Principal Indecomposable Representations for Restricted Lie Algebras of Cartan Type

S. CHIU*

Department of Mathematics, East China Normal University, Shanghai 200062, People's Republic of China

Communicated by Nathan Jacobson

Received January 1, 1991

Let L be any one of W(n, 1), S(n, 1), H(n, 1), and K(n, 1) over an algebraically closed field F of characteristic p > 3. In this paper, we extend the results concerning modular representations of classical Lie algebras and semisimple groups to the case of L and obtain some properties of principal indecomposable modules of u(L) which parallel closely those of classical Lie algebras.

Introduction

Let G be a semisimple, simply connected algebraic group over an algebraically closed field F of characteristic p>0, g its Lie algebra, and u(g) the restricted universal enveloping algebra of g. Let $\underline{h}=\langle h_1,...,h_1\rangle$ be a Cartan subalgebra of \underline{g} , \underline{h} is a Borel subalgebra such that $\underline{h} \subset \underline{h}$. Let A denote the collection of p^1 restricted weights λ characterized by the conditions $0 \le \lambda(h_i) < p$, $1 \le i \le 1$. For each $\lambda \in A$, we can canonically obtain the one-dimensional \underline{h} -module which is denoted by F_{λ} . The induced module

$$Z(\lambda) = u(g) \otimes_{u(b)} F_{\lambda}$$

is an indecomposable universal highest weight module. Let $V(\lambda)$ denote the restricted irreducible g-module of highest weight λ and $Q_g(\lambda)$ the projective cover (= injective hull) of $V(\lambda)$. In [6], Humphreys proved that the principal indecomposable module (PIM) $Q_g(\lambda)$ of $u(\underline{g})$ has a filtration with quotients isomorphic to various $Z(\mu)$ and $Z(\mu)$ occurs as many times as $V(\lambda)$ occurs as a composition factor of $Z(\mu)$ (cf. [6, 12]).

Let W be the restricted generalized Jacobson-Witt algebra, S the restricted special algebra, H the restricted Hamiltonian algebra, and K the

^{*} Supported by the Science Foundation Grant of the Doctoral Program Offering Schools Assigned by CNEC and the National Science Foundation Grant.

restricted contact algebra. Let L be any one of W, S, H, and K, and u(L) the restricted universal enveloping algebra of L. In this paper, we extend these studies of [6, 12] to L and get the properties of PIMs for u(L) which parallel closely those of u(g).

According to the results of Shen Guangyu [17–19], any irreducible graded L-module is completely determined by its base space which is an irreducible $L_{[0]}$ (= gl(n), sl(n), or sp(n))-module. This enables us to exploit certain techniques in the representation theory of reductive algebraic groups. In Section 2, we study certain induced u(L)-modules, denoted by $u(L) \otimes_{u(L_0)} Z(\lambda)$, which play an important role in the description of the PIMs $Q(\lambda)$ of u(L). In Section 3, we study an artificial category of $u(L^e)$ - T^e -modules, inspired by Jantzen's method in [12]. In Section 4, we discuss some properties of projective $u(L^e)$ - T^e -modules. Finally, we show in Section 5 that $Q(\lambda)$ has a filtration with quotients isomorphic to various $u(L) \otimes_{u(L_0)} Z(\mu)$ and obtain a relation between the number of times of $u(L) \otimes_{u(L_0)} Z(\mu)$ occurring as a quotient and the multiplicity of $M(\lambda)$ (the top composition factor of $u(L) \otimes_{u(L_0)} Z(\mu)$ (see Theorem 5.1). In particular, we know that in general, the former is greater than the latter.

I express my gratitude to Professors G. Y. Shen and J. E. Humphreys, who read the manuscript and made many valuable suggestions.

1. Preliminaries

Let F be an algebraically closed field, char F = p > 3. All Lie algebras and modules treated in the present article are assumed to be finite-dimensional and restricted.

In the following our notations agree with those in [20, Chap. 4]. We write W = W(n, 1), S = S(n, 1), H = H(n, 1), and K = K(n, 1). If L is any one of W, S, and H, then $L = \bigoplus_{i \ge -1} L_{[i]}$ is a \mathbb{Z} -graded Lie algebra of depth 1 and under the linear map $x^{(e_i)}D_j \mapsto E_{ij}$, $L_{[0]}$ is isomorphic to gl(n), sl(n), and sp(n), respectively, where E_{ij} is the matrix whose (k, l) component is $\delta_{ik}\delta_{jl}$. Write $I := \sum_{i=1}^n x^{(e_i)}D_i$ and $I' := \sum_{i=1}^n x^{(e_i)}D_i + x^{(e_n)}D_n$. If L = K, let $K_{[i]} = A(n, 1)_{[i]}$, then $L = \bigoplus_{i \ge -2} K_{[i]}$ is a \mathbb{Z} -graded Lie algebra of depth 2 and $L_{[0]}$ is isomorphic to $sp(2r) \oplus FI'$.

Let u(a) be the restricted universal enveloping algebra of a Lie algebra a. Then the notions of a-module and u(a)-module are equivalent. We have

PROPOSITION 1.1. [18]. Every irreducible u(L)-module V is graded and the map $V(=\bigoplus_{i\geq 0}V_i)\mapsto V_0$ (base space) induces a bijection between the sets of isomorphism classes of irreducible u(L)-modules and irreducible $u(L_{[01]})$ -modules, respectively.

Let $L_i = \bigoplus_{j \geqslant i} L_{[i]}$ and $\sigma: L_0 \to F$ be the Lie algebra homomorphism given by $\sigma(x) := \operatorname{tr}(\operatorname{ad}_{L/L_0} x)$, $\forall x \in L_0$, and V an L_0 -module. We introduce a twisted action on V by setting $x \cdot v := xv + \sigma(x) v$. The new L_0 -module will be called V_{σ} . Note that if $L_{\lceil 0 \rceil} \cong sl(n)$ or sp(n), then $\sigma = 0$. If V is an $L_{\lceil 0 \rceil}$ -module, then we can extend the operations on V to L_0 by letting L_1 act trivially and regard it as an L_0 -module. By [5, Corollary 1.6], there exists an isomorphism of u(L)-modules

$$u(L) \otimes_{u(L_0)} V_{\sigma} \cong \operatorname{Hom}_{u(L_0)} (u(L), V).$$

By [5, Proposition 1.5; 4, Proposition 2.4], $\operatorname{Hom}_{u(L_0)}(u(L), V)$ is a positively graded L-module whose base space is isomorphic to V. Hence we have

PROPOSITION 1.2. If V is an irreducible $u(L_{\{0\}})$ -module, then the irreducible graded L-module with base space V is isomorphic to the (unique) minimum submodule of $u(L) \otimes_{u(L_0)} V_{\sigma}$, denoted by $(u(L) \otimes_{u(L_0)} V_{\sigma})_{\min}$.

2. The
$$u(L)$$
-Modules $u(L) \otimes_{u(L_0)} Z(\lambda)$

Let L be any one of W, S, H and K, \underline{h} (resp. $\underline{h}(L_{[0]})$) the standard Cartan subalgebra of $\underline{g}(:=L_{[0]})$, \underline{n} (or \underline{n}) the sum of positive (or negative) root spaces of \underline{g} , $\underline{h} = \underline{h} \oplus \underline{n}$ the Borel subalgebra of \underline{g} , $\underline{h} = \underline{h} \oplus \underline{n}$, $\underline{N} = \underline{n} \oplus \sum_{i \geq 1} L_{\{i\}}$, $\underline{\mathscr{B}} = \underline{h} \oplus \mathscr{N}$, $\underline{N} = \underline{n} \oplus \sum_{i < 0} L_{\{i\}}$, and $\underline{\mathscr{B}} = \underline{h} \oplus \mathscr{N}^-$. Let $\{x_1, ..., x_s\}$ and $\{y_1, ..., y_t\}$ be the bases of \mathscr{N} and \mathscr{N} , respectively, such that $\{x_1, ..., x_m\}$ and $\{y_1, ..., y_m\}$ (m < s, t) are the standard bases of \underline{n} and \underline{n} , respectively, where dim $\underline{N} = s$, dim $\underline{N} = t$, and dim $\underline{n} = m$. Let A_i (i = 1, ..., n) be the linear functions on $\underline{h}(\underline{g}l(n)) = \langle E_{11}, ..., E_{m} \rangle$ such that

$$\Lambda_i(E_{ij}) = \delta_{ij}.$$

The restriction of Λ_i on every $\underline{h}(L_{[0]})$ will also be denoted by Λ_i . Let

$$\lambda_0 = 0,$$
 $\lambda_i = \sum_{j=1}^i \Lambda_j,$ $i = 1, ..., 1.$

Then the sets of the fundamental weights of $L_{[0]}$ (= gl(n), sl(n), sp(n), $sp(n-1) \oplus FI'$) are $\{\lambda_1, ..., \lambda_n\}$, $\{\lambda_1, ..., \lambda_{n-1}\}$, $\{\lambda_1, ..., \lambda_{n/2}\}$, and $\{\lambda_1, ..., \lambda_{(n-1)/2}, \Lambda_n/2\}$, respectively. We denote the lattice of all weights of $\underline{h}(L_{[0]})$ by Λ . Each $\lambda \in \Lambda$ is a linear combination of the fundamental weights. We denote the canonical one-dimensional \underline{h} -module by F_{λ} and extend the

operations on F_{λ} to ${\mathcal B}$ by letting L_1 act trivially which is also denoted by F_{λ} . Denote

$$Z(\lambda) = u(g) \bigotimes_{u(b)} F_{\lambda}.$$

LEMMA 2.1. If $\lambda \in \Lambda$, then

$$u(L) \otimes_{u(L_0)} Z(\lambda) \cong u(L) \otimes_{u(\mathcal{A})} F_{\lambda}$$

and dim $u(L) \otimes_{u(L_0)} Z(\lambda) = p^t$.

Proof. Let $L := \sum_{i < 0} L_{[i]}$. Since the F-vector spaces $u(L) \otimes_{u(L_0)} Z(\lambda)$ and $u(L^-) \otimes_F u(\underline{n}^-)$ are isomorphic, we have $\dim_F u(L) \otimes_{u(L_0)} Z(\lambda) = p' = \dim_F u(L) \otimes_{u(\mathcal{M})} F_{\lambda}$. The map $u(L) \times F_{\lambda} \to u(L) \otimes_{u(L_0)} Z(\lambda)$ that sends (u, α) onto $u \otimes 1 \otimes \alpha$ is $u(\mathcal{M})$ balanced and thus induces u = u(L)-linear map $\varphi : u(L) \otimes_{u(L_0)} Z(\lambda) \to u(L) \otimes_{u(\mathcal{M})} F_{\lambda}$. An application of the Poincaré-Birkhoff-Witt Theorem shows that φ is injective. Consequently, φ is an isomorphism.

We refer to a nonzero vector v in an L-module as maximal (resp. minimal) if v is killed by all x_i , i=1,...,s (resp. y_j , j=1,...,t). $u(L) \otimes_{u(L_0)} Z(\lambda)$ has a maximal vector v_M (resp. minimal vector v_m) corresponding to the coset of 1 (resp. $y_1^{p-1} \cdots y_t^{p-1}$). Obviously, $u(L) \otimes_{u(L_0)} Z(\lambda) \cong u(L)(1 \otimes 1)$ (i.e., is standard cyclic) and any L-module generated by a maximal vector of weight λ relative to h is a homomorphic image of $u(L) \otimes_{u(L_0)} Z(\lambda)$.

LEMMA 2.2. Let $\lambda \in \Lambda$. Then $u(L) \bigotimes_{u(L_0)} Z(\lambda)$ is indecomposable.

Proof. The remark of [4, p. 720] in conjunction with [5, (1.4) and (1.5)] implies that the functor $u(L) \bigotimes_{u(L_0)}$ - sends indecomposables to indecomposables. Since $Z(\lambda)$ is as an indecomposable $L_{[0]}$ -module, L_0 -indecomposable our assertion follows.

3. The Category of $u(L^e)$ - T^e -Modules

Let L = W, A = A(n, 1), and Aut W and Aut A be the automorphism group of W and the automorphism group of A respectively. By [11, or 16, Theorem 8], we have

Aut
$$W \cong \text{Aut } A$$
.

that is, if $\Phi \in Aut W$ then there is a unique $\varphi \in Aut A$ such that

$$\Phi(x) = \varphi \times \varphi^{-1}, \quad \forall x \in W (= \operatorname{Der}_{F} A).$$
 (3.1)

Obviously, Aut A is a closed subgroup of GL(A). Note that any $\varphi \in \text{Aut } A$ is uniquely determined by the action on $\{x^{(v_i)}, ..., x^{(v_n)}\}$. Clearly,

$$\{t \in \text{Aut } A \mid t(x^{(\varepsilon_i)}) = t_i x^{(\varepsilon_i)}, t_i \in F^*, i = 1, ..., n\}$$

is both a Cartan subgroup and a maximal torus of the algebraic group Aut A, denoted by T(W), which is isomorphic to

$$\{ \text{diag } (t_1, ..., t_n) \mid t_i \in F^*, i = 1, ..., n \}$$

$$\begin{cases} E_a(x^{(e_i)}) = ax^{(e_i)}, & i = 1, ..., n, \text{ if } L = W, S \text{ or } H, \\ E_a(x^{(e_i)}) = ax^{(e_i)}, & E_a(x^{(e_n)}) = a^2x^{(e_n)}, i = 1, ..., n - 1, \text{ if } L = K. \end{cases}$$

and whose Lie algebra is
$$\underline{h}(W_{\{0\}})$$
. For $a \in F^*$, we define $E_a \in \text{Aut } A$ by
$$\begin{cases} E_a(x^{(e_i)}) = ax^{(e_i)}, & i = 1, ..., n, \text{ if } L = W, S \text{ or } H, \\ E_a(x^{(e_i)}) = ax^{(e_i)}, & E_a(x^{(e_n)}) = a^2x^{(e_n)}, i = 1, ..., n - 1, \text{ if } L = K. \end{cases}$$
Write $T_1 := \{E_a \mid a \in F^*\}$. We set
$$\begin{cases} \{t \in T(W) \mid t = \text{diag}(t_1, ..., t_n), \prod t_i = 1\}, \\ \text{if } L = S, \\ \{t \in T(W) \mid t = \text{diag}(t_1, ..., t_{2r}), t_i t_{j+r} = 1, j = 1, ..., r\}, \\ \text{if } L = H, \\ \{t \in T(W) \mid t = \text{diag}(t_1, ..., t_{2r}, 1), t_i t_{j+r} = 1, \\ j = 1, ..., r\} \times T_1, & \text{if } L = K, \end{cases}$$

whose Lie algebra is $h(L_{101})$.

Let L = W, S, H, or K and T = T(W), T(S), T(H), or T(K). Let Δ be the set of simple roots of $L_{[0]}$, X(T) the character group of T(i.e., the group of all homomorphisms $T \rightarrow F^*$) which may be identified with the lattice of all weights of T, $X(T)^+$ the set of dominant weights in X(T), and $X_1(T) = \{\lambda \in X(T)^+ \mid 0 \le \langle \lambda, \alpha \rangle < p, \text{ for all } \alpha \in \Delta\}.$ More precisely we ought to replace $X_1(T)$ by X(T)/pX(T). Then $X_1(T) = A$. Let

$$A_i(t) = t_i, \qquad i = 1, ..., n$$

where $t \in T$ such that $t(x^{(\varepsilon_t)}) = t_t x^{(\varepsilon_t)}$. Then

$$X(T) = \begin{cases} \mathbb{Z}A_1 \oplus \cdots \oplus \mathbb{Z}A_n, & \text{if } L = W, \\ \left\{ \sum_{i=1}^n a_i A_i \middle| \sum_{j=1}^n A_j = 0, a_i \in \mathbb{Z}, i = 1, ..., n \right\} & \text{if } L = S, \\ \left\{ \sum_{i=1}^n a_i A_i \middle| A_i + A_{i+r} = 0, a_i \in \mathbb{Z}, i = 1, ..., n, j = 1, ..., r \right\}, \\ & \text{if } L = H, \\ \left\{ \sum_{i=1}^{n-1} a_i A_i \middle| A_j + A_{j+r} = 0, a_i \in \mathbb{Z}, i = 1, ..., n - 1, \\ j = 1, ..., r \right\} \oplus \mathbb{Z}(A_n/2), & \text{if } L = K. \end{cases}$$

To define certain partial orderings of weights, we extend T. Let $T^e := TT_1$ and $\underline{h}^e := \underline{h} + \underline{h}_1$, where \underline{h}_1 is the Lie algebra of T_1 . Note that if L = W or K, then $T^e = T$ and $\underline{h} = \underline{h}^e$. If L = S or H, then we define $\chi \in X(T^e)$ by means of

$$\chi(t) = \begin{cases} 1, & \text{if} \quad t \in T, \\ A_n(t), & \text{if} \quad t \in T_1. \end{cases}$$

Then

$$X(T_1) = \left\{ \sum_{i=1}^n a_i \Lambda_i \mid \Lambda_1 = \cdots = \Lambda_n, a_i \in \mathbb{Z}, i = 1, ..., n \right\} \cong \mathbb{Z}\chi.$$

For convenience, let $\chi = 0$ for L = W or K. Then the character group of T^c is

$$X(T^e) \cong X(T) \oplus \mathbb{Z}\gamma$$
.

Note that for L = S, $X(T^e) = \mathbb{Z}\Lambda_1 \oplus \cdots \oplus \mathbb{Z}\Lambda_n$.

By (3.1), the action of $t \in T^c$ on L (= W, S, H, or K) is conjugation by t, which is denoted by Ad t. For $t = \text{diag}(t_1, ..., t_n) \in T^c$ and $h \in \underline{h}^c$, we have

$$\begin{cases} \operatorname{Ad}(t)(x^{(x)}D_{j}) = \left(\prod_{i} t_{i}^{x_{i}}\right) t_{j}^{-1}x^{(x)}D_{j} = \left(\sum_{i} \alpha_{i}A_{i} - A_{j}\right)(t) x^{(x)}D_{j}, \\ \left[h, x^{(x)}D_{j}\right] = \left(\sum_{i} \alpha_{i}A_{i} - A_{j}\right)(h) x^{(x)}D_{j}, \end{cases}$$

$$\begin{cases} \operatorname{Ad}(t)(D_{i,j}(x^{(x)})) = \left(\sum_{k=1}^{n} \alpha_{k}A_{k} - A_{i} - A_{j}\right)(t) D_{i,j}(x^{(x)}), \\ \left[h, D_{i,j}(x^{(x)})\right] = \left(\sum_{k=1}^{n} \alpha_{k}A_{k} - A_{i} - A_{j}\right)(h) D_{i,j}(x^{(x)}), \end{cases}$$

$$\begin{cases} \operatorname{Ad}(t)(D_{H}(x^{(x)})) = \left(\sum_{k=1}^{n} \alpha_{k}A_{k} - 2\chi\right)(t) D_{H}(x^{(x)}), \\ \left[h, D_{H}(x^{(x)})\right] = \left(\sum_{k=1}^{n} \alpha_{k}A_{k} - 2\chi\right)(h) D_{H}(x^{(x)}), \end{cases}$$

$$\begin{cases} \operatorname{Ad}(t)(D_{K}(x^{(x)})) = \left(\sum_{k=1}^{n} \alpha_{k}A_{k} + (\alpha_{n} - 2)/2A_{n}\right)(t) D_{K}(x^{(x)}), \\ \left[h, D_{K}(x^{(x)})\right] = \left(\sum_{k=1}^{n} \alpha_{k}A_{k} + (\alpha_{n} - 2)/2A_{n}\right)(h) D_{K}(x^{(x)}), \end{cases}$$

i.e., the action of T^e coincides with that of h^e .

Let $L^e := L + \underline{h}_1$, $\mathcal{B}^e := \mathcal{B} + \underline{h}_1$, and $L_0^e := L_0 + \underline{h}_1$. By (3.2), the adjoint L^e -module L^e is also a T^e -module and $z := (z^{(\alpha)}D_j, D_{i,j}(x^{(\alpha)}), D_H(x^{(\alpha)})$, or $D_K(x^{(\alpha)})$ is not only a weight vector relative to \underline{h}^e but also a weight vector relative to T^e . Let $u = z_1 \cdots z_k \in u(L^e)$, we define

$$Ad(t)(u) = Ad(t)(z_1) \cdots Ad(t)(z_k) = tut^{-1}, \quad \text{for} \quad t \in T^c.$$

Then $u(L^e)$ is also a T^e -module.

DEFINITION 3.1. A finite dimensional vector space V is called a $u(L^c)$ - T^c -module (for convenience, we just call it a $\hat{u}(L)$ -module), if V is both $u(L^c)$ -module and T^c -module and satisfies:

- (a) The actions of h^e coming from L^e and from T^e coincide;
- (b) $t \cdot (u \cdot v) = (\operatorname{Ad}(t) u) \cdot (t \cdot v)$, for $v \in V$, $t \in T^{e}$, $u \in u(L^{e})$.

Let $V = \bigoplus_{\lambda} V^{\lambda}$ be the weight space decomposition (relative to T^{c}). Then (a) means that for $h \in \underline{h}^{c}$, $v \in V^{\lambda}$, $h \cdot v = \lambda(h) v$, where $\lambda \in X(T^{c})$ induces the weight $\lambda \in X(T^{c})/pX(T^{c})$ (relative to \underline{h}^{c}), while (b) means that $u \cdot V^{\lambda} \subseteq V^{\lambda + \mu}$ for $\lambda \in X(T^{c})$ and $u \in u(L^{c})^{\mu}$. Obviously, L^{c} and $u(L^{c})$ are $\hat{u}(L)$ -modules.

Now we define a partial ordering on $X(T^e)$. Let \mathbb{Z}^n be the set of n-tuples of integers, which is ordered lexicographically. For $\underline{a}=(a_1,...,a_n)\in\mathbb{Z}^n$, write $|\underline{a}|:=\sum_{i=1}^n a_i$. We define a partial ordering on $X(T^e)$: (a) For L=W or S, $\Sigma a_i \Lambda_i < \Sigma b_i \Lambda_i$ if and only if $|(a_1,...,a_n)|<|(b_1,...,b_n)|$ or $|(a_1,...,a_n)|=|(b_1,...,b_n)|$ and $(a_1,...,a_n)<(b_1,...,b_n)$. (b) For L=H or K, let λ , $\mu\in X(T^e)$ and $\lambda|_T=\sum_{i=1}^r a_i \Lambda_i$, $\mu|_T=\sum_{i=1}^r b_i \Lambda_i$, then $\lambda<\mu$ if and only if $\lambda(E_2)<\mu(E_2)$ or $\lambda(E_2)=\mu(E_2)$ and $(a_1,...,a_r)<(b_1,...,b_r)$.

Let the T-weight if $x_i \in \mathcal{N}$, i = 1, ..., s (resp. $y_j \in \mathcal{N}$, j = 1, ..., t) be $\mu(x_i)$ (resp. $\mu(y_i)$). By (3.2), we have

Lemma 3.1. (a)
$$0 < \mu(x_i)$$
, $i = 1, ..., s$; $\mu(y_j) < 0$, $j = 1, ..., t$.

(b) Let $V = \bigoplus V^{\lambda}$ be a $\hat{u}(L)$ -module and $v \in V^{\lambda}$. Then the T^{e} -weight $\lambda + \mu(x_{i})$ (resp. $\lambda + \mu(y_{j})$) of $x_{i}v$ (resp. $y_{j}v$) is greater (resp. less) than λ .

We can canonically define the category of $\hat{u}(L)$ -modules and easily obtain

- LEMMA 3.2. (a) The kernel and image of $\hat{u}(L)$ -homomorphisms are $\hat{u}(L)$ -modules.
- (b) Given a $\hat{u}(L)$ -submodule V' of a $\hat{u}(L)$ -module V, the quotient V/V' has a canonical structure of $\hat{u}(L)$ -module for which the map $V \to V/V'$ is a $\hat{u}(L)$ -homomorphism.

Similar to [12, Sect. 2.4], other standard constructions can be done in the category of $\hat{u}(L)$ -modules, e.g., dual modules and tensor products. Thus $\operatorname{Hom}_F(V_1, V_2) \cong V_1^* \otimes V_2$ has a $\hat{u}(L)$ -module structure if V_1, V_2 do.

LEMMA 3.3. Let V, V_1 , and V_2 be $\hat{u}(L)$ -modules. Then

- (a) $V^{u(L)} = \{v \in V \mid x \cdot v = 0, \text{ for all } x \in L\}$ and $\operatorname{Hom}_{u(L)}(V_1, V_2)$ are $\hat{u}(L)$ -modules.
- (b) The set of T^e -weights of $\operatorname{Hom}_{u(L)}(V_1, V_2)$ is contained in $pX(T) + \mathbb{Z}\chi$ and if $\lambda \in pX(T) + \mathbb{Z}\chi$, then

$$\text{Hom}_{u(L)}(V_1, V_2)^{\lambda} \cong \text{Hom}_{u(L)}(V_1, V_2 \otimes F_{u(L)}).$$
 (3.3)

Proof. (a) Clearly, for L = S or H, we have

$$x(I \cdot v) = [x, I]v + I(x \cdot v) = 0,$$
 for all $x \in L$ and $v \in V^{u(L)}$.

Let
$$x = x^{(\alpha)}D_t$$
, $D_{t,t}(x^{(\alpha)})$, $D_H(x^{(\alpha)})$, or $D_K(x^{(\alpha)})$ and $t \in T^e$. Then

$$Ad(t) x = cx$$
, for some $c \in F^*$.

Thus we have

$$x(t \cdot v) = c^{-1} \operatorname{Ad}(t) \ x(t \cdot v) = c^{-1} t(x \cdot v) = 0,$$
 for $v \in V^{u(L)}$.

Hence $V^{u(L)}$ is a $\hat{u}(L)$ -module and so is $\operatorname{Hom}_{u(L)}(V_1, V_2) \cong \operatorname{Hom}_{F}(V_1, V_2)^{u(L)}$.

(b) Since the $\hat{u}(L)$ -module $\operatorname{Hom}_{u(L)}(V_1, V_2)$ is a trivial u(L)-module, any T^e -weight of $\operatorname{Hom}_{u(L)}(V_1, V_2)$ on restriction to \underline{h} is trivial, whereas it is contained in $pX(T) + \mathbb{Z}\chi$. In particular, $\operatorname{Hom}_{\hat{u}(L)}(V_1, V_2)$ is just the 0-weight space of $\operatorname{Hom}_{u(L)}(V_1, V_2)$.

If $\lambda \in pX(T) + \mathbb{Z}\chi$, then

$$V_2 \cong V_2 \otimes F_{-1}$$
 (as $u(L)$ -modules)

and

$$\operatorname{Hom}_{u(L)}(V_1, V_2) \cong \operatorname{Hom}_{u(L)}(V_1, V_2 \otimes F_{-\lambda})$$
 (as vector spaces).

Also $\operatorname{Hom}_{u(L)}(V_1, V_2)^{\lambda}$ consists of the maps $\varphi \in \operatorname{Hom}_{u(L)}(V_1, V_2)$ such that φ maps $(V_1)^{\mu}$ into $(V_2)^{\mu+\lambda}$ for all $\mu \in X(T^e)$, so its image in $\operatorname{Hom}_{u(L)}(V_1, V_2 \otimes F_{-\lambda})$ consists of the maps $\psi \in \operatorname{Hom}_{u(L)}(V_1, V_2 \otimes F_{-\lambda})$ such that ψ maps $(V_1)^{\mu}$ into $(V_2)^{\mu+\lambda} \otimes F_{-\lambda} = (V_2 \otimes F_{-\lambda})^{\mu}$, that is, ψ is a $\hat{u}(L)$ -homomorphism. This concludes the proof.

One further construction is as follows. Take a subalgebra A of $u(L^e)$ containing $u(\underline{h}^e)$ and stable under $Ad(T^e)$ (such as $u(\underline{h}^e)$, $u(\mathcal{B}^e)$, $u(L_0^e)$). Let M be an \hat{A} -module (defined similar to a $\hat{u}(L)$ -module), and we consider the "induced" module $u(L^e) \otimes_A M$, where $u(L^e)$ acts on the left factor via multiplication, and T^e acts on the left factor via $Ad(T^e)$ and on the right factor

150 s. CHIU

by the given action. This is easily seen to be a $\hat{u}(L)$ -module. Moreover, for all $\hat{u}(L)$ -modules V we get a canonical vector space isomorphism.

$$\operatorname{Hom}_{\dot{u}(L)}(u(L) \otimes_A M, V) \cong \operatorname{Hom}_{\hat{A}}(M, V). \tag{3.4}$$

An arbitrary $\lambda \in X(T^e)$ (resp. X(T)), viewed as a homomorphism $\lambda \colon u(\underline{h}^e)$ (resp. $u(\underline{h})) \to F$, can be extended to a homomorphism $\lambda \colon u(\mathcal{B}^e)$ (resp. $u(\mathcal{B})) \to F$ by setting $\lambda(x_i) = 0$ for i = 1, ..., s. So via λ we can give F the structure of 1-dimensional $u(\mathcal{B}^e)$ (resp. $u(\mathcal{B})$)-module F_{λ} . Define $\hat{Z}(\lambda) = u(L^e) \bigotimes_{u(\mathcal{B}^e)} F_{\lambda}$. (In the case $\lambda \in X_1(T)$, its restriction to u(L) is essentially the same as the previous $u(L) \bigotimes_{u(L_0)} Z(\lambda) \cong u(L) \bigotimes_{u(\mathcal{B})} F_{\lambda}$. But here λ can be arbitrary in $X(T^e)$.) Then $\hat{Z}(\lambda)$ is a $\hat{u}(L)$ -module of highest weight λ and has an obvious basis consisting of weight vectors $y_1^{i_1} \cdots y_l^{i_l} \otimes 1$ ($0 \le i_1, ..., i_l < p$). Moreover, the λ -weight vector $1 \otimes 1$ generates $\hat{Z}(\lambda)$. Clearly each proper $\hat{u}(L)$ -submodule of $\hat{Z}(\lambda)$ lies in the sum of weight spaces for weights $\neq \lambda$, so there is a unique maximal $\hat{u}(L)$ -submodule and a unique irreducible quotient which is denoted by $\hat{M}(\lambda)$.

On the other hand, let V be an arbitrary irreducible $\hat{u}(L)$ -module. Its finite set of weights has at least one maximal element λ . Choose a nonzero element $v \in V^{\lambda}$, since $x_i \cdot v = 0$, i = 1, ..., s, Fv is stable under $u(\mathscr{B}^c)$ and T^c . Set $V' = u(L) \ v = u(N) \ v$. Then V' is a $\hat{u}(L)$ -submodule of V. Hence V' = V and we have

$$\mu \leq \lambda$$
, for any weight μ of V ,

that is, λ is the highest weight of V. Obviously, dim $V^{\lambda} = 1$, that is, V^{λ} is the unique stable line under $u(\mathcal{B}^c)$ and T^c . Since $\operatorname{Hom}_{\hat{u}(L)}(\hat{Z}(\lambda), V) \cong \operatorname{Hom}_{\hat{u}(\mathcal{B})}(F_{\lambda}, V) \neq 0$, V must be isomorphic to a quotient of $\hat{Z}(\lambda)$, hence to $\hat{M}(\lambda)$. Note finally that, because their highest weights differ, the modules $\hat{M}(\lambda)$, $\lambda \in X(T^c)$, are non-isomorphic to each other.

For any arbitrary $\hat{u}(L)$ -module V, let $[V:\hat{M}(\lambda)]$ be the number of times of $\hat{M}(\lambda)$ occurring as a composition factor of V. The results in [12, Sect. 2.8] can be applied to the case of $\hat{u}(L)$ -modules as follows.

PROPOSITION 3.1. If $\lambda \in X(T^e)$ and $\mu \in pX(T) + \mathbb{Z}\chi$, then

- (a) $\hat{M}(\mu)$ is 1-dimensional, with trivial u(L)-action.
- (b) $\hat{M}(\lambda + \mu) \cong \hat{M}(\lambda) \otimes_F \hat{M}(\mu)$.
- (c) $\hat{Z}(\lambda + \mu) \cong \hat{Z}(\lambda) \otimes_F \hat{M}(\mu)$.
- (d) $[V \otimes \hat{M}(\mu) : \hat{M}(\lambda)] = [V : \hat{M}(\lambda \mu)].$

It is useful to attach a formal character ch(V) to a $\hat{u}(L)$ -module V. Let $\mathbb{Z}[X(T^c)]$ be the group ring of $X(T^c)$ with basis consisting of symbols $e(\lambda)$

in 1-1 correspondence with the elements of $X(T^e)$, and with multiplication determined by the rule $e(\lambda) e(\mu) = e(\lambda + \mu)$. Let $m_V(\lambda)$ be the multiplicity of λ as a T^e -weight of V(the dimension of the corresponding T^e -weight space V^{λ}), and set $ch(V) = \sum_{\lambda \in X(T^e)} m_V(\lambda) e(\lambda) \in \mathbb{Z}[X(T^e)]$. The sum is of course finite.

4. Projective $\hat{u}(L)$ -Modules

For $\lambda \in X(T^e)$, we view F_{λ} as a $\hat{u}(\underline{h}^e)$ -module and form an induced $\hat{u}(L)$ -module $I(\lambda) = u(L^e) \otimes_{u(h^e)} F_{\lambda}$ with basis consisting of all $y_1^{i_1} \cdots y_t^{i_t} x_1^{j_1} \cdots x_s^{j_s} \otimes 1$ $(0 \leq i_1, ..., i_t, j_1, ..., j_s < p)$, hence dim $I(\lambda) = p^{s+t}$. Note that let $\lambda_1 = \lambda|_T$, then $I(\lambda) \cong u(L) \otimes_{u(h)} F_{\lambda_1}$ (regarded as u(L)-modules).

LEMMA 4.1. $I(\lambda)$ is a projective $\hat{u}(L)$ -module (resp. projective u(L)-module).

Proof. For any $\hat{u}(L)$ -module (resp. u(L)-module) V, by (3.4), we have

$$\operatorname{Hom}_{\dot{u}(L)}(I(\lambda), V) \cong \operatorname{Hom}_{\dot{u}(h)}(F_{\lambda}, V|_{\dot{u}(h)})$$

$$\cong \operatorname{Hom}_{T}(F_{\lambda}, V|_{T}) \tag{4.1}$$

(resp. $\operatorname{Hom}_{u(L)}(I(\lambda), V) \cong \operatorname{Hom}_{u(h)}(F_{\lambda_1}, V|_{u(h)})$). Since any $\hat{u}(\underline{h})$ -module (resp. $u(\underline{h})$ -module) is completely reducible, the functor $\operatorname{Hom}_{\hat{u}(h)}(F_{\lambda_1}, \dots)$ (resp. $\operatorname{Hom}_{u(h)}(F_{\lambda_1}, \dots)$) is exact. Hence $\operatorname{Hom}_{\hat{u}(L)}(I(\lambda), \dots)$ (resp. $\operatorname{Hom}_{u(L)}(I(\lambda), \dots)$) is also exact. This completes the proof.

Now for an arbitrary $\hat{u}(L)$ -module V, we get an epimorphism $\bigoplus_{\lambda} I(\lambda)^{\dim V} \to V$ (here we take the homomorphism $I(\lambda) \to V$ corresponding to elements of a basis for V^{λ}). So the $\hat{u}(L)$ -module V is the quotient of a projective module $\bigoplus_{\lambda} I(\lambda)^{\dim V^{\lambda}}$, hence the category of $\hat{u}(L)$ -modules has enough projectives. Since all modules in the category have a finite composition series, standard arguments show that each projective $\hat{u}(L)$ -module is a direct sum of indecomposable projectives, each irreducible $\hat{u}(L)$ -module $\hat{M}(\lambda)$ has an indecomposable projective cover $\hat{Q}(\lambda)$ with $\hat{M}(\lambda)$ as its unique irreducible quotient and each indecomposable projective $\hat{u}(L)$ -module is isomorphic to some $\hat{Q}(\lambda)$. Moreover, for any $\lambda \in X(T^c)$ and an arbitrary $\hat{u}(L)$ -module V, we have

$$[V: \hat{M}(\lambda)] = \dim \operatorname{Hom}_{\hat{u}(L)}(\hat{Q}(\lambda), V). \tag{4.2}$$

Lemma 4.2. $\hat{Q}(\hat{\lambda} + \mu) \cong \hat{Q}(\hat{\lambda}) \otimes_F \hat{M}(\mu)$, for all $\hat{\lambda} \in X(T^r)$ and $\mu \in pX(T) + \mathbb{Z}\chi$.

Proof. For an arbitrary $\hat{u}(L)$ -module V, there is a natural isomorphism of vector spaces

$$\operatorname{Hom}_{\hat{u}(L)}(\hat{Q}(\lambda) \otimes_F \hat{M}(\mu), V) \cong \operatorname{Hom}_{\hat{u}(L)}(\hat{Q}(\lambda), V \otimes_F \hat{M}(-\mu)).$$

It impies that the functor $\operatorname{Hom}_{\hat{u}(L)}(\hat{Q}(\lambda) \otimes_F \hat{M}(\mu), -)$ is exact. Hence $\hat{Q}(\lambda) \otimes_F \hat{M}(\mu)$ is a projective $\hat{u}(L)$ -module, which is indecomposable (on account of Proposition 3.1(a)), with $\hat{M}(\lambda) \otimes_F \hat{M}(\mu) \cong \hat{M}(\lambda + \mu)$ as quotient. Hence $\hat{Q}(\lambda) \otimes_F \hat{M}(\mu) \cong (\lambda + \mu)$.

DEFINITION 4.1. A $\hat{u}(L)$ -module V is a \hat{Z} -filtered module, if there is a filtration

$$0 = V_0 \subset V_1 \subset \cdots \subset V_r = V$$

such that the filtration quotients $V_i/V_{i-1} \cong \hat{Z}(\mu_i)$ for some $\mu_i \in X(T^e)$, i = 1, ..., r. The above filtration is called a \hat{Z} -filtration.

Obviously, ch $V = \sum_{i=1}^{r} \operatorname{ch} \hat{Z}(\mu_i)$ and the various ch $\hat{Z}(\mu)$ are linearly independent in $\mathbb{Z}[X(T^e)]$, since each involves a distinct highest weightt. So the number $(V: \hat{Z}(\mu))$ of indices with $\mu_i = \mu$ is well determined by V, independent of which \hat{Z} -filtration we choose.

LEMMA 4.3. Each $\hat{u}(L)$ -module $I(\lambda)$ has a \hat{Z} -filtration. Moreover

$$(I(\lambda): \hat{Z}(\mu)) = m_{\mu \in \Gamma}(\mu - \lambda), \quad \text{for all} \quad \mu \in X(T^e).$$

Proof. First we arrange the monomials $x_1^{i_1} \cdots x_s^{i_s}$ $(0 \le i_1, ..., i_s < p)$ in $u(\mathcal{N})$ in a certain order $X_1, ..., X_{p^s}$ such that the T^e -weight μ_i of X_i is maximal in $\{\mu_i, \mu_{i+1}, ..., \mu_{p^s}\}$. Let

$$I_i = \sum_{j=1}^i u(L)(X_j \otimes 1) \subseteq I(\lambda).$$

Then

$$0 = I_0 \subset I_1 \subset \cdots \subset I_{p^s} = I(\lambda),$$

each I_i is a $\hat{u}(L)$ -submodule and I_i/I_{i-1} is generated just by the coset of $X_i \otimes 1$. By Lemma 3.1, $x_k X_i$ equals a linear combination of certain X_i of higher weight than X_i for k = 1, ..., s, so j < i. Thus we get $x_k(X_i \otimes 1) \in I_{i-1}$, x_k annihilates the coset of $X_i \otimes 1$ in I_i/I_{i-1} . Hence I_i/I_{i-1} is a quotient of $\hat{Z}(\hat{\lambda} + \mu_i)$ and

$$\dim(I_i/I_{i-1}) \leq \dim \hat{Z}(\lambda + \mu_i) = p'.$$

Since

$$p^{t+s} = \dim I(\lambda) = \sum_{i=1}^{p^s} \dim(I_i/I_{i-1}) \le p^{t+s},$$

we have $\dim(I_i/I_{i-1}) = p'$ and

$$I_i/I_{i-1} \cong \hat{Z}(\lambda + \mu_1), \qquad i = 1, ..., p^s.$$

Thus $I(\lambda)$ has a \hat{Z} -filtration, and by construction the multiplicities $(I(\lambda):\hat{Z}(\mu))$ are as claimed.

To show that all projective $\hat{u}(L)$ -modules have \hat{Z} -filtrations, we must see how to handle direct summands.

LEMMA 4.4. (a) Let V have a \hat{Z} -filtration $0 = V_0 \subset V_1 \subset \cdots \subset V_r = V$. Let λ be a maximal weight of V, $v \in V^{\lambda}$, and $v \neq 0$. Then $u(L) \cdot v \cong \hat{Z}(\lambda)$ and $V/u(L) \cdot v$ has a \hat{Z} -filtration.

(b) Suppose a direct sum $V_1 \oplus V_2$ of two $\hat{u}(L)$ -modules has a \hat{Z} -filtration. Then V_1, V_2 also do.

Proof. This follows from the same argument as [12, Lemma 3.5 and 3.6]. \blacksquare

COROLLARY 4.1. Every projective $\hat{u}(L)$ -module has a \hat{Z} -filtration.

Proof. It is already proved for $I(\lambda)$. By (4.1),

$$\operatorname{Hom}_{\hat{\mu}(I)}(I(\lambda), \hat{M}(\lambda)) \cong \hat{M}(\lambda)^{\lambda} \neq 0,$$

so $\hat{M}(\lambda)$ is a quotient of $I(\lambda)$, forcing $\hat{Q}(\lambda)$ to be a direct summand of $I(\lambda)$. By Lemmas 4.3 and 4.4(b), $\hat{Q}(\lambda)$ has a \hat{Z} -filtration. The same is true for direct sums, i.e., for all projective $\hat{u}(L)$ -modules.

Now we prove the reciprocity theorem for the category of $\hat{u}(L)$ -modules.

Theorem 4.1. Let λ , $\mu \in X(T^e)$. Then

$$m_{\mu(\lambda^{-1})}(\lambda-\mu)(\hat{Q}(\lambda):\hat{Z}(\mu))=m_{\mu(\lambda^{-1})}(\mu-\lambda)[\hat{Z}(\mu):\hat{M}(\lambda)].$$

Proof. By (4.2), we have

$$[\hat{Z}(\mu): \hat{M}(\lambda)] = \dim \operatorname{Hom}_{\hat{u}(L)}(\hat{Q}(\lambda), \hat{Z}(\mu)).$$

We must show

$$m_{u(.,C_{-})}(\lambda - \mu)(\hat{Q}(\lambda) : \hat{Z}(\mu))$$

$$= m_{u(.,C)}(\mu - \lambda) \text{ dim Hom}_{\hat{u}(L)}(\hat{Q}(\lambda), \hat{Z}(\mu)),$$
for all $\lambda, \mu \in X(T^{c}).$ (4.3)

This follows from the more general statement: for arbitrary projective P,

$$m_{n(\cdot, \cdot, \cdot)}(\lambda - \mu)(P; \hat{Z}(\mu))$$

$$= m_{n(\cdot, \cdot)}(\mu - \lambda) \dim \operatorname{Hom}_{\hat{n}(I)}(P, \hat{Z}(\mu)). \tag{4.4}$$

Note that both sides are additive in the first variable. First we verify (4.4) for $P = I(\lambda)$. Note that

$$\dim \operatorname{Hom}_{\hat{u}(L)}(I(\lambda), \hat{Z}(\mu)) = \dim \hat{Z}(\mu)^{\lambda} = m_{u(\lambda)^{-1}}(\lambda - \mu).$$

But $(I(\lambda); \hat{Z}(\mu)) = m_{u(\cdot, \tau)}(\mu - \lambda)$. Hence (4.4) holds for $P = I(\lambda)$. Next we note that the number of times that $\hat{Q}(\tau)$ appears in a direct sum decomposition of $I(\lambda)$ into indecomposable projective modules equals dim $\operatorname{Hom}_{\hat{u}(I)}(I(\lambda), \hat{M}(\tau)) = \dim \hat{M}(\tau)^{\lambda}, \lambda \leq \tau$. If $\lambda \leq \mu$, then

$$(\hat{Q}(\lambda):\hat{Z}(\mu)) \leq (I(\lambda):\hat{Z}(\mu)) = 0,$$

since $m_{u(\cdot, \cdot)}(\mu - \lambda) = 0$. At the same time, if $\lambda \le \mu$, then

dim
$$\operatorname{Hom}_{\hat{\mu}(L)}(\hat{\mathcal{Q}}(\lambda), \hat{\mathcal{Z}}(\mu)) = \lceil \hat{\mathcal{Z}}(\mu) : \hat{M}(\lambda) \rceil = 0.$$

So for $\lambda \leq : \mu$, we get (4.3).

Now we must still prove (4.3) when $\hat{\lambda} \leq \mu$. Fix μ and we use induction on $\hat{\lambda}$ from above. If $\hat{\lambda} = \mu$, since $I(\hat{\lambda}) = \hat{Q}(\hat{\lambda}) \oplus \bigoplus_{\tau < \hat{\lambda}} \hat{Q}(\tau)^{m(\tau)}$ where $m(\tau) = \dim \hat{M}(\tau)^{\hat{\lambda}}$, then $\tau > \hat{\lambda} = \mu$ and (4.4) holds for $\hat{Q}(\hat{\lambda})$, using (4.4) for $I(\hat{\lambda})$ along with the fact that (4.4) is additive in the first variable P. If $\hat{\lambda} < \mu$, by induction (4.4) holds for $P = \bigoplus_{\tau > \hat{\lambda}} \hat{Q}(\tau)^{m(\tau)}$, since (4.4) is now known for $I(\hat{\lambda})$, the additivity of (4.4) yields the same conclusion for $\hat{Q}(\hat{\lambda})$.

Let $\Pi(V)$ be the set of all T^e -weights of a $\hat{u}(L)$ -module V. By the proof of Theorem 4.1, we have

COROLLARY 4.2. Let λ , $\mu \in X(T^e)$. Then we have

- (a) $m_{u(\cdot,\cdot,\cdot)}(\mu-\lambda) \geqslant m_{u(\cdot,\cdot,\cdot)}(\lambda-\mu) > 0$, if $\lambda-\mu \in \Pi(u(\cdot,\cdot,\cdot))$.
- (b) $[\hat{Z}(\mu): \hat{M}(\lambda)] = 0$, if $\lambda \mu \notin \Pi(u(\mathcal{N}))$ and $\mu \lambda \in \Pi(u(\mathcal{N}))$.
- (c) $(\hat{Q}(\lambda):\hat{Z}(\mu)) = [\hat{Z}(\mu):\hat{M}(\lambda)] = 0$, if $\lambda \mu \notin \Pi(u(\lambda^*)) \cup \Pi(u(\lambda^*))$.

5. Projective u(L)-Modules

For $\lambda \in X_1(T)$, $\hat{Z}(\lambda)$ is essentially $u(L) \otimes_{u(L_0)} Z(\lambda)$. Its restriction to u(L) is just $u(L) \otimes_{u(L_0)} Z(\lambda)$. For the irreducible quotient $\hat{M}(\lambda)$ of $\hat{Z}(\lambda)$, we denote its restriction to u(L) by $\hat{M}(\lambda)|_{u(L)}$. To show the irreducibility of $\hat{M}(\lambda)|_{u(L)}$, we introduce the notion of $\hat{u}(L)$ -gradation.

Definition 5.1. A $\hat{u}(L)$ -module V is called $\hat{u}(L)$ -graded if $V = \bigoplus_{i \ge 0} V_i$ (direct sum of subspaces) is u(L)-graded and $T^eV_i \subseteq V_i$.

Let $L^{-} = \bigoplus_{i < 0} L_{[i]}$, Ann $U = \{v \in V \mid xv = 0, \forall x \in L^{-}\}$ and $L_{[0]}^{c} = L_{[0]} + \underline{h}_{1}$.

- LEMMA 5.1. (a) If $V = \bigoplus_{i \ge 0} V_i$ is an irreducible $\hat{u}(L)$ -graded module, then V_0 is an irreducible $\hat{u}(L_{[0]})$ -module (i.e., $u(L_{[0]}^e) T^e$ -module).
- (b) If a $\hat{u}(L)$ -graded module $V=\bigoplus_{i\geqslant 0}V_i$ is transitive (i.e., $\operatorname{Ann}_V L=V_0$) and V_0 is an irreducible $\hat{u}(L_{\lceil 0\rceil})$ -module, then u(L) V_0 is the unique irreducible $\hat{u}(L)$ -submodule of V.
- *Proof.* (a) If V'_0 is a proper $\hat{u}(L_{[0]})$ -module of V_0 , then u(L) V'_0 is obviously a proper $\hat{u}(L)$ -submodule of V.
- (b) Since V is transitive, every nonzero $\hat{u}(L)$ -submodule of V has a nonzero intersection with V_0 . Hence it contains V_0 and therefore contains u(L) V_0 .
- Let $u(L_{-})=\bigoplus_{i\geqslant 0}u(L_{-})_{-i}$ whose gradation is derived from that of L_{-} . Let $V=\bigoplus_{i\geqslant 0}V_{i}$ be a $\hat{u}(L)$ -graded module, $R_{i}=\langle v\in V_{i}\mid u(L_{-})\mid v=0\rangle$, and $R=\bigoplus_{i\geqslant 0}R_{i}$ which is called the radical of V.
- LEMMA 5.2. If V_0 is a $\hat{u}(L_{[0]})$ -module and $V = u(L) V_0$, then (a) V is $\hat{u}(L)$ -graded; (b) the radical R is a homogeneous $\hat{u}(L)$ -submodule of V.
- *Proof.* (a) This is clear. (b) By [18, Proposition 1.1], R is a homogeneous u(L)-submodule of V. Clearly, we have $T^cR_i \subseteq R_i$. The proof is finished.

The following lemma can now be obtained by Lemma 5.2 and adopting the arguments of [18, Corollary 1.5] mutatis mutandis.

- LEMMA 5.3. Every irreducible $\hat{u}(L)$ -module is isomorphic to a $\hat{u}(L)$ -graded module.
- **PROPOSITION** 5.1. If every irreducible $\hat{u}(L_{[0]})$ -module V_0 is $L_{[0]}$ -irreducible, then every irreducible $\hat{u}(L)$ -module V is u(L)-irreducible.

156 s. Chiu

Proof. By Lemma 5.3, V is $\hat{u}(L)$ -graded. Set $V = \bigoplus_{i \ge 0} V_i$. By Lemma 5.1(a), V_0 is $\hat{u}(L_{[0]})$ -irreducible and therefore $L_{[0]}$ -irreducible. This implies that the $L_{[0]}$ -submodule $\mathrm{Ann}_V L = V_0$, that is, V is transitive. Let V' be an irreducible u(L)-submodule. Using the argument of [18, Corollary 1.2(2)], we can easily show that $V' = u(L) V_0$. By Lemma 5.1(b), we have V = V'. Hence V is u(L)-irreducible.

Note that $L_{[0]}$ has a canonical graduation such that $L_{[0]} = \bigoplus_{i=1}^r r_i g_i$ with $g_0 = \underline{h}$. By the same argument of Proposition 5.1, we can show that if every irreducible $\hat{u}(h)$ -module V_0 is \underline{h} -irreducible, then every irreducible $\hat{u}(L_{[0]})$ -module is $L_{[0]}$ -irreducible. We know that the notions of $\hat{u}(\underline{h})$ -module and T-module are equivalent and any irreducible T-module is one-dimensional which must be h-irreducible. Hence we have

COROLLARY 5.1. If V_0 is an irreducible $\hat{u}(L_{[0]})$ -module, then V_0 is $L_{[0]}$ -irreducible.

Remark 5.1. Corollary 5.1 is a result of the representation theory of algebraic groups (cf. [12, Sect. 4.1]). Now we obtain this result by direct proof.

By Proposition 5.1 and Corollary 5.1, we obtain

COROLLARY 5.2. Every irreducible $\hat{u}(L)$ -module is u(L)-irreducible. In particular, $\hat{M}(\lambda)|_{u(L)}$ is u(L)-irreducible, for $\lambda \in X_1(T)$.

For convenience, we write $M(\lambda) = \hat{M}(\lambda)|_{u(L)}$, for arbitrary $\lambda \in X(T^e)$. For $\lambda \in X_1(T)$ and $\mu \in pX(T) + \mathbb{Z}\chi$, by Proposition 3.1, we have

$$\begin{cases}
M(\lambda + \mu) \cong M(\lambda), \\
\hat{Z}(\lambda + \mu)|_{u(L)} \cong u(L) \otimes_{u(L_0)} Z(\lambda)
\end{cases}$$
(as $u(L)$ -modules). (5.1)

It follows that each composition series of a $\hat{u}(L)$ -module V is also a composition series of the u(L)-module V, with multiplicity of $M(\lambda)$ as u(L)-composition factor given by

$$[V: M(\lambda)] = \sum_{\mu \in pX(T) + \mathbb{Z}_{\chi}} [V: \hat{M}(\lambda + \mu)], \quad \text{for } \lambda \in X_{1}(T). \quad (5.2)$$

As for $\hat{u}(L)$, the category of u(L)-modules has enough projective modules. For $\lambda \in X_1(T)$, let $Q(\lambda)$ be the PIM corresponding to $M(\lambda)$. Then $Q(\lambda)$ is an indecomposable projective u(L)-module with quotient $M(\lambda)$ (i.e., $Q(\lambda)$ is a projective cover of $M(\lambda)$). As in (4.2), we have

dim
$$\operatorname{Hom}_{u(L)}(Q(\lambda), V) = [V: M(\lambda)].$$

LEMMA 5.4. Let $\lambda \in X_1(T)$. Then $\hat{Q}(\lambda) \cong Q(\lambda)$ as u(L)-modules.

Proof. Since $\hat{Q}(\lambda)$ is a $\hat{u}(L)$ -summand of $I(\lambda)$, $\hat{Q}(\lambda)$ is also a u(L)-summand of $I(\lambda)$. By Lemma 4.1, $\hat{Q}(\lambda)|_{u(L)}$ is projective. Let $\mu \in X_1(T)$. Then

$$\begin{aligned} \dim \operatorname{Hom}_{u(L)} \left(\hat{Q}(\lambda) |_{u(L)}, M(\mu) \right) &= \sum_{\tau \in \rho X(T) + \mathbb{Z}_{\chi}} \dim \operatorname{Hom}_{u(L)} \left(\hat{Q}(\lambda) |_{u(L)}, M(\mu) \right)^{\tau} \\ & \text{(by Lemma 3.3(b))} \\ &= \sum_{\tau \in \rho X(T) + \mathbb{Z}_{\chi}} \dim \operatorname{Hom}_{\hat{u}(L)} \left(\hat{Q}(\lambda), \hat{M}(\mu - \tau) \right) \\ & \text{(by (3.3) and Proposition 3.1)} \\ &= \sum_{\tau \in \rho X(T) + \mathbb{Z}_{\chi}} \delta_{\lambda \mu} \delta_{\tau \alpha} = \delta_{\lambda \mu}. \end{aligned}$$

Thus regarded as a u(L)-module, $\hat{Q}(\lambda)$ has a unique irreducible quotient $M(\lambda)$. This implies that

$$|\hat{Q}(\lambda)|_{g(I)} \cong Q(\lambda).$$

THEOREM 5.1. Let $\lambda \in X_1(T)$. Then

- (a) There is a filtration $0 = Q_0 \subset Q_1 \subset \cdots \subset Q_r = Q(\lambda)$ with $Q_i/Q_{i-1} \cong u(L) \otimes_{u(L_0)} Z(\mu_i)$, for some $\mu_i \in X_1(T)$.
- (b) The set $\{u(L) \otimes_{u(L_0)} Z(\mu_i) \mid i=1,...,r\}$ of the filtration quotients (counted with multiplicity) in (a) is uniquely determined by $Q(\lambda)$.
- (c) Let $(Q(\lambda): u(L) \otimes_{u(L_0)} Z(\mu))$ denote the multiplicity of $u(L) \otimes_{u(L_0)} Z(\mu)$ ($\mu \in X_1(T)$) as filtration quotient of the filtration of $Q(\lambda)$. Then

$$\begin{aligned} (Q(\lambda): u(L) \otimes_{u(L_0)} Z(\mu)) &= \sum_{\tau \in \rho X(T) + \mathbb{Z}_{\chi}} (\hat{Q}(\lambda): \hat{Z}(\mu + \tau)) \\ &\geq [u(L) \otimes_{u(L_0)} Z(\mu): M(\lambda)]. \end{aligned}$$

Proof. (a) We start with a \hat{Z} -filtration of $\hat{Q}(\lambda)$ having quotients $\hat{Z}(\mu)$. It gives on restriction to u(L) a filtration with quotients $u(L) \otimes_{u(L_0)} Z(\mu)$, so we get (a).

- (b) By the argument of [12, Proposition 4.2], we can easily get (b).
- (c) For the filtration in (a), we use Lemma 5.4 and (5.1) to compute multiplicity of $u(L) \bigotimes_{u(L_0)} Z(\mu)$, which is equal to

158 s. chiu

$$(Q(\lambda) : u(L) \otimes_{u(L_0)} Z(\mu))$$

$$= \sum_{\tau \in pX(T) + \mathbb{Z}_{\chi}} (\hat{Q}(\lambda) : \hat{Z}(\mu + \tau))$$

$$\geqslant \sum_{\tau \in pX(T) + \mathbb{Z}_{\chi}} [\hat{Z}(\mu + \tau) : \hat{M}(\tau)] \qquad \text{(by Corollary 4.2)}$$

$$= \sum_{\tau \in pX(T) + \mathbb{Z}_{\chi}} [\hat{Z}(\mu) : \hat{M}(\lambda + \tau)] \qquad \text{(by Proposition 3.1)}$$

$$= [u(L) \otimes_{u(L_0)} Z(\mu) : M(\lambda)] \qquad \text{(by (5.2))}. \quad \blacksquare$$

Let λ , $\mu \in X_1(T)$. Write $b_{\lambda\mu} = (Q(\lambda) : u(L) \otimes_{u(L_0)} Z(\mu))$, $c_{\lambda\mu} = [Q(\lambda) : M(\mu)]$ (called the Cartan invariants of u(L)) and $d_{\mu\lambda} = [u(L) \otimes_{u(L_0)} Z(\mu) : M(\lambda)]$. Let B, C, and D be the corresponding $p^1 \times p^1$ matrices of integers (C and D are called the Cartan matrix and the decomposition matrix of u(L), respectively). By Theorem 5.1, we have

COROLLARY 5.3. C = BD.

Since u(L) is a symmetric algebra, C is symmetric and $Q(\lambda)$ ($\lambda \in X_1(T)$) is the injective envelope of $M(\lambda)$, that is, the socle of $Q(\lambda)$ is isomorphic to the unique highest composition factor $M(\lambda)$.

We finally generalize the linkage principle in [8] to the cases of L = W, S, or H, using the following results of [19].

If $\lambda \in \Lambda$, then we denote the irreducible module of $u(L_{\{0\}})$ with highest weight λ by $V(\lambda)$ and write $\widetilde{M}(\lambda) = (u(L) \bigotimes_{u(L_0)} V(\lambda)_{\sigma})_{\min}$.

By [4, Corollary 2.6; 19, Theorems 2.1, 2.2, and 2.3], we have

- LEMMA 5.5. Let L be any one of W, S, and H. (a) If V_0 is $u(L_{[0]})$ -irreducible, then $(u(L) \otimes_{u(L_0)} (V_0)_{\sigma})$ is u(L)-irreducible unless V_0 is trivial or a highest weight module with a fundamental weight as its highest weight.
- (b) For L=W, the composition factors of $u(L)\otimes_{u(L_0)}V(\lambda_i)_{\sigma}$ are $\tilde{M}(\lambda_i)$ (socle), $\tilde{M}(\lambda_{i+1})$ (top), and $F(C_i^n-\delta_{i0})$ times), i=0,-1,...,n, where $\tilde{M}(\lambda_0)=F$ and $\tilde{M}(\lambda_{n+1})=0$ (the top composition factor of $u(L)\otimes_{u(L_0)}V(\lambda_n)_{\sigma}$ is F). For L=S, the composition factor of $u(L)\otimes_{u(L_0)}V(\lambda_i)_{\sigma}$ are $\tilde{M}(\lambda_i)$ (socle), $\tilde{M}(\lambda_{i+1})$ (top), and $F(C_i^n+\delta_{i1})$ times), i=0,-1,...,n-1, where $\tilde{M}(\lambda_0)=F$ and $\tilde{M}(\lambda_n)$ has composition factors F and $\tilde{M}(\lambda_1)$ (the top composition factor of $u(L)\otimes_{u(L_0)}V(\lambda_{n-1})_{\sigma}$ is F). For L=H(n=2r), the composition factors of $u(L)\otimes_{u(L_0)}V(\lambda_i)_{\sigma}$ are $\tilde{M}(\lambda_{i-1})(1-\delta_{i1})$ times), $\tilde{M}(\lambda_i)$ (socle), $\tilde{M}(\lambda_i)$ (top), $\tilde{M}(\lambda_{i+1})$ and $F(C_i^n+C_i^{n+1}-2\delta_{i0}+\delta_{i1})$ times), i=0,-1,...,r, where $\tilde{M}(\lambda_{-1})=0$, $\tilde{M}(\lambda_0)=F$, and $\tilde{M}(\lambda_{r+1})=\tilde{M}(\lambda_{r-1})$.

Remark 5.2. By Lemma 5.5 and Corollary 5.2, we have

$$M(\lambda) \cong \begin{cases} \widetilde{M}(\lambda), & \text{if } \lambda \neq \lambda_0, \, \lambda_1, \, \dots, \, \lambda_1 \text{ or } L = H, \\ \widetilde{M}(\lambda_{i+1}), & \text{if } L = W(\text{or } S) \text{ and } \lambda = \lambda_i, \, i = 0, \, \dots, \, 1, \end{cases}$$

where $M(\lambda_{l+1}) = F$.

Let \mathscr{W} be the Weyl group of $L_{\{0\}}$, w_0 the longest element in \mathscr{W} , and $\delta = \text{half}$ the sum of positive roots. We denote $w \cdot \lambda = w(\lambda + \delta) - \delta$, for $w \in \mathscr{W}$ and $\lambda \in \Lambda$ and say that two weights λ , $\mu \in \Lambda$ are linked and write $\lambda \sim \mu$ if $w \cdot \lambda = \mu$.

By the lankage principle (cf. [8, Theorem 3.2]) and Lemma 5.5, we can easily obtain

- THEOREM 5.2. Let L be any one of W, S, and H. (a) If $\widetilde{M}(\mu)$ is a composition factor of $u(L) \otimes_{u(L_0)} Z(\lambda + \sigma|_{\underline{h}})$ $(\lambda, \mu \in \Lambda)$, then one of the following statements hold. (1) $\lambda \sim \mu$. (2) $\mu = 0$ and $\lambda \sim \lambda_j$ (j = 0, 1, ..., 1). (3) $\mu = \lambda_i$ (i > 0) and $\lambda \sim \lambda_{i-1}$.
- (b) $u(L) \otimes_{u(L_0)} Z(\lambda + \sigma|_h)$ and $u(L) \otimes_{u(L_0)} Z(\lambda + \sigma|_h)$ share a composition factor if and only if $\lambda \sim \mu$ or $\lambda \sim \lambda_i$ and $\mu \sim \lambda_i$ for some i, j.

ACKNOWLEDGMENTS

The author is much indebted to Professor G. Yu. Shen, who extends the proof of Corollary 5.2 to include the case of L = K. He is also much indebted to a referee for his valuable comments and suggestions, particularly in the improvement of Lemma 2.1 and the correction of Lemma 2.2.

REFERENCES

- 1. S. CHIU AND G. YU. SHEN, Cohomology of graded Lie algebras of Cartan type of characteristic p, Abh. Math. Sem. Univ. Hamburg 57 (1987), 139–156.
- C. Curtis and I. Reiner, Representation theory of finite groups and associative algebras, in "Pure and Appl. Math.," Vol. 11, Interscience, New York, 1962; 2nd ed., 1966.
- 3. C. Curtis and I. Reiner, "Methods of Representation Theory," Vol. I, Wiley, New York, 1981.
- R. FARNSTEINER, Extension functors of modular Lie algebras, Math. Ann. 288 (1990), 713-730.
- R. FARNSTEINER AND H. STRADE, Shapiro's lemma and its consequences in the cohomology theory of modular Lie algebras, Math. Z. 206 (1991), 153-168.
- J. Humphreys, Modular representations of classical Lie algebras and semisimple groups, J. Algebra 19 (1971), 51-79.
- J. Humphreys, "Introduction to Lie Algebras and Representation Theory," Springer-Verlag, New York, 1972.

160 s. chiu

- 8. J. Humphreys, Ordinary and modular representations of Chevalley groups, in "Lecture Notes in Math.," Vol. 528, Springer-Verlag, New York/Berlin, 1976.
- J. HUMPHREYS, Symmetry for finite dimensional Hopf algebras, Proc. Amer. Math. Soc. 68 (1978), 143-146.
- J. Humphreys, Linear algebraic groups, in "Graduate Texts in Math.," Vol. 21, Springer-Verlag, New York/Berlin, 1975.
- N. JACOBSON, Classes of restricted Lie algebras of characteristic p, II, Duke Math. J. 10 (1943), 107-121.
- 12. J. Jantzen, Über Darstellungen höherer Frobenius-Kerne halbeinfacher algebraischer Gruppen, Math. Z. 164 (1979), 271-292.
- J. JANTZEN, Darstellungen halbeinfacher Gruppen und ihrer Frobenius-Kerne, J. Reine Angew. Math. 317 (1980), 157-199.
- 14. J. Jantzen, "Representations of Algebraic Groups," Academic Press, Orlando, FL, 1987.
- 15. R. LARSON AND M. SWEEDLER, An associative orthogonal bilinear form for Hopf algebras, *Amer. J. Math.* **91** (1969), 75-94.
- 16. Shen Guangyu, A class of simple subalgebras of Jacobson algebras and their automorphisms, Acta Sci. Natur. Univ. Pekinensis 3, No. 1 (1957), 39-51. [In Chinese]
- 17. Shen Guangyu, Graded modules of graded Lie algebras of Cartan type. I. Mixed product of modules, *Scientia Sinica Ser. A* 29, No. 6 (1986)), 570–581.
- 18. Shen Guangyu, Graded modules of graded Lie algebras of Cartan type. II. Positive and negative graded modules, *Scientia Sinica Ser. A.* 29, No. 10 (1986), 1009-1019.
- SHEN GUANGYU, Graded modules of graded Lie algebras of Cartan type. III. Irreducible modules, Chinese Ann. Math. Ser. B 9, No. 4 (1988), 404–417.
- H. STRADE AND R. FARNSTEINER, "Modular Lie Algebras and Their Representations," Dekker, New York, 1988.