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INTRODUCTION 

Let R be any noetherian ring. Let n be a positive integer such that 
n = 2k + 1 (k 2 1). Let Z,, 1 d i<j< IZ, be in(n - 1) independent indeter- 
minates. We let X stand for the II x n matrix (X,) such that 

if i-cj 

if i>j 

if i=.j 

(X is a generic skew-symmetric matrix), and we let S stand for the polyno- 
mial ring R[X] (=R[Z,]). 

The pfaffians of the 2k-order principal submatrices of X generate an ideal 
of S, the “pfalfian ideal,” denoted by I. It is well known that I is a 
generically perfect Gorenstein prime ideal of grade 3, in fact a prototype 
of all the ideals of this kind (cf. [B-E, 31). Hence, I has a finite free 
S-resolution of length 3, a resolution which looks the same regardless of 
the ring R. 

’ Partially supported by the M.P.I. (Italy), and also a member of C.N.R.-G.N.S.A.G.A. 
(Italy). 

’ Partially supported by C.N.R. (Italy). 

463 
0021~8693,/92 $5.00 

Copyright tt, 1992 b) Academic Press, Inc. 
Ail rights of reproduction in any iorm reserved. 



464 BOFFIANDSANCHEZ 

In our 1989 preprint “On the square of the pfaffian ideal” (largely 
reproduced in [B-S] ), we described for the first time a finite free resolution, 
A, of I” (we mean: of S/I’). In particular, since A did not depend on R and 
its length was 3, I’ appeared to be generically perfect, as had long been 
conjectured and was independently proved in [B-U], without any explicit 
construction of resolutions. (Incidentally, note that I2 coincides with the 
ideal, say I,,- 1, generated by the (n - 1)-order minors of X, i.e., the 
“submaximal” minors.) 

Our construction of the complex A was inspired by some heuristic 
considerations (cf. Section 2 below), which also indicated that a certain 
family of complexes might provide resolutions for all the powers F 
(nz B I). (Interest in such a class of ideals was partially suggested to us by 
the desire of comparing its behavior with that of the family studied in 
P-E, 21). 

In order to prove the exactness of our candidates, we first devised a new 
way of proving the exactness of A (based on the acyclicity lemma), which 
seemed more suitable for generalization than that of [B-S], based on the 
Buchsbaum-Eisenbud criterion [B-E, 11. Then some more work enabled 
us to show the exactness of our conjectural resolutions. It was precisely 
when we were performing the latter step that Kustin and Ulrich came out 
with their long preprint [K-U], in which resolutions for the ideals Z’” were 
obtained as a by-product (an unexpected one, the authors say in their 
introduction) of a more general construction related to residual inter- 
sections. 

The approach and the techniques of [K-U], however, are different from 
ours. Indeed, as long as one concerns oneself only with the ideals F, our 
point of view is neater. Furthermore, we believe that methods like ours 
(making use of some universally free representations of the general linear 
group, and of their straightening laws) are of independent interest and can 
help in resolving the ideals of other significant classes. In a slightly different 
vein, they have already proved very effective: see for instance [A-B-W, 1 ] 
and [A-B-W, 21. 

Section 1 contains some preliminaries. In Section 2, we give the 
construction of the complexes C,fi later to be shown to resolve the ideals r” 
(nz > l), and some comments are made. Sections 3 and 4 carry the proof of 
the exactness of the complexes C,. 

1. PRELIMINARIES 

1.1. Keeping in mind the notations of the Introduction, we first recall 
some facts. 

Let F, be a free R-module of rank n = 2k + 1, and take the symmetric 



POWERS OF THE PFAFFIAN IDEAL 465 

algebra A = S(A2Fo j. Set F= A OR F,. We define a degree I -A-map 
f: F-+ F* in the following way (F* being the dual of F). For every r, f  on 
A, 0 R F, is the composite 

where nz denotes multiplication in the appropriate algebras and C, stands 
for the element of F,@, F,* 2 Hom,(F,, F,) corresponding to the identity 
on F,. 

Choosing dual bases {e,, . . . . e,} and (sr, . . . . E,) for F, and Fz, resp., 
C,= x7=, ej@cj and it turns out that 

sends each ei to xi (ei A ei) @ al. Hence (ei A ejj is the matrix associated 
to f with respect to the induced bases { 10 e,. . . . . 10 e,) and 
{lQ% . . . . lO.s,,) of F and F”, respectively (we write our matrices row- 
wise). By means of the identification ei A e,t-+ Xii, (ei A ej) coincides with 
the generic skew-symmetric matrix of the Introduction, and A = S(A’F, j 2 
R[X] = S. From now on, we use S to mean both R[X] and S(A’F,j, 
dropping the symbol A. Also, we denote 1 Oej and 1 @ai simply by ei and 
ci, resp. 

f is called the generic alternating map. Using the isomorphism 
Hom,(F, F*) 2 F* 0 F*, f corresponds to an element @E F* 0 F*. In fact. 
a E A2F*, where A2F* is embedded into F* @ F” by means of the diagonal 
map. Explicitly, c( = Cici Xiiai A aj. Since CI is homogeneous of degree 2 in 
AF*, there is a sequence of elements LX(‘), c&r), af2’, . . . called the divided 
powers of CL To hand these elements, we freely use the notation and 
properties established in [B-E, 31. 

We are now in a position to describe the (minimal) free resolution of S/i 
contained in [B-E, 31: 

The morphism f is as above. As for g (whose dual g* also occurs), 
choose an orientation e E A”,, i.e., an identification between AzkF and F”. 
and let g be identified with 

aZk: AZkF+ S 

UH~(cdk’QUj, 
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where /? stands for the natural pairing AZkF*@ A2kF-+ S given by the 
AP*-module structure of AF. 

Concretely, g sends each element Ed of the basis {sr, . . . . E,~} of F* to 
( - l)‘+ ’ Pf, (Xj, where Pf, (X) is the pfaffian of the submatrix of X formed 
by deleting the ith row and the ith column. 

Note that g*, thought of as a map S --+ A2kF*, is defined by means of 
g*( 1) = D+). 

1.2. Throughout, we freely use the notion of Schur functor, as developed 
in [A-B-W, 21. But we wish to point out a few things to the reader. 

Given a partition A= (,I.,, &, . ..). ,I, >A, 3 . . . . the Schur functor L,F 
(F as before) is a free S-module and a GL(F)-representation. Furthermore, 
if S + S’ is a morphism of rings, L,F@, S' 2 L,(F@, S'). 

The AF*-module structure of AF allows the construction of a natural 
isomorphism 

L,F@ A"F* @ . . . @ A"F* -+ LA,F*, 
4 

where q is the length of A (i.e., the number of nonzero parts of 1) and 
a* = (n-/l,, . ..) 11 -a,, 0, . ..). 

We say that A is a hook if 3L,, d 1 for all h 3 2; i.e., 1= (AI, 1, . . . 1, 0, . . . j, 
also written (A,, 1’) and often identified with the diagram - I 

1, boxes 

- / 

Then L, F coincides with 

Coker( A "+'F&Y_,F- A"LF@F&S+lF- A"'F@S,F), 

where A (resp., m) is diagonalization (resp., multiplication) in the algebra 
AF (resp., SF). 
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Consider the basis of A”lF@ S,F induced by {e,, . . . . e,). Given an 
element e, A ... r\ e,,@ej, . . ejL of such a basis, denote by the tableau 

its image in L,A,,,I,F. 
The standard basis theorem says that: 

(i) a basis of LcA,,rr, F is formed by all the tableaux such that the 
indices in the first row are strictly increasing and those in the first column 
are weakly increasing (“standard tableaux”); 

(ii) a tableau which is not standard is equal to a Z-linear combina- 
tion of standard tableaux (“straightening law”). 

Explicitly, the key step of the straightening law is 

where ih means i, omitted. 
Finally, assume that F=F,@F, with F, = (e,, . . . . eh> and 

F2= <eh+l, . . . . e, ) for some fixed h. One has an isomorphism of free 
S-modules 
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where (p, , 1”) ranges on all the hooks which are nested in (A,, 1’): 

But as GL(F,) x GL(F,)-modules, such an isomorphism usually holds only 
up to a filtration. 

EXAMPLE. Let n = 5, h = 3, A, = 4 and t = 3. Acting on 

1345 
2 ET 5 

5 

(which belongs to Lc2, i ,F, @ S2 F2 0 A’F,) by the element of GL( F) which 
exchanges e, and e, and fixes all the other basis elements, one gets 

tableaux belonging to tableaux belonging to 
L,2,1,F1@&FzO/iZFz ~,3,F,OS,F,OA’FZ 

1.3. We end this section with some notations and properties about 
pfaftians. 

Let W stand for any skew-symmetric matrix (wijj of order HZ, m either 
even or odd. (That is, MJ~ + ulji = 0 whenever i #j, and ~~~~~ = 0 for every i.) 
We denote by Pfh,, .__. h, ( W) the pfafhan of the skew-symmetric submatrix of 
W formed by deleting rows and columns indexed by 12, , . . . . II,.. 

Remark. It is well known that for every fixed i,, 

Pf(W)= f (-l)i+~O+‘y,wij,Pf,,(W), 
i=l 
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where 

i 

1 if i < i, 

Yii, = 0 if i=i,. 

-1 if i > i, 

In particular, setting IV= X, P” z I= Pf,,(X) c PfZk- z(X) E . . . z Pf,(X) = 
(x~)l<i<j<tc3 where Pf,(X) denotes the ideal of S generated by the 
pfaftians’of all 2p-order principal submatrices of X, 1 < p dk. 

Another familiar fact is that for every fixed i, and j, such that i, #;j,, 

,;, (-l)i+i~+~]~iiow’ijo Pf,,,(W)=O. 

If this relation is applied to an augmented matrix obtained from W by 
duplicating a row of W and the corresponding column (and putting 0 at 
the intersection), one gets the following. 

Formula. For every fixed i,, 

f wiio Ti ( W) = 0, 
i=l 

where T, ( W) stands for (- l)i+i Pfi( W). 

One should remark that with the notation above, the map g of 1.1 sends 
si precisely to Ti (X). 

2. THE COMPLEXES @,, 

2.1. In this section we construct the complexes C,, (nz 3 1 j later to be 
shown to resolve the ideals P”. We start by illustrating the heuristic con- 
siderations which guided us (and are in the spirit of [B]). For simplicity, 
we restrict to the case m = 2. 

Having at hand the resolution E of Z (cf. Subsection l.l), it is natural to 
assume that the first map, 9r, of a resolution of I’ must coincide with the 
second symmetric power of the map g: F* + S having Im( g) = I. 

For every r, 9, is defined by the composite 

where (w~~)~ is the R-map A2”F0 + S,(A*F,) inducing mIk over S. 
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Since S,(A2kFo) g S,F,* = LcZk+l,ll,Fz 2 LcZk,2k,F0, the above com- 
posite is a map S,(A2Fo) @ Li2k,2k, F,, + SZk+ ,(A’F,,). We then study such 
a map, when r varies, in order to get a clue on Ker($,). And we do this 
by resorting to the fact that the given modules are universally free represen- 
tations of the general linear group. (The word “universally” refers to the 
fact that LA(Fo QR R’) = (L, Fo) OR R’ whenever a map R -+ R’ is given. ) 

By universality, we may hope that all the necessary information on our 
complex is contained in the characteristic zero case, i.e., assuming R to be 
a field of characteristic zero. If we make such an extra assumption on 
the ground ring, the group GL(F,) is linearly reductive and the Schur 
functors provide a complete family of irreducibles. Then the irreducibles 
of S,(A’F,J 0 L (Z&&F0 either are mapped onto the corresponding 
irreducibles of SZk + r (,4 ‘Fo), or must occur in the kernel. 

For r = 0, we have SO @ LcZk,2k,F0 + S,,(A’F,,), which is just the inclu- 
sion of L (2k,2k)Lvo in S,,(A’F,,) z uIAI =2k L,).F, (Cf., e.g., [A-DF, Sect. 21). 

For r = 1, we have 

By Pieri formula (cf., e.g., [A-B-W, 2, Corollary IV.2.6]), the domain is 
isomorphic to L@k+ i, 2k,lJFO@ Lc2k,2k,ZjF,, (since rkF, = 2k + 1). 

As S 2k+1(A2Fo)~u,+2k+I L,,Fo, L(2k+1,2k,l)Fo must Occur in the 

kernel. 
For r = 2, we thus have 

A’F,-,@ L (?k+~,2k,~,Fo~S2(A2Fo)~L(2k,2k)Fo~S2k+2(A2Fo); 

since 

zL(2k+1,2k+1,2) 0 FOL F (2k+I,Zk+l,I,I) 0 

OL~2k+l,2k,3)I;bOL~2k+1,2k,2,,)Fo 

and 
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(for Lc2,2jEbQ Lc2k,2k, o F use the Littlewood~-Richardson rule [A-B-W, 2, 
Theorem IV.2.1]), and since again 

it follows that L CZk+ r,?k+ 1,2JFo must occur in the complex, in degree 3. 
For r = 3, however, we get 

O-A’Fo’,L (2k+I,2k+1,2)F~-+ &C~'J'o)O L(2k+1.2k.I,Fo 

+ s,(A'Fo)@ &,k,,k,Fo --, S2k+3(A2F~); 

that is, no new term is necessary in degree 4. 
So in characteristic zero, one finds 

33 92 81 
O- L(2kf1,2k+1,2)F- L(2k+1,2k.I,F- &k,2k,F- s. 

Of course some extra terms could be necessary in characteristic free. Yet we 
take the above to be a reasonable candidate, and start looking for possible 
definitions of the morphisms (on which we have no hints). 

Note that our candidate can also be expressed in terms of F”: 

II A2k- ‘F* !I 
S,F* 

Since the map f: F -+ F” of E can easily be identified with 

&k,F* + L(2k+ I.I,F*, u~~~(2k+1,,,(& A u@%,), 
b 

where x6 &,@a,, =A(a), A the diagonal map A’F* -+ F*@F*, and 
P,~~+,,~) is the projection AZk+‘F*@S, F* + Lc2kt,,1,F*, one conjectures 
that 9, and 9, are induced by 

and 

respectively. One checks that Q2 and 9, are actually well defined, by 
invoking the following more general result. 
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LEMMA. Let @ be themap AaF*OS6F*-,Aa+‘F*OSb+1F*, ~~OLJ++ 

IL (4, A u @ zxxd 1 ). Then $ irzduces a morphism 

CP: L(,,I~) F* + L,a+ l,lb+L,F*. 

ProoJ Since 

@F*@SbplF* - AUF* @ 5&F*), 

it suffices to show that the composition 

A a+lf’*@SbpIF** AaF*@F*@SbmmIF*= AUF* 

Pln+l,lb+‘j Q&J’“& AatlFi*OSb+J*~= (a+ l,l*+‘) F* 

is zero. 
Given a basis element si, A ... A Ei,+,O&~,...&jb-,E~a+lF*O’b-~F*, 

one gets 

(  

a+1 

cj5 c (-l)h-l &;, A .‘. A E^jb A ..’ A E;~+,QEi,,‘Ejl.‘.Ejb~~ 

h = 1 > 

1 &(EiAE;,A ... AgibA ... A&i,+,~&~&jh&j,...&jb~I 

icj 

-&j A &i, A ... A 6, A .” A Eg+,OEi&i~&~,““~b~~ 4 
But this belongs to the image of the composite map A”+‘F* @ 

S,F* -+ A a+lF*@F*@SbF*+Aa+lF*@Sb+lF* (whose cokernel is 
L Ca+L,Ib+~jF*): just take in AafZF*@SbF* the element 

- 1 >u, (Ei A Ei, A ... A Ein+, 

i < j  

~EjEj;..Ej~-,-&jAEi, A . . . A&~,+,~Ei&j,.~~&jb-,). 

This concludes the heuristic considerations. We now begin the formal 
construction of the complexes C,. 

2.2. DEFINITION. (i) If m 2 2k, C,, is the sequence 

O- L(,m-n+z,F* -% LCz.Irrz-n+z,F* 
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(ii) If m = 2~, 1 <r d k- 1, C,, is the sequence 

O- L+,,F* ‘p, L(,z-n,+J* 

2!...+ . ..rp. L 
(N- 1,1-1) F* w, L,,z.,t,,F* 2 S. 

(iii) If m=2r+l, O<r<k-1, C,,, is the sequence 

--!f-+ ...a L,,t_l,lm-,, F * rp, Li,,i”‘)F* A s. 

In all cases, cp stands for the map induced by the approprate 
~:rlaF*OS6F*~Aa+‘F*OS b+lF*, U@UH&C& A 14@mdl, and $ 
is the mth symmetric power of g: F* -+ S defined in Subsection 1.1 
(explicitly: $(E;, . ..E~.) = T,,(X) ... TJX)). 

As for x in case (iii), it is defined by 1 H #-‘j. 

Remarks. (a) The definition rests on Lemma 2.1. 

(b) @, specializes to [E and A (the resolutions of [B-E, 31 and 
[B-S], resp.) when m = 1 and 2, resp. Moreover, if n = 3, each C:, coincides 
with the well known resolution of the mth power of an ideal generated by 
a regular sequence (having three elements); cf. e.g., [B-E, 2, Sect. 51. 

(c) The sequences C,, could also be expressed in terms of F, but 
the Schur functors involved would no longer be associated to hooks, 
(By the way, also in [B-E, 21, hooks were the only needed partitions. In 
fact, the functors Li;c,.l~j F* were introduced there for the first time.) 

2.3. PROPOSITION. C, is a complex, for etlery m 2 1. 

Proof First of all, let us show that any composition 4~ 4: 
AnF*QSbF*-,Aa+lF*oS,,,F*-,Aa+zF*OSh+ZF* is zero. One has 

(@~@)(u@U)=@ 1 X,(EiA uQ&jt~-&~iA UQEjV) 

i < j  1 
x =zjh C pqi p E A Ei A U@E,EjV-&E, A Ej A Ll@&,&,V 

PC9 

-EqAEiAU@EpEjV+EyAEjAU@EpEiV). 

But if one performs the interchanges j t--) q and i tf p, the coefficient X, X,, 
is left fixed, while each of Ep A Ei A U@ Ey&j 17, Eq A Ej A U@ EpEi V, and 
-(Ed A ~~ A u @ ~~~~ v + E, A Ed A u @ EKES v) is changed to its opposite. This 
amounts to saying that all summands cancel out, and we are done. 
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Next, we prove that any composition 

n is zero. Let si stand for sr A . .. A si A . . A E,. Then 

($ o VP(PW,P~, (&3&j, . ..&jm-.)) 

= 1 ~pq4vP(2k+I,1”,(~p * ~iO~j,~~~~j”l-,~q)) 
Pfq 

=CXjq(-l)‘p’ Tj,(X)...T,~,(xj.T,(X) 
4 

because of Fomula 1.3. 
Finally, we check that if m = 2r + 1, 0 <I’ < k- 1, the composition 

S-L L+,,,F* * L,,-,+ l,,JF* is zero. I.e., cp(x( 1)) = 0. Since 
a(k--r)=C~~i,< <i,-,~ll Pfj, ,__., j,(X) pi, A ... A Gi,z-,m, where {j,, . . . . j,,} is 
the complement of (ir , . . . . i, --m > in { 1, 2, . . . . n} (cf., e.g., [B-E, 3, p. 460]), 

In the latter combination, we find two kinds of terms: 

(a) terms in which q E {il, . . . . i,,-,,>, 

(b) terms in which q# (il, . . . . i,z+nt>. 

Let us fix a term of type (a), say 

x,, Pfj,, ...,j,n(xj 1:’ 

If p E (i,, . . . . in-,}, the tableau is 0. Hence we assume that p E {jr, . . . . j,), 
say p = j,. Let us rearrange in increasing order the first row of the tableau: 
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if there are u - 1 terms of type i, which are smaller than p =j,, the above 
term is equal to 

and the indicated tableau, say T, is standard, since 4 = iho 2 i,. 
But the same standard tableau T can be found in other terms (after 

rearranging in the first row, we mean), namely the terms 

( - l)” xigj Pffh.jl. . . . . . j,, jm,(xJ . ‘3 u< h < n - n7. 

The sum of all these terms, including (* ), is precisely equal to 

x;“” Y,,T,( Y), where Y is the skew-symmetric submatrix of X 
obtained by erasing all the rows and columns indexed by jr, . . . . j,, . . . . j,,, 
and I, is the index which labels the row (column) of Y corresponding 
to the row (column) of X indexed by q. (Note that Y has odd order, 
n--m+ 1.) 

Owing to Formula 1.3, C YIiO T,( Y) = 0, and we have verified that all the 
terms of type (a) cancel out. 

Next, let us fix a nonzero term of type (b), again denoted by 

XpqPfj ,._.., ,(X) p 1 

but with p = j, and q = j,. Suppose q < p. A reordering of the first row of 
the tableau yields the term (*). And it is not hard to see (by means of 
Remark 1.3) that the sum of all the terms containing (after rearrangements 
in their first rows) the standard-tableau T of (*) is exactly equal to 
(- 1)” Pf(Z) . T, where ~1 is the place of q in the increasing string of indices 

11 7 -*A, I,- ,, q, l,, . ..> I,- 1, p, l,, . ..f ln-rn, 

and Z is the skew-symmetric submatrix of X obtained by erasing all the 
rows and columns indexed by jr, . . . . j,, . . . . j,, . . . . j,. (Note that Z has even 
order, fz - m + 2). 
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But the definition of Schur functor says that 

d(Eil A ... A &j,-, A’qAEi,A ‘.. AEi-,~&p~&iu~ ... A&im ” II m  
) 

belongs to the kernel of ~(~~~+i,i); i.e., that it is identically zero the 
following linear combination: 

1 

0-l 
I1 .  .  lh .  .  q .  .  .  p .  .  .  

+ c (-l)“-’ 
h=2 I lh 

+(-l)“-l T-l- c (-1) - 
;;: ..::;-[ 

+(-1)” 

1 

L-l P 

+ c t-11 
;I, ,1+11 (Lc) 

It is straightforward to check that each tableau of (LC) occurs in several 
terms of type (b) (after rearrangements in their first rows), and the total 
coefficient belonging to it is precisely &Pf(Z). Here Z is the same as 
before, and the sign f coincides with the opposite of that attributed to the 
tableau inside (LC). 

Therefore, the terms of kind (b) can be grouped to get a sum of 
expressions of type - (LC) . Pf(Z), each of which is = 0. 

This completes the proof of cp 0 x = 0 (and of the proposition.). 
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It should be observed that (LC j = 0 is an instance of the straightening 
law mentioned in Subsection 1.2. It just says that the nonstandard tableau 

(ii < iz) is equal to a linear combination of the remaining ones, which are 
all standard. 

2.4. Remark. In Definition 2.2, the description of C, is threefold 
for the sake of clarity. But one could give a more concise statement 
(cf. Subsection 2.6 below j. Also, one could adjoin the case m = 2k to part 
(ii), thereby stressing that something different happens when m is smaller 
than the rank of F*. 

2.5. We are now ready to state the central result of this paper. 

THEOREM. For every rn 3 1, the complex C,,, provides a resolution C$ 
S/P. 

The proof is deferred to the next two sections. Here are some comments. 

2.6. The resolution C, is minimal; that is, for every i 3 1, the image of 
the ith morphism of C, is included in J(C,),- i, where J denotes the ideal 
of S generated by the indeterminates occurring in X. 

C,, is also generic (or “universal”), in the sense that it is defined over 
Z[X] and then carried over to every other R[X], R noetherian. In 
particular, the Betti numbers pi (r”) (i.e., the ranks of the modules (C,,)ij 
do not depend on char(R). Explicitly: 

Bi (I”‘) = rk JY,,,-~+ l,lnlmL+ljF* 

( 

n+m-i+l 

)i 

nfrn-22i+ 1 
= n+m-2i+2 m--i+1 > 

if ldi<min(n,m+l) 

B ~+mi~:~.~,~+~}(~~j= i 
1 

~t~e~w~~fand <’ 

pi (rflj = 0 if i>2+min(n,m+l). 

(We are using rk &,, i. F* = (T,::)( ‘I +: ~ I), which follows from the 
definition of Lin,,iz) F*: cf. [B-E, 2, Proposition 2.51). 
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The existence of a generic minimal free resolution for S/F” is all the more 
remarkable since it is known that S/Pf,, (X), 2 6 p d k - 1, may not admit 
such a finite free resolution: cf. [K], where the Betti numbers of S/Pf,,(X), 
in one case, are shown to depend on char(R). Thus the ideals Pf,,(X) seem 
to behave pretty much in the same way as the determinantal ideals of a 
generic n, x nz matrix (cf. [HI). 

2.7. It follows from Theorem 2.5 that the projective dimension of S/I’” 
satisfies 

n if m32k-1 

proj. dim(S/r”) = m + 1 if m=2r, l<r<k- 1 

m + 2 if m=2r+ l,O<rdk-2. 

Therefore, since grade(Y* j = grade(l) = 3, r” is perfect-hence generically 
perfect-when nz = 1,2 (no matter what n one has) and whenever n = 3 (in 
this case, I is generated by a regular sequence). In all the other cases, r” 
is not perfect. However, there is a regular pattern for proj. dim(S/Z’“), 
namely 

proj. dim(S/12’+‘)=proj. dim(.S/1”+2j=2r+3, if Odr<k-2; 

proj. dim( S/P’) = 2k + 1, if ma2k-1. 

This regularity can be viewed as a special case of a more general 
phenomen related to almost alternating maps: cf. [K-U, Sect. 51. 

2.8. As observed in the Introduction; I’= In-i (cf. [C; He, 
Relation (2.24)]). Hence I”,- i = 12’ and C,, with nz ranging over the even 
positive numbers, gives generic minimal finite free resolutions for all the 
powers of the ideal I,, _ 1. In particular, 

proi dWS/C- 1j = 
2s+ 1 if l<s<k-1 
2k + 1 

if sa k. 

3. PROOF OF THEOREM 2.5: FIRST PART 

3.1. We prove Theorem 2.5 by induction on k = (n - 1)/2. 
When k = 1, that is, IZ = 3, we have already noticed that C,, resolves r” 

(cf. Remark 2.2(b)). So we prove the statement for k > 2, assuming it true 
for k - 1, k - 2, etc. 

Since we already know that Im($)= r”, it is enough to show that 
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Hi (C,,) = 0 for every i > 1. To this aim, we make use of the following form 
of the Peskine-Szpiro acyclicity lemma [P-S]. 

ACYCLICITY LEMMA. Ler S be a noetherian ring. Let 

be a complex of j?nitely generated free S-modules. Then (F) is exact $ and 
only if, iF @* S, is exact for all primes P such that grade( PS,) < t. 

3.2. Let P E Spec(S) be such that 

n if III B 2k 

grade(PS,) < length(C,) = IFI + 1 if r~r = 2r, 1 < I’ < k - 1 

in + 2 if m=2r+I,Odr<k-1. 

The ideal .I, generated in S by the indeterminates occurring in X, has 
grade ~(II - 1 jn 3 n. Thus grade(JS,) > grade(PS,), no matter what m one 
has, and one of the variables A’, is invertible over S,, say XIz. But then the 
exactness of @, @ S, follows, if we show that C, is exact after localization 
at the powers of XrZ. 

The idea is that if X,, can be assumed invertible, one can find new 
dual bases such that the corresponding matrix associated to the generic 
alternating map is of the form 

O l 0 
-1 0 

t-H7 0 xi 

X’ is a generic skew-symmetric matrix of order n’ = n - 2 = 2(k - 1) + 1, 
and the inductive hypothesis applies. 

3.3. Let us now be explicit (cf. the proof of Theorem 2.3 in [J-P]). 
Let R’ and S’ be the localizations at the powers of X,, of 

NX,,, X,,, . . . . Xln, X23> X14, . . . . XZn] and S, resp. (we keep denoting by 
F, F*, e,, &i and X = (X,) the corresponding objects over S’ ). Let us choose 
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new dual bases (E;, . . . . E:,} and (ei, . . . . e:} for F* and F, resp., by setting 

(e i, . . . . e,z) = (e;, . . . . eL)C and (si, . . . . a,) = (E;, . . . . s:,) Ct, with 

C= 

It follows (cf. [J-P, Lemma 1.21) that: 

(i) the new matrix associated to f@, S’ is 

O l 0 
c?XC = 

-1 0 

ct) 
> 

0 X’ 

(ii) X’ is skew-symmetric and 2’; = XV + (Xii X1; - Xii Xlj) X,‘, 
3<i, j<n. 

(iii) Is’ = I’, where I’ is the ideal Pfick- i,(X’) of s’. 

Furthermore, s’= R’[Xi], and the elements Xb (3 ,< i, j<nj are 
algebraically independent (cf. [J-P, Lemma 2.41). 

Finally $0, S’ sends E; and E; to 0, and sends E( (3 <i< n) to 
x-1,. Tj-Z(Y). 

3.4. Another consequence of the change of dual bases described above is 
that we can write the element of A’F* associated to f 0, S’ as 

(n’ = 2k - 1, as above). 
Accordingly, let us decompose F* as H* 0 G*, where H* = (E; ... F:,) 

and G* = (E;, E;) (so that E; A E; can be denoted by c(~* and 
c Xz;&:,2 A &J.,? by Mu*). Following Subsection 1.2, one has 

(a=,,@, S’)i = L(a,lq(H* 0 G*) 
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where a = n + 1 - i, b = 112 + 1 - i, and some summands may be 0, if 
rk H* = n’ is not large enough. 

It is our intention to use the decompositions of the modules 
Lt,,Ib,(H* 0 G*) to filter the complex @,@, S’. The exactness of C,, 0, S’ 
will thus be reduced to that of the factors of the filtration. 

In order to follow this strategy easily, it is convenient to discuss 
separately the cases M > 2k, 172 = 2r (1 < r < k - 1) and m = 2r + 1 
(0 d I’< k - 1). We deal with the first case in here, and defer the others to 
Section 4.. So m 2 2k until further notice (and C,,, is of the kind described in 
Definition 2.2(i)). 

To further simplify matters, let us distinguish between m even and m 
odd. 

Situation when m 2 2k is Ez?en (m = 2p) 

3.5. The H*-content of a summand of LC,,laI(H* @ G*) is defined as 
the number pi+u, denoted by IH*I. Hence LC,Ib,(H*@G*) can be 
decomposed into the direct sum of two modules: the one, M,(a, lb), 
comprising all summands with IH*l even, and the other. M,(a, lb)? 
comprising all summands with /H* 1 odd. 

If a morphism cp@,S’ is applied to LCa2.1bl(H*@G*), M,(a,l’) is 
mapped to M,(a+ 1, lb+‘) and M,(a, lb) is mapped to M,(a+ 1, lbtl). If 
$0, S’ is applied to L Ca,Ib,(H* @ G*), it means that a= n and b = m, 
whence necessarily p I = rz’; recalling the end of Subsection 3.3, I/I 0, S’ is 
zero on all summands, except for LCpi 1,,t) H* @ A*G* c M,(n, 1”) (here we 
use nz even). Therefore @, 0, S’ is the’ direct sum of two subcomplexes M, 
and M,, respectively given by the terms M,(a, lb), and by the terms 
M,(a, lb) together with S’. We show that both of them are exact, by 
filtering them separately. 

3.6. The filtration {X,) of M, is described as follows (recall that m = 2~). 
For each fixed in (0, 1, . . . . p- l}, in every L,,Ih)(H* @G*) we assign to 
XT all the summands having 

pl=n-j and u=2t- j 

for some t < i and for some nonnegative integer j. To X, we assign S’ and 
all the summands of L- ,a,IbI(H*@G*) having pl=n’-,j and u=2t-j for 
some t < p and some nonnegative integer j. 

PROPOSITION. X, = M,. 

ProoJ Let LCp,,lUI H*@Sb-UG*@Aa~~lG*, ~,+LI odd, be a fixed 
summand of a module L Cn. ,b) (H* @ G*). The linear system ,u~ = !I’ - j, 
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u = 2t -j (with unknowns j and t) has the unique solution j= n’ - pl, 
t=i(U+n’-j). We claim that $(u+n’-j)<p. 

Let us recall that a=n+l-i and b=m+l-i. Therefore a-,~~= 
n + 1 - i - (n’ -j) = 3 - (i-j). Since rkG* = 2, 0 < a - pi ~2 and 
l<i-j<3. But b-u=m+l-i-(2t-jj=m+l-2t-(i-j) then 
implies m-2t - 2 <b-u d m - 2t. Since b-11 cannot be negative, nj - 2t 
cannot be either, i.e., 2t d m = 2p. 

3.7. PROPOSITION. Each X,, 0 d t d p, is indeed a complex. 

Proox In a fixed (C,, 0, s’): = L,, ih) (H* @G*), let us take a standard 
tableau T (relative to the ordering E; < . . . < EL < E; < E;) which belongs to 
L cp,,lu,H*@Sb-z,G* @AnPfllG*, where pi =n’- j and z1= 2t- j, 

In order to compute (cp 0, S’)(T), we apply CI~* and aH* separately 
to T. c(o* gives an element of (C=,@, S’)i_ i which belongs to 
L (~,,l~~)H*~Sb--+tG*~/i~‘~‘+lG*; since a-pI+l=(n+l-i)- 
(n-j)+ 1 and b-u+ 1 = (m + 1 -i) - (2t- j) + 1 can be written as 
[n+l-(i-lj]-(?I’-j) and [t~+l-(i-1)]-(2t-jj, resp., we have 
in fact remained inside X,. 

As for aH*, it gives in (C,, 0, S)j_ r a linear combination of tableaux of 
type 

n’-j+ 1 (n+l-i)-(n’--j) 
-- 

H* G* 

(nz+l- 

not necessarily standard. Those which are standard (possibly after trivial 
reorderings in the arm and the leg of the hook) belong to 
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which pertains to X,. Those which are not standard (after all trivial 
reorderings in the arm and the leg of the hook) have a violation of 
H*-standardness in the corner of the hook. Removing such a violation 
(cf. Example 1.2) one obtains some further standard tableaux belonging to 
the N above, and some standard tableaux belonging to 

L m+l~(i-1)-2(r-l)+li-2) G* 

@A 
rz+l-(i-I)-n’+j-.?G* 

9 

which pertains to X,- i c X,. 
This completes the proof. 

3.8. We now describe the factors X,/X,- i, 0 < t B p - 1 (X- 1 is assumed 
to be zero), and prove their exactness. 

The modules occurring in X,/X,+ i are given by pi = n’ -j and u = 2t - j, 
with j ranging between 0 and q, where 

if 2tcn’ 
if 2t>n’. 

It follows that a - pi = 3 - (i - j) and b - u = 172 + 1 - 2t - (i - j). Since 
rkG*=2 implies O<a--p,d2, i-jcan only be 1,2,3, whence, b-u= 
m - 2, m -2t- 1, nz - 2t - 2, resp. Thus, no matter what j is, one finds 
L (,,‘~j,2r-j)H*OS,~2t~2G4r L(,,~j,2,~j)H*OS,,,~2,~IG*OA1G*, and 
L,,._j.2r_j,H*OS,_21G*OA2G*. 

If one remembers the way L+ and aH* operate (and recalls, from the 
previous subsection, that factoring X,-i takes care of the straightening 
sometimes required in the H*-part), it is easy to check that X,/X,+, is the 
total complex of the following bicomplex, D,: 
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In the diagram, (a, lb), Sk, Ah, and / stand for Lc,,Ib,H*, ShG*, A”G*, 
and 0, resp. Moreover, for each 1~ = 0, 1, 2, one defines 

and for each WY = 0, 1, one defines 

(PC*. 
(WI. L (r,, ,u) H* @ S,G* @ A”‘G* + LcP,,, Iu) H* @ S,, 1 G* @ A”‘+ ‘G* 

by 

xQ~lQzH(-l)~‘CXQ(CLG*)s,yQ(ac*)~, A z 

(as usual, x6 (a,,)& 0 (c(~*)~, = d(a,,), and similarly for cc,,). 
We remark that each line of D, is a complex essentially because cp 0 cp = 0. 

The anticommutativity of the boxes is straightforward from the definitions, 
particularly from the sign ( - l)P’ introduced in cp$‘, 1~ = 0, 1. 

We also notice that each column of D, is isomorphic to a short sequence 

which is isomorphic (A’G* zYs) to a graded component of a suitable 
Koszul complex resolving the ideal generated by two indeterminates; hence 
it is exact. But the exactness of the columns of D, implies that 
Tot(D,)=X,/X,+, is exact, too (cf., e.g., [R, Example 11.17, p. 3311). 

3.9. We finally show that XP/XPP r is exact, so that the whole M, 
is so. The modules occurring in X,/X,_ r are s’ and those associated 
to pr = n’ - j and u = m - j, with j ranging between 0 and n’ - 1 (since 
m > 2k gives 2p>n’, and q=n’-1). Then a-p1=3-(i-j) and 
b-u=l-(i-j). Since 0<a-p1<2 and b-2420, it must be that 
a - ,~r = 2 and b - u = 0. It follows that X,/X, _ r is isomorphic ( A2G* 2 S’) 
to the complex 

0 - LcIwc+z,H* - L (2,l”i-n’+2) H* 
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where q$ is as in the previous subsection, and Li,,,lw,H* --t S’ is the only 
nonzero component of $0, S’, namely (/l”‘H* z s’), the morphism 
defined by 

b, + f 0, = nz 

But C;, is a complex of the same type of C,, relative to the generic 
matrix X of order 2(k - 1) + 1. Therefore it is exact by inductive 
hypothesis. 

3.10. It remains to prove the exactness of M,, by means of a suitable 
filtration (Y,>. We omit some details, when the situation is very close to 
that of M,. For each in (0, 1, . . . . p- l>, in every L,,,Ib,(H*OC*) we 
assign to Y7 all the summands having p, = IZ’ -j and u = 2t + 1 -j for 
some r < t and some nonnegative integer j. 

PROPOSITION. Y, _ 1 = M, and each Y,, 0 < t < p - 1, is indeed a comp1e.u. 

Proof. Mimic what has been done in Subsections 3.6 and 3.7. (41~0 cf. 
Remark 3.11 below.) 

3.11. Remark. An original feature of M, is that it contains terms with 
(H*l=O. They belong to YkplcYk~..., because if ,uL1=O=zl, then 
n’=j=2r+l and t=k-1 (<p-l, sincefn=2p>2k). 

Explicitly, these terms are of type L,, + , _ i,l,,r+~-!lH*, where n + 1 - i can 
be either 1 or 2 (it cannot be 0, for a hook with nonzero leg cannot have 
a zero arm). But rz + I- i = 1,2 implies i= n, n - 1, resp.; thus HZ + I- i = 
nz--n + 1, nz --n+ 2, resp., and one finds L,,,-,,+qG*(i=n) and 
L t2 ,nz-,,+z)G*(i= n - 1). 

When one applies cp@Q5 s’ to LCln,+,l-+~)G*, a,, produces an element 
of L~z.l”‘-“+2, G* acting as the identity (L,,.lm-ni~,G* 2 LC1+n+~bG*), 
while CI~* yields an element of L,2,H*QS,,,-,,+rG* by means of 
sb--+~ xi; (&;+I A E;+z Ox). Note that L,z,H*@S,,,p,,+2G* pertains to 
Y kpZC IT,lpl’-... 

When one applies qn-iOs S’ to Lt2,1”r-“+~,G*, #xxG* acts as zero, CL~* 
produces an element of Lo,H*OS,~.+JG*O/l’G* by means of 
XI-+~X~(E~+~ A EJ+~@x) (recall that L,,,1,~~“+2)G*~S,~~,,+jG*OG*). 
Again, note that L(,,H* @ S,nPn+3G* 0 n’G* pertains to Y,_: & 
YXpl”... . 

3.12. Let us describe the factors Y,/Y,- 1F 06 t < p- 1 iwe mean that 
Y-i = 0), and show their exactness. 
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Reasoning as in Subsection 3.8, it turns out that for t # k - 1 and 
t # p- 1, Y,/Y,-, is isomorphic to the total complex of the bicomplex P,, 

where 

2t+ 1 if 2t+l<n’ 
4= n- 1 if 2t+l>n’ 

and the other notations are as in Subsection 3.8. 
When t = p - 1 (with p # k), one obtains a bicomplex as before, but with 

the bottom row missing (since p- 1 = (nz-2)/2, and m-2t-3 = 
nz - (m - 2) - 3 < 0). And cp$ essentially is n’G* + S, G* 0 /1*G*, 
X~X@&; A E;. 

When t = k - 1, one obtains a bicomplex as in one of the two cases 
before, but with an extra box, 

(remark that if k = p, then HI -n < 0 and the bottom row is missing). 
Since in all cases the columns of the bicomplex are exact, Y,/Y,- r is 

exact for each t E (0, 1, . . . . p - 1 } and M, is exact as well. 
This completes the proof of Theorem 2.5 in the situation m 2 2k, m even. 
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Situation when m > 2k is Odd (m = 2p + 1) 

3.13. Also in this situation, @, 0, S’ is the direct sum of two subcom- 
plexes M, and M,, but S’ belongs to M,. Thus we start by filtering MO. 

For each TV (0, 1, . . . . p - 1 }, in every Lc,.Ibl(H* @G*) we assign to Xr all 
the summands having ,U i = n’ - j and u = 2t + 1 - j for some t d i and some 
nonnegative integer j. To X, we assign S’ and all the summands having 
,u,=n’-jandu=2t-jfor t<pand j>O. 

Again one checks that X, is indeed a subcomplex and that X, = M,. 
Furthermore, X, _ I s X, c . . . contain two terms in which H* does not 

occur, namely L~I+,,+~jG*(i=n) and LCz.lm-n+~JG*(i=n- 1). (Note that 
k - 1 # p, since m = 2p + 13 2k implies p > k). 

For t # k - 1 and t # p, X,/X,- 1 = Tot(P,), where P: is as in the previous 
subsection. When t = k - 1, X,- i/X,- 2 is the total complex of a bicomplex 
Like P,, but with an extra box added as in the previous subsection. 
When t = p, X,/X,- i is isomorphic to a complex which looks like C:, of 
Subsection 3.9. 

Thus M, turns out to be exact. 

3.14. Let us now deal with M,. 
For each iE (0, 1, . . . . p>, in every L, a,Lh)(H* @ G*) we assign to Yi all 

the summands having ,u r = n’ - j and U= 2t - j for some t < i and some 
j20. 

Y, is a subcomplex for every t, and Y, = M,. 
For t # p, Y,- r = Tot(D,), where D, is as in Subsection 3.8. When t = p, 

one obtains a bicomplex of type Dr, but with the bottom row missing. 
It then follows as usual that M, is exact. 

4. END OF THE PROOF OF THEOREM 2.5 

4.1. In this section we complete the proof of Theorem 2.5, when either 
m=2r (I <r<k-1), or m=2r+ 1 (O<r<k- 1). Accordingly, C3, is of 
the type described in Definition 2.2(ii) and (iii). 

We still dwell on Subsections 3.1 to 3.4. 

Case m=2r, l<r<k-1 

4.2. CL.@, s’ is again the direct sum of two subcomplexes M, and M,, 
characterized by 1 H* 1 even and odd, resp. Furthermore, s’ pertains to M, , 
because the mth power of I’ is covered by L.,,., ,“,, H* 0 A”G*, and n’ + m 
is odd. We filter M, and M, separately. 

For M,, let {X1> be defined as follows (recall that m = 2r). For each 
tE (0, 1, . . . . r-- l}, in every Li,.r b (H* @G*) we assign to Xi all the ) 
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summands having pr = n’ - j and u = 2t - j for some t < t and some j 3 0. 
To X, we assign s’ and all the summands having p1 = n’ -j and u = 2t - j 
for t,<r and j>O. 

It is easy to check that every X, is a subcomplex and that X, = M,. 
As for Xt/X-r, 0 d t< P, it is exact because it coincides with Tot(D,), 

where D, is as in Subsection 3.8. (Note, however, that q is always 2t, 
because t =C I’ implies 2t < 2r < 2k - 2 < n’). 

As for X,/X,+ r, one obtains ,ul=n’-j, u=2r-j, a-p,=2 and 
b - u = 0, with j ranging between 0 and 2r = nz (cf. Subsection 3.9). That is, 
one has the complex (n’G* 2 s’ and m <n’): 

-+ ... -+L(,fL,,,ni-l) H* + Lc,2,,,m,H* 4 s’, 

which is exact by the inductive hypothesis. 
We remark that if m 6 2k - 4 (i.e., r < k - 2). the above complex in H * 

is still of the kind described in Definition 2.2(ii), as CfiZ. But if 171 = 2k - 2 
(i.e., r = k - l), the above complex in H* is of the type described in 
Definition 2.2(i) and discussed in Section 3. 

We have thus tinished the proof of the exactness of Mr. 

4.3. For the filtration { Yt} of M,, for each FE (0, 1, . . . . r - 1 }, in every 
L ,a, rb)(H* 0 G* j we assign to Yr all the summands having pr = 12’ -j and 
u=2r+l-jfor some tdtand ja0. 

One checks as usual that every Y, is a subcomplex and M, = Y,_ r. Then 
one also realizes that (unlike what we remarked in Subsection 3.11) M0 
contains no case pu, = 0 = U, for this would imply t = k- 1, while 
t<r-l<k-2. 

For te {O, 1, . . . . r- 11, Y,/E;- 1 = Tot(P,), where P, is as in Sub- 
section 3.12, but with q=2t + 1, since 2t + 1 <2r - 1 <II’ (for r < k). Of 
course, when t = r - 1, the bottom row of P, is missing. 

Therefore every Y/Y,- , is exact, M, is too, and we have completely 
proven Theorem 2.5 also in the case nz = 2r, 1 < r < k - 1. 

Casem=2r+l,O<r<k-1 

4.4. The complex C,, Q, S’ we are dealing with now is of the type 
described in Definition 2.2(iii). Hence it contains two copies of the ring S’. 
Let us focus our attention on the copy in position i = M + 2. 

Since x: S-r L,,-,, F* is defined by 1 H&-“, it is not hard 
to check that ~0, s’ = p + 0: where p: S + Lc,,-,,, H* @ A2G* and 
o.S’-+L cn,++ZjH* are defined by ~(l)=o!$;‘-‘~@a,, and o(l)= 
cl$‘), resp. (observe that k-r= (d-m j/2 + 1 j. This suggests that we 
decompose @, 0, S into the direct sum of two subcomplexes M, and M,, 
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characterized by jH*l even and odd, resp., and with M, containing both 
the copies of S’. We are going to show the exactness of M, and M, by 
suitable filtrations, as in all previous cases. 

Let us start with a filtration (X,> of M,. For each 7~ (0, 1, . ..) Y- 11, in 
every Lc,.lb,(H* @ G*) we assign to XI all the summands having pi = 11’ -j 
and u = 2t + 1 - j for t 6 i and j > 0. To X, we assign both copies of S’, and 
all the summands having pi = 12’ - j and zl= 2t + 1 - j for t d I’ and j 3 0. 

That M,,=X, and each X, is a subcomplex is verified as usual (no 
problem is posed by the extra copy of S’). 

One should remark that if r < k - 1, no term with IH*l = 0 occurs in M,, 
for p I = 0 = u implies t = k - 1; but if Y = k - 1, i.e., in = n’, there is one such 
term, namely n*G*, for which i = m + 1. 

For t E (0, 1, . . . . r - 1 }, X,/X,p, =Tot(P,), where P, is as in Sub- 
section 3.12, but with q=2t+ 1, since 2t + 1 <2r- 1 <rz’ (for r< k- I). 
Thus Xr/XI_ L is exact. 

As for X,/X,-i, one has pi=n’-j, u=2r+l-j, a-y,=2 and 
b-u = 0, with j ranging between 0 and 2r + 1. Hence one obtains the 
complex 

O+S’p’L ,11~~,~,H*~A2G*~L~,~_,+1,1,H*~/12G* 

+ ... --+L (n’-l,l”‘-‘j H* @A’G* -+ L,,;~,m,H*@/I’G* --+ S’, 

where p is the same map described before. 
If I’ < k- 1, the above complex is isomorphic (n’G* 2 S’) to one which 

is still of the kind described in Definition 2.2(iii), and is exact by inductive 
hypothesis. 

If r = k - 1, the above complex deserves a closer inspection. Since 
r = k - 1 implies rn = n’, we find the expected A”G* for i = m + 1. But it is 
not hard to see that (cp 0, S’)(n”G*) c L(,, H* @ SIG* 0 A’G*; hence the 
morphism A’G* + Lt,,p,,,+,,l, H* @/i’G* is zero. Furthermore, p is the 
identity on S’ z /i’G*. Thus the complex in object is exact if and only if 
one can show the exactness of 

+ . . . -+ L(&l,PL) H* @ A2G* + L,,., Im, H* @ /i’G* -+ S’. 

Up to A2G* ES’, the latter complex is of the type described in 
Definition 2.2(i), hence it is exact by the inductive hypothesis. 

This ends the proof of the exactness of M,. 

4.5. Let us turn our attention to a filtration ( Y,> for M,. For each 
IE (0, 1, . . . . r}, in every Lio,I b (H* @ G*) we assign to YI all the summands ) 
havingpL,=n’-jandzl=2t-jfor tdtand j>,O. 
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Y, = M, and each Y, is a subcomplex. 
For every t, Y,/Y- i = Tot(D,), where D, is as in Subsection 3.8 (with 

q = 2t in all cases). Of course, when t = r, the bottom row of ED, is missing. 
Thus every Y,/Y,- I is exact, as well as MI, and we have proven 

Theorem 2.5 in all cases. 

4.6. Final Remark. In an earlier version of this paper, another proof of 
Theorem 2.5 was given. Given P E Spec(S) with grade(PS,) < length(C,), 
it was shown that @,@ S, was the total complex of an appropriate 
tricomplex T (pictured as a family of modules in the Z x Z x Z Cartesian 
space). The exactness of @, @ S, was then verified by showing that each 
bicomplex T,, obtained as the intersection of T and the plane z = h, had 
exact total complex. In fact, the bicomplexes TI, looked precisely like the 
factors X,/X,- i and Y,/Y,- i discussed in this version. 
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