
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5. PROJECTIVE u(L)-MODULES

For i€ X,(T), Z(4) is essentially (L) ® 1,y Z(4). Its restriction to w(L)
is just u(L)®,, Z(4). For the irreducible quotient M(%) of Z(i), we
denote its restriction to u(L) by M(i)l,,m. To show the irreducibility of
M(/'.Hm,_,, we introduce the notion of 4(/L)-gradation.

DEeriNtTION 5.1, A 4(L)-module V is called a(L)-graded if V=@,,, V,;
(direct sum of subspaces) is u(L)-graded and TV, = V,.

Let L =@, oLy, Ann L ={veV|xv=0Vxel } and L}, =
L[Q]‘l"l]].

Lemma S.1. (a) If V=&, V, is an irreducible u(L)-graded module,
then V. is an irreducible t(L,y)-module (i.e., u(L{y,) — T*-module).
(b) If a u(L)-graded module V=@,,¢V, is transitive (ie.,
Ann, L~ =V,) and V is an irreducible i(Lop)-module, then u(L) V', is the
unique irreducible u(L)-submodule of V.

Proof. (a) If Vi is a proper u(Ly,)-module of V,, then u(L) V; is
obviously a proper #(L)-submodule of V.
(b) Since V is transitive, every nonzero u#(L)-submodule of V' has
a nonzero intersection with V. Hence it contains V, and therefore
contains u(L) V.
Let u(L )=,.,u(L ) , whose gradation is derived from that of L .

Let V=@, V; be a u(L)-graded module, R,=<{veV,{u(l )} ,v=0),
and R= @, ., R, which is called the radical of V.

LEMMa 5.2, If V, is a 4(L4y)-module and V =u(L)V,, then (a) V is
u( L)-graded; (b) the radical R is a homogeneous (L )-submodule of V.

Proof. (a) This is clear. (b) By [18, Proposition 1.1], R is a
homogeneous u(L)-submodule of -V. Clearly, we have TR, < R;. The proof
is finished. ||

The following lemma can now be obtained by Lemma 5.2 and adopting
the arguments of [18, Corollary 1.5] mutatis mutandis.

LEMMA 5.3. Every irreducible i(L)-module is isomorphic to a ua(L)-
graded module.

PROPOSITION 5.1. If' every irreducible i(Lo1)-module V., is L, -
irreducible, then every irreducible u(L)-module V is u(L)-irreducible.
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Proof. By Lemma 5.3, V' is 4(L)-graded. Set V'=,.., V,. By Lemma
5.1(a), V, is a(Lpyy)-irreducible and therefore L,;-irreducible. This
implies that the L ,-submodule Ann, L =V, that is, V is transitive.
Let V' be an irreducible u(L)-submodule. Using the argument of [18,
Corollary 1.2(2)], we can easily show that V'=u(L} V,,. By Lemma 5.1(b),
we have V'=1". Hence V is u(L)-irreducible. J

Note that L, has a canonical graduation such that Ly, =@®] g,
with g, =h. By the same argument of Proposition 5.1, we can show that if
every irreducible #(4)-module V, is h-irreducible, then every irreducible
u(Lgy)-module is L, -irreducible. We know that the notions of #(k)-
module and 7-module are equivalent and any irreducible T-module is one-
dimensional which must be A-irreducible. Hence we have

CoROLLARY 5.1. If V is an irreducible u(Ly,)-module, then V, is
Ly -irreducible.

Remark 5.1. Corollary 5.1 is a result of the representation theory of
algebraic groups (cf. [12, Sect. 4.17]). Now we obtain this result by direct
proof.

By Proposition 5.1 and Corollary 5.1, we obtain

COROLLARY 5.2.  Every irreducible u(L)-module is u(L)-irreducible. In
particular, M(2)| ., is u(L)-irreducible, for ie X (T).

For convenience, we write M(4)= M(/’.)lm,_,, for arbitrary 2 e X(7T°). For
A€ X((T)yand uepX(T)+ Zy, by Proposition 3.1, we have

{M(A Tu)=MA), (as u(L)-modules). (5.1)

Z(/' + N)‘ull.) = u(L’®11114|| Z(/)

It follows that each composition series of a u(L)-module V is also a
composition series of the u(L)-module V, with multiplicity of M(4) as
u(L)-composition factor given by

[V:Mi)]= Y [V:MG+u)], for ieX,(T). (5.2)

wepXtlh)+ 47y

As for u(L), the category of u(L)-modules has enough projective
modules. For A€ X,(T), let Q(4) be the PIM corresponding to M(4). Then
Q(/) is an indecomposable projective w(L)-module with quotient AM(A4)
(e, Q(4)1s a projective cover of M(/)). As in (4.2}, we have

dim Hom,,,, (Q(;). V)= [V: M(})].
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LEMMA 54. Let Ae X|(T). Then Q().) = Q(4) as u(L)-modules.

Proof. Since Q(4) is a #(L)-summand of I(4), Q(2) is also a u(L)-sum-
mand of /(). By Lemma 4.1, Q(4)l,,,, is projective. Let ue X (T). Then

dim Hom,,,, (QA(/:)luth M(u))

= Y  dimHom,, (O, M)

tepX(TY+ Ly

(by Lemma 3.3(b})

= ) dimHomg,, (@(4) M(u—1))

tepX(T)y+ 7y
(by (3.3) and Proposition 3.1)

= Z 6Z;tém= 5}.;1'

TepX(T)+ 7y

Thus regarded as a u(L)-module, Q(4) has a unique irreducible quotient
M(+). This implies that

(N =004 1

THEOREM 5.1. Let A€ X (T). Then

{a) There is a filtration 0=Q,cQ,c ---c@,=0(+) with
0./0, \=ull)Y®,,., Z(1;), for some ;e X (T).

(b} The set {u(L)Y®,,, Z(p)i=1,..r} of the filtration quotients
(counted with multiplicity) in (a) is uniguely determined by Q(4).

(c) Let (Q(A):u(L)®, 1, L)) denote the multiplicity  of
ULY®,, 1) Z(1) (e X ((T)) as filtration quotient of the filtration of Q(4).
Then

QA u(L) @y ZW)) = Y (O(A): Z(u+1))

tepX(T)Y+ 2y

> [u(L)® 1y Z() : M(3)],

Proof. (a) We start with a Z-filtration of Q(4) having quotients Z(yu).
It gives on restriction to u(L) a filtration with quotients u(L)®,,,,, Z(4).
so we get (a).

(b) By the argument of [ 12, Proposition 4.27], we can easily get (b).
(c) For the filtration in (a), we use Lemma 5.4 and (5.1) to compute
multiplicity of w(L)®,,,,, Z(u), which is equal to
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(Q0L)  U(LY® 1) Z(11))
= Y (0 :Zu+1)

tepX(I+ 7y

> Y [Z(p+1): M(1)] (by Corollary 4.2)

TepX(I)+ 7y

= ¥ [Z(u): M(7—1)]  (by Proposition 3.1)

tepX(YV+ 7y

= [ L) @1y Z() - M(2)]  (by (5.2)). 1

Let A, wpeX(T). Write b, =(0(4):u(L)® .0, Z(W), ;=
FQ(4): M(u)] (called the Cartan invariants of «(L)) and
d,=[ulL)®,.,, Z{u): M(4)]. Let B, C, and D be the corresponding
p' x p' matrices of integers (C and D are called the Cartan matrix and the
decomposition matrix of u(L), respectively). By Theorem 5.1, we have

COROLLARY 5.3. C=BD.

Since u(L) is a symmetric algebra, C is symmetric and Q(4) (A€ X |(T))
is the injective envelope of M(4), that is, the socle of Q(4) is isomorphic to
the unique highest composition factor M(4).

We finally generalize the linkage principle in [8] to the cases of L =W,
S, or H, using the following results of [19].

If Ze A, then we denote the irreducible module of u(L,;) with highest
weight 7 by V(4) and write M(4 A= ((L)Y® 1 V(Ao ) min-

By [4, Corollary 2.6; 19, Theorems 2.1, 2.2, and 2.3], we have

LemMa 5.5. Let L he any one of W, S, and H. (a) If V is u(Lpyy)-
irreducible, then (W(L)® ., (Vo)) is u(L)-irreducible unless V' is trivial or
a highest weight module with a fundamental weight as its highest weight.

(by For L=W, the composition factors of u(L)®,,,, V(4), are
M) (socle), M(A;.\) (top), and F(C"—&, times), i=0, 1,..n,
where  M(A,)=F and M(A,,,)=0 (the top composition factor
of u(L)Y®,., V(4,), is F). For L=S8, the composition factor of
WLY® 1) VI4), are M(4,) (socle), M(A L ) (top), and F(C7 + 6, times),
i=0, 1,..,n—1, where M(is)=F and M(4,) has composition Jactors F
and A/I(.) (the top composition factor of u(L)®,.,, Vi, 1), is F).
F~or L= H(n—Zr), the composition /acl()rs of u(L)®,,|L0, V(4,), are
M4, W1 =8, times), M(i) (socle), M(i,) (top), M(i,,,) and
F((‘;’+(j’*'~_(5m+(§,, times), i=0, 1,.,r. where M(i ,)=0,
M(i)=F, and M(4,, )= M(A, ).
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Remark 5.2. By Lemma 5.5 and Corollary 5.2, we have

MU)~{M(/'L), if 2% 4g, Ays o Ayor L=H,
TTA\MG,, ),  fL=WorS)andi=4,i=0,..,1,

where M(4,,,)=F.

Let #" be the Weyl group of Ly, w, the longest element in %, and
é = half the sum of positive roots. We denote w-A=w(A+d)—3, forwe w”
and 7€ A and say that two weights 4, e A are linked and write A~ u if
weA=pu

By the lankage principle (cf. [8, Theorem 3.27]) and Lemma 5.5, we can
easily obtain

THEOREM 5.2. Let L be any one of W, S, and H. (a) If M(u) is a com-
position factor of u(LY® 1, Z(2+ al;) (4, p€ A), then one of the following
statements hold. (1) A~p. (2) u=0 and i~4; (j=0,1,..,1). (3) u=4,
(i>0)and A~4;_,.

(b) w(L)®,1, Z(A+0al,) and u(L)® 1, Z(4 + 0|,) share a composi-
tion factor if and only if 2~ p or A~ 4, and p~ 2, for some i, j.
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