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a b s t r a c t

In this paper,wepropose a framework of outer product least squares for covariance (COPLS)
to directly estimate covariance in the growth curve model based on an analogy, between
the outer product of a data vector and covariance of a random vector, and the ordinary
least squares technique. The COPLS estimator of covariance has an explicit expression
and is shown to have the following properties: (1) following a linear transformation of
two independent Wishart distribution for a normal error matrix; (2) having asymptotic
normality for a nonnormal errormatrix; and (3) having unbiasedness and invariance under
a linear transformation group. And, a corresponding two-stage generalized least squares
(GLS) estimator for the regression coefficient matrix in the model is obtained and its
asymptotic normality is investigated. Simulation studies confirm that the COPLS estimator
and the two-stage GLS estimator of the regression coefficient matrix are satisfying
competitors with some evident merits to the existing maximum likelihood estimator in
finite samples.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Observations that occur in social studies, biological science, economics and medical research are usually measured over
multiple timepoints on a particular characteristic to investigate temporal pattern of change on the characteristic. The growth
curvemodel is a useful tool for statisticians to analyze the observations of repeatedmeasurements. The growth curvemodel
without assumption of a normal distribution is the model in which we observe

Yn×p = Xn×mΘm×qZ ′

p×q + En×p, E(E) = 0 and Cov(E) = In ⊗ Σp×p, (1)

where Y is the observation matrix of the response consisting of p repeated measurements taken on n individuals, X is the
treatment designmatrixwith ordern×m, Z is the profilematrixwith order p×q, andΘ is the unknown regression coefficient
matrix with order m × q. Assume that observations on individuals are independent, so that the rows of the random error
matrix E are independent and identically distributed (iid) by a general continuous type distribution F with mean zero and
a common covariance matrix Σ of order p. An interested reader can refer to Kollo and von Rosen [9] or Pan and Fang [15]
for the details of the growth curve model.

The growth curvemodelwas initiated by Potthoff and Roy [17] andwidely studied bymany researchers. For no restriction
for the structure of covariance, Potthoff and Roy [17] originally derived a class of weighted estimator only for the regression
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coefficients. Khatri [8] derived the maximum likelihood estimator (MLE) and showed that the MLE also is a weighted
estimator. Grizzle and Allen [3] used the technique of analysis of covariance to obtain an estimator of the regression
coefficient matrix and showed that it is identical to the MLE. Rao [18], Reinsel [20], and Lange and Laird [10] considered
estimation for the random effects covariance structure of the model. Rao [19] and Lee [11] studied the prediction problem
of the model without or with a special covariance structures. Recently, Ohlson and von Rosen [14] presented explicit
estimators of parameters for covariance with linear structure based on a decomposition of the whole tensor space. If
pursuing (simultaneous) estimation of a linear parametric function tr(CΣ) (or tr(CΣ) + tr(D′Θ)), the interested readers
may refer to a series of works by Xu and Yang [24], Yang and Xu [29], Yang [25–27], and Yang and Jiang [28].

It is well-known that inference on the regression coefficient matrix strongly relies on the preestimated covariance
matrix. Generally speaking, any estimator of the regression coefficient matrix is a function of the preestimated covariance
matrix. Naturally, the estimator of covariance is very important to estimation of the regression coefficients. With the help of
computers, although the maximum likelihood, the restricted maximum likelihood and iterative techniques can be used to
obtain the estimators of the parameters of interest, non-iterative estimatingmethods still are worth being studied, specially
for very large data sets or for non-normal errors.

The motivation of this paper is to exploit both the linear structure of mean in the growth curve model and the analogy
between the outer product of data vectors and covariance and formulate a framework or an outer product least squares
approach to directly do least squares to the unknown covariance, exactly as the ordinary least squares method that directly
does least squares to regression coefficients in the Gauss–Markov models. The resulting estimator by the outer product
least squares approach is named an outer product least squares estimator for covariance (COPLSE). After the COPLSE of the
unknown covariance matrix has been obtained, the corresponding two-stage generalized least squares (GLS) estimator of
the regression coefficient matrix will be derived and its properties in the large sample will be discussed.

The outer product least squares approach is formulated by combining the following basic ideas or techniques: (a) the
analogy between the outer product of data vectors and covariance, (b) the complete set of error contracts, (c) an auxiliary
least squares model, and (d) the ordinary least squares technique. The complete set of error contracts was used by Patterson
and Thompson [16] to develop the restricted maximum likelihood technique which was modified by Harville [4]. The
auxiliary least squares model for the growth curve model was used by Yang and Xu [29] in which it was said to be an
induced model. In the literature, the main focus was on estimation of the trace of the linear transformation of covariance.

The outer product least squares approach seems to be useful and effective for estimating unknown parameters in
covariance for a class of linearmodelswith independent and identically distributed errors. The class of linearmodels includes
many famous statistical models. The growth curve model is one member in the class. Two working papers are already to
address estimation for a generalizedGMANOVAmodel and the extended growth curvemodel via the proposed outer product
least squares approach.

The organization of the paper is as follows. An outer product least squares approach is formulated or a framework
for directly doing least squares to covariance in the growth curve model is established in Section 2. An outer product
least squares estimator for covariance (COPLSE) in the growth curve model is represented. For normal errors, the exact
distribution of the COPLSE is obtained in Section 3. The strong consistency and asymptotic normality without assumption
of normal errors are studied in Section 4. A corresponding two-stage GLS estimator to the regression coefficient matrix
is derived and its consistency and asymptotic normality are investigated in Section 5. Simulation studies are provided
in Section 6 to demonstrate that the COPLSE and the resulting two-stage GLS estimator are alternative competitors with
some evident merits, for example, more efficiency in the sense of bias or the mean squared error, to the existing maximum
likelihood estimators. Brief concluding remarks are presented in Section 7.

2. Estimation of covariance based on an outer product least squares approach

In this paper, Mn×n denotes the set of all n×nmatrices over the real set R with the trace inner product ⟨·, ·⟩. ∥ ·∥ denotes
the trace norm on the setMn×n.Np denotes the set of all nonnegative definitematrices of order p. A− denotes the generalized
inverse of a matrix A. PT = T (T ′T )−T ′ denotes the orthogonal projection matrix onto the column space C (T ) of a matrix T
andMT = I − T (T ′T )−T ′ denotes the orthogonal projection matrix onto the orthogonal complement C (T )⊥ of C (T ).

For the Gauss–Markov model y = Xβ + ϵ with E(ϵ) = 0 and Cov(ϵ) = σ 2I , the ordinary least squares method is to find
a pointβ(y) in them-dimensional real space Rm such thatβ(y) = argmin

β∈Rm
∥y − Xβ∥

2. (2)

Equivalently, the ordinary least squares method takes the perpendicular projection PXy of y as the least squares estimator
of the expected value E(y). As a by-product of the least squares problem (2), the following statistic

σ 2
ols(y) =

1
n − r

(y − Xβ(y))′(y − Xβ(y)) =
1

n − r
y′(I − PX )y (3)

is viewed as the ordinary least squares estimator of σ 2, where r is the rank of the design matrix X . The major drawback of
this indirect method (as a by-product) for estimating variance σ 2 is that the residuals cannot be explicitly expressed by the
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design matrix and observation y in many linear statistical models, e.g., the growth curve model. To overcome the drawback,
an outer product least squares approach directly to covariance will be deliberately formulated in this paper.

The outer product over the np-dimensional real space Rnp is defined as

a�a = aa′
=

aiaj

np×np

for any a = (a1, . . . , anp)′ ∈ Rnp. The covariance of a np-dimensional random vectors y is the expectation of outer product
of y, namely,

Cov(y) = E(y�y) =

Cov(yi, yj)


np×np .

Exactly as using the moments of a random sample to estimate the moments of its population as well exactly as using the
quantile of a random sample to estimate the quantile of its population, it is a natural and reasonable thing for us to use
the outer products of a random sample to estimate covariance of its population. The outer product of the data vector in a
random sample should contain the information of the behavior of the unknown parameters in variance or covariance of the
population. Therefore, the framework to be developed is motivated from the above mentioned residuals MXy, noticed by
Patterson and Thompson [16], and the analogy between outer product and covariance.

2.1. Least squares problem to covariance

Under the vec operator, the growth curve model without assumption of normality can be written as

vec(Y) = Tβ + ζ, E(ζ) = 0 and Cov(ζ) = In ⊗ Σ, (4)

where β = vec(Θ), T = X ⊗ Z and ζ = vec(E). Here the vec operator transforms a matrix into a vector by stacking the rows
of Y one under another.

An error contrast is defined as any linear combination of the response vector vec(Y), which has zero expectation. Error
contrasts form an np− r dimension linear space. A set of np− r linearly independent error contrasts is said to be a complete
set of error contrasts. The concept about the complete set of error contracts was first proposed and used by Patterson and
Thompson [16] to develop the restricted maximum likelihood technique which was modified by Harville [4]. The columns
of the orthogonal projectionMT of the orthogonal complement C (T )⊥, forms a complete set of error contrasts.

A framework, which we shall establish, for directly doing least squares to the unknown covariance associates with
considerations from the following four aspects.

The first step is to use the complete set of error contracts constructed by MT for the response vec(Y) to do the outer
product. In other words, only the outer product ofMTvec(Y), or the residuals vec(Y) − PTvec(Y), is considered.

Based on the opinion that the covariance matrix of two random vectors can be viewed as a special outer product of the
two random vectors, the second step is to use the outer product of the residual vector to estimate unknown covariance of
random errors. To be more precise, we shall use the outer product MTvec(Y)vec(Y)′MT to estimate covariance as same as
using vec(Y) to estimate vec(Θ) in the ordinary least squares approach.

The third step is to construct an auxiliary linear model. Let Q (Y) = MTvec(Y)vec(Y)′MT (hereafter M replaces MT for
brevity). Then Q (Y) is the outer product of the orthogonal projection vector of the random vector vec(Y) onto the error
space C (T )⊥. All Q (Y) form a subset of Mnp×np, which is spanned by the columns ofMT . In essence, Q (Y) is a randommatrix
with the mean structure of the form

µ = E(Q (Y)) = M(I ⊗ Σ)M. (5)

Naturally, an auxiliary least squares model, called an outer product least squares model, is defined as

Q (Y) = M(I ⊗ Σ)M + ξ (6)

where E(ξ) = 0 and Cov(ξ) = (M ⊗ M)E

(E ⊗ E)(E ′

⊗ E ′)

(M ⊗ M).

The fourth step is to define the trace distance of the difference of the matrix Q (Y) and its expected valuesM(I ⊗ Σ)M as

D(Σ, Y) = ∥Q (Y) − M(I ⊗ Σ)M∥
2.

A least squares problem to covariance for the growth curve model (4) is to find a nonnegative definite matrix Σls(Y) such
that the trace distance function D(Σ, Y) is minimized at Σls(Y), namely,

Σls(Y) = argmin
Σ∈Np

D(Σ, Y). (7)

In other words, the least squares problem to covariance for the model (1) or (4) is an ordinary least squares problem on the
set Np for the outer product least squares model (6). A least squares solution Σls(Y) in the least squares problem (7) is said
to be a least squares estimator to covariance Σ if the Σls(Y) is unique.
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2.2. Out product least squares problem and out product least squares solutions

Let

V = {Mvec(Y)�Mvec(Y): vec(Y) ∈ Rnp
}, Hnnd = {M(In ⊗ Σ)M:Σ ∈ Np}

and

H = {M(In ⊗ V )M: V ∈ Mp×p}.

Obviously, the trace inter product space (Mnp×np, ⟨·, ·⟩) is an Euclidean space. H is a subspace of Mnp×np. And Hnnd is a
convex cone (set) of H , also a convex cone of Mnp×np.

Since Hnnd is a convex cone of Mnp×np, the optimization problem (7) is a convex optimization problem. Seeking amethod
for solving (7) from the convex optimization theory will not be a job of this paper.

Alternatively, to find least squares solutions in the least squares problem (7), we expand the domain Np to the space
Mp×p for the least squares problem (7). This yields the following out product least squares problem for covariance (8): finding
a matrix in Mp×p, written as Σcopls(Y), such that

Σcopls(Y) = argmin
V∈Mp×p

D(V , Y). (8)

Here, Σcopls(Y) is said to an out product least squares solution of covarianceΣ . Moreover, Σcopls(Y) in the problem (8) is said to
be an outer product least squares estimator for covariance Σ (written as COPLSE or COPLS estimator) if the Σcopls(Y) is unique.
It will be seen that the outer product least squares solution Σcopls(Y) is unique under a very mild condition.

Note that Mp×p or H is a subspace while Np or Hnnd is a convex cone.
If an outer product least squares estimator for covariance Σcopls(Y) is an element in the set Np, then Σcopls(Y) is a least

squares estimator Σls(Y) of the least squares problem (7). The problem (7) has been solved.
Based on the above discussion, a procedure for the framework doing least squares estimation to covariance is designed

below.

(1) To find an outer product least squares solution Σcopls(Y) for the optimization problem (8), which is an outer product
least squares estimator under a mild condition, see Theorem 2.1 in the next subsection.

(2) To find a least square estimator Σls(Y), namely, an outer product least squares estimator Σcopls(Y) with nonnegative
definiteness.

2.3. The normal equations for outer product least squares solutions

If Σcopls(Y) is an outer product least squares solution to the outer product least squares problem (8), it follows from
projection theory that, for any V ∈ Mp×p,M vec(Y)vec(Y)′M −M(I ⊗V (Y))M andM(I ⊗V )M are trace orthogonal, namely,
⟨Mvec(Y)vec(Y)′M − M(I ⊗ Σcopls(Y))M, M(I ⊗ V )M⟩ = 0 for any V ∈ Mp×p. This yields the following equations

tr

Mvec(Y)vec(Y)′M − M(I ⊗ Σcopls(Y))M


(I ⊗ V )


= 0 for any V ∈ Mp×p. (9)

Note that

tr

Mvec(Y)vec(Y)′M − M(I ⊗ Σcopls(Y))M


(I ⊗ V )


= tr


n

i=1

M ′

i (vec(Y)vec(Y)′ − I ⊗ Σcopls(Y))MiV


,

where M = (M1, . . . ,Mn) with np × p matrix Mi, i = 1, . . . , n. The arbitrariness of V in the space Mp×p implies

n
i=1

M ′

i


vec(Y)vec(Y)′ − I ⊗ Σcopls(Y)


Mi = 0. (10)

Further blocking matrices causes

n
i=1

n
j=1

M ′

ij
Σcopls(Y)Mji =

n
i=1


n

j=1

MjiYj


n

l=1

MliYl

′

(11)

where Y = (Y1, . . . , Yn)
′ and M = (Mij) with p × p matrix Mij, i, j = 1, . . . , n.

Any of the Eqs. (9)–(11) is said to be the normal equations for an outer product least squares problem (8). Let

H =

n
i,j=1

Mij ⊗ Mij and C(Y) =

n
i,j=1


n

k=1

Mik ⊗ Mjk


vec(YiY′

j). (12)
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Then the normal equations (11) can be rewritten as

Hvec
Σcopls(Y)


= C(Y). (13)

The original motivation for the normal equations was to solve the outer product least squares problem (8). Taking the
following result, now we complete that discussion about relationship between the normal equations and the outer product
least squares problem (8).

Theorem 2.1. A matrix Σcopls(Y) is an outer product least squares solution if and only if the matrix Σcopls(Y) is a solution to the
normal equations. Moreover, Σcopls(Y) is unique under r(X) < n for a given observation Y.

Proof. It suffices to show sufficiency. Assume that Σcopls(Y) is a solution to the normal equations. Then, from (9), we have
the following inequality

D(V , Y) = D(Σcopls(Y), Y) + ∥M(In ⊗ (Σcopls(Y) − V ))M∥
2

≥ D(Σcopls(Y), Y),

for any V ∈ Mp×p. So Σcopls(Y) is an outer product least squares solution to the outer product least squares problem (8).
Assume that V1(Y) and V2(Y) both are solutions of the normal equations (9). Let V (Y) = V1(Y) − V2(Y), then, with

M = MX ⊗ I + PX ⊗ MZ , we have

tr ((MX ⊗ I + PX ⊗ MZ )(I ⊗ V (Y))(MX ⊗ I + PX ⊗ MZ )(I ⊗ S)) = 0 (14)

for any S ∈ Mp×p. After routine tensor product operations, (14) is equivalent to

(n − r(X))V (Y) + r(X)MZV (Y)MZ = 0. (15)

Multiplying both sides of (15) by MZ yields nMZV (Y)MZ = 0. Due to r(X) < n, it follows from (15) that V (Y) = 0, namely,V1(Y) = V2(Y). Therefore, we complete the proof of theorem. �

2.4. The out product least squares estimator of covariance

We shall use the normal equations (13) to obtain the outer product least squares estimator Σopls(Y) for covariance Σ in
the model (1). The result is represented in the following theorem.

Theorem 2.2. If the rank of the treatment design matrix X is less than the number of observations, i.e. r(X) < n, the outer
product least squares estimator Σcopls(Y) for the growth curve model (1) without assumption of normality is given by

Σcopls(Y) =
1

n − r
Y′MXY +

1
n
MZY′YMZ −

1
n − r

MZY′MXYMZ , (16)

where Y is an n × p matrix of observations.
Proof. Let MT =


Mij

, 1 ≤ i, j ≤ n, MX =


mX

ij


n×n

and PX =

pXij

n×n

, then, due to MT = MX ⊗ I + PX ⊗ MZ , Mij can be
expressed as

Mij = Mji = mX
ij I + pXijMZ . (17)

Thus using (17) to replaceMij in (12) yields

H =

n
i,j=1


mX

ij I + pXijMZ

⊗

mX

ji I + pXjiMZ


= tr(M2
X )I + tr(MXPX )(I ⊗ MZ + MZ ⊗ I) + tr(P2

X )MZ ⊗ MZ

= (n − r)I + rMZ ⊗ MZ .

With r < n, H is nonsingular and H−1
=

1
n−r


I −

r
nMZ ⊗ MZ


. Also, due toM = MX ⊗ PZ + I ⊗ MZ , we have

C(Y) = vec


n

i=1

n
j=1


mX

ijPZ + δijMZ

Yj

n
l=1

Y′

l


mX

il PZ + δilMZ
′

= vec(PZY′MXYPZ + PZY′MXYMZ + MZY′MXYPZ + MZY′YMZ )

= vec(Y′MXY − MZY′MXYMZ + MZY′YMZ ),

where Y = [Y1, Y2, . . . , Yn]
′, δij = 1 for i = j and 0 for any distinct i, j. The solution of the normal equations (13) is uniquely

determined by

vec
Σcopls(Y)


=

1
n − r


I −

r
n
MZ ⊗ MZ


C(Y).

A simple computation causes (16). So, the proof is complete. �
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When Z is a nonsingular square matrix, PZ = I and MZ = 0. The expression (16) reduces to the expression

Σcopls(Y) =
1

n − r
Y′MXY ≡ Σmulti

ols (Y) (18)

the least squares estimator of covariance for the multivariate linear model, see Chapter 19 of Arnold [1].
Regarding the outer product least squares estimator Σ̂(Y) given in (16), it was first derived by Xu and Yang [24] via

an estimating class, in which it was said to be LSE in a sense. The literature focused on providing necessary and sufficient
conditions for a parameter function tr(CΣ̂copls(Y)) to be UMVIQLUE of its expectation tr(CΣ), a result similar tomultivariate
Hsu’s Theorem [7]. Along the topic with this objective, Yang and some scholars extended Xu and Yang’s results, e.g. see
Yang [25]. The recent research came from Wu et al. [23], who extended Yang’s results from the growth curve model to a
generalized growth curve model.

Let G be a group of transformations defined by

G = {gµ(Y): gµ(Y − µ) = g0(Y), where µ = XΘZ ′
}.

Then the invariance of Σcopls(Y) on G and its unbiasedness are summarized in the following proposition.

Proposition 2.1. The outer product least squares estimator Σcopls(Y) given in (16) is unbiased and invariant under the group G

of transformations, in particular, Σcopls(Y) = Σcopls(E).

Proof. Recall that E(Y′AY) = (XΘZ ′)′A(XΘZ ′) + tr(A)Σ for any symmetric A. Taking expectation on both sides of (16)
yields

E
Σcopls(Y)


=

1
n − r

E(Y′MXY) +
1
n
MZE(Y′Y)MZ −

1
n − r

MZE(Y′MXY)MZ .

A simple computation shows that E
Σcopls(Y)


= Σ for all Σ ∈ Np.

The normal equation (9) is invariant under the group G of transformations. So the outer product least squares estimatorΣcopls(Y) is invariant under the group G . In particular, Σcopls(Y) = Σcopls(E). The proof is complete. �

The above proof is straightforward. Proposition 2.1 can also be derived from the unbiased and invariant of tr(CΣ̂copls(Y))
due to arbitrariness of the matrix C , see Yang [25].

3. Distribution of the outer product least squares estimator under assumption of normality

From the proposed framework, we have seen that the outer product least squares estimator Σcopls(Y) for the model (1)
has invariance and unbiasedness for the random errors E with a continuous distribution. If a normal distribution imposes on
the random errors E , can we get the exact distribution of the estimator Σcopls(Y)? The answer is yes. The following theorem
provides its exact distribution of Σcopls(Y).

Theorem 3.1. Suppose that the error matrix E ∼ Nnp(0, In ⊗ Σ). The outer product least squares estimator Σcopls(Y) of
covariance Σ in the model (1) has the same distribution as the following random matrix

1
n − r

R1 +
1
n
MZR0MZ −

r
n(n − 1)

MZR1MZ (19)

with R0 ∼ W 0
p (r, Σ) and R1 ∼ W 1

p (n − r, Σ), where W 0
p (r, Σ) and W 1

p (n − r, Σ) are two independent Wishart distributions.

Proof. Since PX + MX = I , there exists an orthogonal matrix U such that U ′PXU = diag(Ir , 0) and U ′MXU = diag(0, In−r).
Let η = (η′

1, . . . , η
′
n)

′
= U ′E . Obviously, η ∼ Nnp(0, I ⊗ Σ). Then

R0 = E ′PXE = η′diag(0, Ir)η, R1 = E ′MXE = η′diag(0, In−r)η. (20)

From the Eq. (16), we have the following matrix decompositionsΣcopls(Y) = Σcopls(E) = (n − r)−1E ′MXE + n−1MZE
′EMZ − (n − r)−1MZE

′MXEMZ

= (n − r)−1R1 + n−1MZ (R0 + R1)MZ − (n − 1)−1MZR1MZ

= (n − r)−1R1 + n−1MZR0MZ + (n−1
− (n − 1)−1)MZR1MZ .

By Theorem 3.2 of Hu [5], the random matrices R0 and R1 follow independent Wishart distributions W 0
p (r, Σ) and

W 1
p (n−r, Σ), respectively. Hence,Σcopls(Y) is equal to the randommatrix 1

n−r R1+
1
nMZR0MZ−

r
n(n−1)MZR1MZ in distribution,

and the proof is complete. �
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When Z is nonsingular, the growth curve model reduces to the multivariate linear model. By (19) in Theorem 3.1, the
outer product least squares estimator of covariance, which is nothing but the least squares estimator, follows a Wishart
distributionWp(n− r, (n− r)−1Σ), see Theorem 19.1 in [1]. For p = 1, (n− r)σ 2(Y) follows a chi-squared distribution with
degrees of freedom n − r which is the famous result in the standard statistical inference textbooks.

When m ≥ p, Wishart distribution Wp(m, Σ) has a density function, e.g., see Chapters 3 and 10 of Muirhead [13],
Chapter 8 of Eaton [2]. Whenm < p, Wishart distributionWp(m, Σ) is singular. Srivastava [21] investigates the probability
density function of a singular Wishart distribution.

4. Asymptotic properties of the outer product least squares estimator

In this section, we shall investigate asymptotic properties of the outer product least squares estimator Σcopls(Y).

Theorem 4.1. The outer product least squares estimator Σcopls(Y) given by (16) is strong consistent to covariance Σ .

Proof. There exist an orthogonal matrix Q of order p and an orthogonal matrix U of order n such that Q ′PZQ =


Ir1 0
0 0


,

Q ′MZQ =


0 0
0 Ip−r1


, and U ′MXU =


0 0
0 In−r


with r1 = r(Z) and r = r(X).

Let W = U ′EQ , then Cov(W) = I ⊗ Σ1 where Σ1 = QΣQ ′ is positive definite. Partitioning W = (W1,W2), where

W1 is n × r1 and W2 is n × (p − r1), and Σ1 =


Σ11

1 Σ12
1

Σ21
1 Σ22

1


, where Σ11

1 is r1 × r1 and Σ22
1 is (p − r1) × (p − r1), we have

Cov(W1) = I ⊗ Σ11
1 > 0 and Cov(W2) = I ⊗ Σ22

1 > 0.

Furthermore, partitioning W into

w′
11 w′

12
.
.
.

.

.

.

w′
n1 w′

n2,

, where w11, . . . ,wn1 are r1-dimensional independent and iid random

vectors andw12, . . . ,wn2 are n−r1-dimensional iid random vectors. From the Eq. (16), theQ ′Σcopls(Y)Q can be decomposed
as

Q ′Σcopls(Y)Q = Q ′Σcopls(E)Q =
1

n − r
W′


0 0
0 In−r


W +

1
n


0 0
0 Ip−r1


W′W


0 0
0 Ip−r1


−

1
n − r


0 0
0 Ip−r1


W′


0 0
0 In−r


W

0 0
0 Ip−r1


.

Simple matrix operations yield

Q ′Σcopls(Y)Q =


1

n − r

n
i=r+1

wi1w′

i1
1

n − r

n−r
i=1

wi1w′

i2

1
n − r

n−r
i=1

wi1w′

i2
1
n

n
i=1

wi2w′

i2

 .

By the strong law of large number, 1
n−r

n−r
i=1 wi1w′

i1 converges to Σ11
1 with probability 1. Similarly, with probability

1, 1
n−r

n−r
i=1 wi1w′

i2 converges to Σ12
1 , 1

n−r

n−r
i=1 wi2w′

i1 converges to Σ21
1 and 1

n

n
i=1 wi2w′

i2 converges to Σ22
1 . Thus

Q ′Σopls(Y)Q converges to Σ1 with probability 1. It follows that Σcopls(Y) converges to covariance Σ with probability 1.
Hence, the proof is complete. �

Generally speaking, the Σcopls(Y) is not nonnegative definite. However, Theorem 4.1 tells us that the Σcopls(Y) given by
(16) is asymptotically positive definite. When the sample size is sufficiently large, the Σcopls(Y) > 0. For finite samples, our
simulation studies show that Σcopls(Y) seems to be positive definite only if n − (r(X) + p) keeps an appropriately small
integer, which can be easily satisfied in the repeated measurement experiments over multiple time points.

The problem (7) has been solved or the least squares estimator of covariance has been obtained in a sense of
asymptotically positive definite and the performance of finite sample simulation studies.

Next, we shall investigate asymptotic normality of the statistics Σopls(Y). The fourth-order moment of the errors will be
needed in the following discussion.

Assumption 1. E(ε1) = 0, E(ε1ε
′

1) = Σ > 0, E(ε1 ⊗ ε1ε
′

1) = 0p2×p and E∥ε1∥
4 < ∞, where ε′

1 is the first row vector of
the error matrix E .

Theorem 4.2. Under Assumption 1, the statistic
√
n
Σcopls(Y) − Σ


converges in distribution to the multivariate normal

distribution Np2 (0, Cov(ε1 ⊗ ε1)).
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Proof.
√
n
Σcopls(Y) − Σ


can be decomposed into

√
n

1
n

E ′E − Σ


+ Q


A11 A12
A21 0


Q ′

with Akl =
√
n
 1
n−r

n−r
i=1 wikw′

il −
1
n

n
i=1 wikw′

il


for k, l = 1, 2 except k = l = 2. Since

Akl =
r
√
n

n − r
1
n

n
i=1

wikw′

il −

√
n

n − r

n
i=n−r+1

wikw′

il,

Akl converges to 0 in probability. By assumption, the first item converges to Np2(0, Φ2) in distribution, where Φ2 =

Cov(ε1 ⊗ ε1). Hence, it follows from Slutsky’s Theorem, see Lehmann and Romano [12], that the
√
n
Σcopls(Y) − Σ


converges in distribution to Np2 (0, Cov(ε1 ⊗ ε1)), completing the proof. �

5. Two-stage GLS estimator for the regression coefficient matrix

Note that the regression coefficient matrix Θ in model (1) is defined before a design is planned and an observation value
matrix Y is obtained. And the rows of the treatment designmatrix X in model (1) are added one after another and the profile
matrix Z in model (1) does not depend on the sample size n. So, in the repeated measurement experiments over multiple
time points, the design matrix X and the profile matrix Z usually are of full rank. It is reasonable for us to only consider the
case of full-rank matrices X and Z . Assume that X and Z are of full rank in the sequent discussions.

To seek the least squares estimators for regression coefficient matrix Θ in the model (1), we usual use the two-stage
generalized least squares estimation. That is, first, based on data Y , find a first-stage estimator Σ̃ ofΣ; and secondly, replace
the unknown Σ with the first-stage estimator Σ̃ and then find the two-stage generalized least squares estimator Θ(Y)
through the normal equations to regression coefficient matrix.

Taking the outer product least squares estimator Σcopls(Y) given in (16) as the first-stage estimator of covariance Σ and
according to the theory of least squares, we have the normal equation to regression coefficient matrix in the model (1)

X ′XΘZ ′Σ−1
copls(Y)Z = X ′YΣ−1

copls(Y)Z,

where

Z ′Σcopls(Y)Z

−1 exists with probability 1.
Then the two-stage least squares estimator, written as Θcopls(Y), of Θ is given by

Θcopls(Y) = (X ′X)−1X ′YΣ−1
copls(Y)Z


Z ′Σ−1

copls(Y)Z
−1

. (21)

The estimator Θcopls(Y) is easily shown to have unbiasedness under the assumption of E being symmetric about the
origin.

Assumption 2. Assume that limn→∞
1
nX

′X = R > 0.

Theorem 5.1. Under Assumption 2, the two-stage generalized least squares estimator Θcopls(Y) is consistent to regression
coefficients Θ .

Proof. Θcopls(Y) can be decomposed into Θ +


X ′X
n

−1
X ′E
n
Σ−1

copls(Y)Z

Z ′Σ−1

copls(Y)Z
−1

. Note that Σ−1
copls(Y) and

Z ′Σ−1
copls(Y)Z

−1
both are bounded with probability 1. With Assumption 2, 1

nX
′E converges to 0 in probability due to

P
1nX ′E

 ≥ ε


≤

1
n2ε2

E(tr(X ′EE ′X)) =
1

nε2
tr

1
n
X ′X


tr(Σ)

for any ε > 0. Thus, the statistic Θ(Y) converges to Θ in probability, completing the proof. �

Theorem 5.2. Under Assumptions 1 and 2, then
(a)

√
n
Θcopls(Y) − Θ


converges in distribution to the multivariate normal distribution Nmq


0, R−1

⊗ (Z ′Σ−1Z)−1

, and

(b)
√
n
Σcopls(Y) − Σ


and

√
n
Θcopls(Y) − Θ


are asymptotically independent.

Proof. (a)
√
n
Θcopls(Y) − Θ


can be decomposed into

√
n

(X ′X)−1X ′E

 Σ−1
copls(Y)Z(Z ′Σ−1

copls(Y)Z)−1 . (22)

Let Ln = (X ′X)−1X ′E . By Theorem 4.2 of Hu and Yan [6],
√
nLn converges in distribution to the normal distribution

Nmp(0, R−1
⊗ Σ). Therefore,

√
n
Θcopls(Y) − Θ


converges in distribution to Nmq(0, R−1

⊗ (Z ′Σ−1Z)−1).
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(b) By the Eq. (22), it suffices to prove the asymptotically independence between 1
√
nvec(X

′E) and
√
nvec

Σcopls(Y) − Σ

.

Let Qn = X ′E = (x1, . . . , xn)(ε1, . . . , εn)
′. Then

Cov

Qn
Σcopls(Y) − Σ


= Cov


n

i=1

xiε′

i


1
n

n
i=1

εiε
′

i − Σ


+ op(1)

= E


n

i=1

xi ⊗ ε′

i


n

i=1

εi ⊗ ε′

i − Σ


+ op(1).

According to Assumption 2, Cov


1
√
nX

′E


√
n
Σcopls(Y) − Σ


converges to 0 in probability, implying that 1

√
nvec


X ′E


and

√
nvec

Σcopls(Y) − Σ

are asymptotically independent. Therefore,

√
n
Σcopls(Y) − Σ


and

√
n
Θcopls(Y) − Θ


are also

asymptotically independent. So, the proof is complete. �

6. Simulation studies and a numerical example

6.1. Simulation studies

In this section, we conduct some simulation studies to show the finite sample performance of the proposed procedure
in previous sections. The data are generated from the following growth curve model

Yn×p = Xn×sΘs×qZ ′

p×q + En×p, Cov(E) = In ⊗ Σ

where p = 4, s = 2, q = 3, the same size n = 20, 30, 50, 100 with the design matrices X = diag

1 1

n
, 1 1

n


, respective, and

the true Θ =


−1 1 2
1 3 5


. For covariance Σ , we take two cases. The first one is an arbitrary positive definite structure

Σ1 =

 1 0.8 0.5 0.4
0.8 1 0.6 0.2
0.5 0.6 1 0.7
0.4 0.2 0.7 1

 .

The second one is the autoregressive structure, namely

Σ2 =


1 ρ ρ2 ρ3

ρ 1 ρ ρ2

ρ2 ρ 1 ρ

ρ3 ρ2 ρ 1

(1 − ρ2) with ρ = 0.6.

Under assumption of normality, the maximum likelihood estimators, written as Θml and Σml, are reexpressed,
respectively, by

Θml = (X ′X)−1X ′Y

Y′MXY

−1 Z

Z ′

Y′MXY

−1 Z
−1

Σml =
1
n
(Y − XΘmlZ ′)′(Y − XΘmlZ ′),

(23)

see Khatri [8] or von Rosen [22] for details.
In each case, the number of simulated realizations is 1000. Regarding the two-stage GLS estimator Θcopls, given by (21),

and the MLE Θml, given by (23), of the parametric matrix Θ , for a fixed sample size, the sample means (sms), bias (the
difference between estimated values and the corresponding true values), the standard deviations (stds), the mean squared
error (mses), and coverage of the 95% nominal confidence intervals (cps) are obtained. The results are summarized in Tables 1
and 2.

From the Tables, we make the following observations:

(1) The standard deviations and the mean squared error of the proposed GLS estimator Θcopls decrease as n increases. The
proposed GLS estimator Θcopls performs a little bit more efficient than MLE Θml does in sense MSE.

(2) The biases both decrease as n increases. The bias of the proposed GLS estimator Θcopls is almost smaller than that of MLEΘml.
(3) Each coverage of the 95% nominal confidence interval of the proposed GLS estimator Θcopls is more satisfactory than that

of MLE Θml does.



62 J. Hu et al. / Journal of Multivariate Analysis 108 (2012) 53–66

Table 1
Finite sample performances of COPLS estimators and MLEs under Case 1.

n COPLS estimators ML estimators
sm bias std mse cp sm bias std mse cp

20 θ̂11 −0.9994 0.0006 0.5778 0.3335 0.9410 −1.0007 −0.0007 0.5807 0.3369 0.9380
θ̂12 1.0043 0.0043 0.5022 0.2520 0.9430 1.0052 0.0052 0.5047 0.2545 0.9420
θ̂13 1.9987 −0.0013 0.1044 0.0109 0.9380 1.9986 −0.0014 0.1049 0.0110 0.9350
θ̂21 1.0256 0.0256 0.5624 0.3167 0.9470 1.0248 0.0248 0.5656 0.3202 0.9450
θ̂22 2.9633 −0.0367 0.4909 0.2421 0.9540 2.9641 −0.0359 0.4937 0.2448 0.9510
θ̂23 5.0076 0.0076 0.1027 0.0106 0.9520 5.0074 0.0074 0.1033 0.0107 0.9520

σ̂11 1.0247 0.0247 0.3451 0.1196 – 0.9315 −0.0685 0.3154 0.1041 –
σ̂12 0.8169 0.0169 0.3095 0.0960 – 0.7456 −0.0544 0.2851 0.0842 –
σ̂13 0.4998 −0.0002 0.2706 0.0732 – 0.4445 −0.0555 0.2494 0.0652 –
σ̂14 0.4050 0.0050 0.2632 0.0692 – 0.3598 −0.0402 0.2430 0.0606 –
σ̂22 1.0065 0.0065 0.3397 0.1153 – 0.9217 −0.0783 0.3149 0.1052 –
σ̂23 0.5971 −0.0029 0.2767 0.0765 – 0.5253 −0.0747 0.2534 0.0697 –
σ̂24 0.2064 0.0064 0.2470 0.0610 – 0.1724 −0.0276 0.2296 0.0534 –
σ̂33 0.9821 −0.0179 0.3230 0.1045 – 0.9167 −0.0833 0.3074 0.1013 –
σ̂34 0.6863 −0.0137 0.2730 0.0746 – 0.6462 −0.0538 0.2586 0.0697 –
σ̂44 0.9842 −0.0158 0.3126 0.0979 – 0.9136 −0.0864 0.2963 0.0952 –

30 θ̂11 −1.0173 −0.0173 0.4414 0.1950 0.9540 −1.0179 −0.0179 0.4428 0.1962 0.9540
θ̂12 1.0107 0.0107 0.3930 0.1544 0.9500 1.0110 0.0110 0.3941 0.1553 0.9470
θ̂13 1.9980 −0.0020 0.0825 0.0068 0.9470 1.9980 −0.0020 0.0826 0.0068 0.9470
θ̂21 1.0057 0.0057 0.4499 0.2022 0.9530 1.0052 0.0052 0.4502 0.2025 0.9510
θ̂22 2.9951 −0.0049 0.3968 0.1573 0.9500 2.9954 −0.0046 0.3974 0.1578 0.9500
θ̂23 5.0004 0.0004 0.0828 0.0069 0.9480 5.0004 0.0004 0.0830 0.0069 0.9470

σ̂11 1.0076 0.0076 0.2707 0.0733 – 0.9444 −0.0556 0.2548 0.0679 –
σ̂12 0.8043 0.0043 0.2443 0.0596 – 0.7557 −0.0443 0.2310 0.0553 –
σ̂13 0.5000 0.0000 0.2084 0.0434 – 0.4625 −0.0375 0.1970 0.0402 –
σ̂14 0.3990 −0.0010 0.2003 0.0401 – 0.3686 −0.0314 0.1890 0.0367 –
σ̂22 1.0040 0.0040 0.2668 0.0711 – 0.9458 −0.0542 0.2537 0.0672 –
σ̂23 0.6076 0.0076 0.2133 0.0455 – 0.5580 −0.0420 0.2010 0.0421 –
σ̂24 0.2069 0.0069 0.1919 0.0368 – 0.1841 −0.0159 0.1823 0.0334 –
σ̂33 1.0107 0.0107 0.2537 0.0644 – 0.9638 −0.0362 0.2455 0.0615 –
σ̂34 0.7010 0.0010 0.2199 0.0483 – 0.6719 −0.0281 0.2116 0.0455 –
σ̂44 0.9913 −0.0087 0.2517 0.0634 – 0.9418 −0.0582 0.2411 0.0614 –

50 θ̂11 −1.0073 −0.0073 0.3529 0.1245 0.9460 −1.0073 −0.0073 0.3531 0.1246 0.9450
θ̂12 1.0021 0.0021 0.3096 0.0958 0.9480 1.0021 0.0021 0.3098 0.0959 0.9480
θ̂13 1.9998 −0.0002 0.0643 0.0041 0.9440 1.9998 −0.0002 0.0643 0.0041 0.9440
θ̂21 0.9944 −0.0056 0.3406 0.1159 0.9490 0.9944 −0.0056 0.3408 0.1160 0.9480
θ̂22 2.9983 −0.0017 0.3088 0.0953 0.9510 2.9984 −0.0016 0.3089 0.0954 0.9500
θ̂23 5.0008 0.0008 0.0648 0.0042 0.9480 5.0007 0.0007 0.0648 0.0042 0.9480

σ̂11 0.9976 −0.0024 0.1991 0.0396 – 0.9594 −0.0406 0.1916 0.0383 –
σ̂12 0.8027 0.0027 0.1740 0.0303 – 0.7729 −0.0271 0.1678 0.0289 –
σ̂13 0.5068 0.0068 0.1547 0.0239 – 0.4840 −0.0160 0.1498 0.0227 –
σ̂14 0.3990 −0.0010 0.1527 0.0233 – 0.3807 −0.0193 0.1477 0.0222 –
σ̂22 1.0072 0.0072 0.1901 0.0362 – 0.9715 −0.0285 0.1840 0.0346 –
σ̂23 0.6083 0.0083 0.1633 0.0267 – 0.5782 −0.0218 0.1576 0.0253 –
σ̂24 0.1993 −0.0007 0.1434 0.0206 – 0.1860 −0.0140 0.1387 0.0194 –
σ̂33 1.0073 0.0073 0.2067 0.0427 – 0.9788 −0.0212 0.2026 0.0414 –
σ̂34 0.7015 0.0015 0.1812 0.0328 – 0.6837 −0.0163 0.1777 0.0318 –
σ̂44 1.0024 0.0024 0.2060 0.0424 – 0.9718 −0.0282 0.2016 0.0414 –

100 θ̂11 −0.9888 0.0112 0.2407 0.0580 0.9680 −0.9888 0.0112 0.2408 0.0580 0.9680
θ̂12 0.9894 −0.0106 0.2088 0.0437 0.9610 0.9894 −0.0106 0.2089 0.0437 0.9610
θ̂13 2.0021 0.0021 0.0436 0.0019 0.9500 2.0021 0.0021 0.0436 0.0019 0.9500
θ̂21 1.0058 0.0058 0.2534 0.0642 0.9460 1.0058 0.0058 0.2535 0.0642 0.9460
θ̂22 2.9927 −0.0073 0.2203 0.0485 0.9480 2.9927 −0.0073 0.2204 0.0486 0.9470
θ̂23 5.0015 0.0015 0.0457 0.0021 0.9430 5.0015 0.0015 0.0457 0.0021 0.9420

σ̂11 1.0006 0.0006 0.1397 0.0195 – 0.9813 −0.0187 0.1371 0.0191 –
σ̂12 0.7997 −0.0003 0.1272 0.0162 – 0.7850 −0.0150 0.1250 0.0158 –
σ̂13 0.4990 −0.0010 0.1088 0.0118 – 0.4873 −0.0127 0.1071 0.0116 –
σ̂14 0.3995 −0.0005 0.1053 0.0111 – 0.3900 −0.0100 0.1036 0.0108 –
σ̂22 1.0006 0.0006 0.1448 0.0209 – 0.9828 −0.0172 0.1426 0.0206 –
σ̂23 0.6008 0.0008 0.1139 0.0129 – 0.5855 −0.0145 0.1118 0.0127 –
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Table 1 (continued)

n COPLS estimators ML estimators
sm bias std mse cp sm bias std mse cp

σ̂24 0.2013 0.0013 0.0980 0.0096 – 0.1941 −0.0059 0.0965 0.0093 –
σ̂33 1.0035 0.0035 0.1369 0.0187 – 0.9894 −0.0106 0.1356 0.0185 –
σ̂34 0.7013 0.0013 0.1192 0.0142 – 0.6927 −0.0073 0.1182 0.0140 –
σ̂44 0.9986 −0.0014 0.1412 0.0199 – 0.9836 −0.0164 0.1399 0.0198 –

Regarding the Σcopls, given by (16), and the MLE Σml, see (23), for a fixed sample size, the sample means (sms), bias
(the difference between estimated values and the corresponding true values), standard deviations (stds) and the mean
squared error (mses) are obtained. The results are summarized in Tables 1 and 2. From the Tables, we make the following
observations:

(i) The sample means (sms) of Σcopls are closer to the corresponding true values than that of Σml. They both are closer and
closer to the corresponding true values as n increases.

(ii) The biases and standard deviations both decrease as n increases for two estimators. The bias of Σcopls is much smaller
than that of Σml while the standard deviation and the mean squared error of Σml are smaller than those of the Σcopls.
Also see the following geometrical presentation.

The above observations imply that Θcopls has more efficient (more precision and more accuracy) than that of Θml from
the small sample performance, and Σcopls is more efficient than Σml in the sense of accuracy. These small sample simulation
studies also show that the proposed method or the COPLS approach is an alternate competitor for parameter estimation in
the growth curve model.

6.2. A geometrical presentation

The conclusion from above simulations is natural. A geometrical interpretation is presented. Let us re-look at the
maximum likelihood estimator Θml(Y). If taking Σmulti

ols given by (18) as the first-stage estimator of covariance, we haveΘ2sls(Y) = (X ′X)−1X ′Y
Σmulti

ols (Y)
−1

Z

Z ′
Σmulti

ols (Y)−1 Z−1

= (X ′X)−1X ′Y (YMXY)−1 Z

Z ′ (YMXY)−1 Z

−1

= Θml(Y). (24)

That is to say, Θml(Y) is a two-stage GLS estimator ofΘ in the growth curvemodel. From the discussion in Section 2.4, Σmulti
ols

in (18) is the COPLS estimator of covariance Σ for the multivariate linear model. Compared to the COPLS estimator given in
(16), the Σmulti

ols is obtained under completely ignoring Z when the growth curve model is considered. We believe that the
price will be paid for ignoring the profile matrix Z due to r(Z) < r(I) = p.

For more clarity, we rewrite the multivariate linear model and the growth curve model with the same covariance
structure I ⊗ Σ as follows:

vec(Y) = (X ⊗ I)vec(Θ) + E (25)

and

vec(Y) = (X ⊗ Z)vec(Θ) + E . (26)

Owing to r(Z) < r(I) = p, C (X ⊗ Z) ⊂ C (X ⊗ I). It implies that the model (26) is a reduced model to the full model (25).
Assume that the reduced model (26) is true. It means that the full model (25) is also true. The error space of the reduced
model is bigger than that of the full model. The error space of the full model is a subspace of the error space of the reduced
model. The Σcopls is obtained by using the bigger error space while Σmulti

ols is obtained by using the smaller error space. The
bigger one contains more information about covariance. There is no reason for us to give up the COPLS estimator in (16)
and choose the estimator in (18). And any estimator of the regression coefficient matrix strongly relies on the preestimated
covariance matrix Σ . So, it is reasonable for us to believe that, for the growth curve model, Θcopls(Y) is more competitive
than the Θ2sls(Y) or Θml(Y), see (24). In one word, there are practical and statistical advantages to take the COPLS estimator
given by (16) as the first-stage estimate of covariance when doing the two-stage GLS for the regression coefficient matrix,
see Hu and Yan [6].

6.3. A numerical example

The numerical example, stated in [17], about measurements on 11 girls and 16 boys at 4 different ages is employed here
to illustrate the calculation of using Θopls(Y) to estimate the regression coefficients of the growth curve for 11 girls and 16
boys (see Table 3).
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Table 2
Finite sample performances of COPLS estimators and MLEs under Case 2.

n COPLS estimators ML estimators
sm bias std mse cp sm bias std mse cp

20 θ̂11 −0.9935 0.0065 0.8065 0.6498 0.9440 −0.9926 0.0074 0.8087 0.6534 0.9410
θ̂12 1.0114 0.0114 0.6933 0.4804 0.9490 1.0102 0.0102 0.6969 0.4852 0.9480
θ̂13 1.9962 −0.0038 0.1350 0.0182 0.9400 1.9965 −0.0035 0.1356 0.0184 0.9400
θ̂21 0.9578 −0.0422 0.8205 0.6744 0.9440 0.9581 −0.0419 0.8232 0.6787 0.9430
θ̂22 3.0227 0.0227 0.7189 0.5168 0.9360 3.0224 0.0224 0.7214 0.5204 0.9350
θ̂23 4.9971 −0.0029 0.1395 0.0195 0.9370 4.9972 −0.0028 0.1401 0.0196 0.9370

σ̂11 1.5435 −0.0190 0.5216 0.2721 – 1.3983 −0.1642 0.4731 0.2505 –
σ̂12 0.9122 −0.0253 0.4224 0.1789 – 0.8243 −0.1132 0.3857 0.1614 –
σ̂13 0.5342 −0.0283 0.3812 0.1460 – 0.4868 −0.0757 0.3522 0.1297 –
σ̂14 0.3155 −0.0220 0.3716 0.1385 – 0.2863 −0.0512 0.3374 0.1164 –
σ̂22 1.5338 −0.0287 0.5329 0.2845 – 1.4120 −0.1505 0.4987 0.2712 –
σ̂23 0.9093 −0.0282 0.4144 0.1723 – 0.8017 −0.1358 0.3787 0.1617 –
σ̂24 0.5404 −0.0221 0.3881 0.1510 – 0.4921 −0.0704 0.3579 0.1329 –
σ̂33 1.5593 −0.0032 0.5228 0.2731 – 1.4381 −0.1244 0.4950 0.2602 –
σ̂34 0.9339 −0.0036 0.4148 0.1719 – 0.8457 −0.0918 0.3841 0.1558 –
σ̂44 1.5505 −0.0120 0.5195 0.2698 – 1.4061 −0.1564 0.4721 0.2471 –

30 θ̂11 −1.0090 −0.0090 0.6574 0.4318 0.9500 −1.0093 −0.0093 0.6597 0.4348 0.9480
θ̂12 1.0084 0.0084 0.5708 0.3256 0.9480 1.0082 0.0082 0.5724 0.3274 0.9450
θ̂13 1.9988 −0.0012 0.1095 0.0120 0.9470 1.9989 −0.0011 0.1098 0.0120 0.9460
θ̂21 1.0010 0.0010 0.6476 0.4190 0.9550 1.0015 0.0015 0.6485 0.4202 0.9530
θ̂22 2.9949 −0.0051 0.5643 0.3182 0.9430 2.9945 −0.0055 0.5655 0.3195 0.9430
θ̂23 5.0013 0.0013 0.1103 0.0122 0.9400 5.0014 0.0014 0.1106 0.0122 0.9400

σ̂11 1.5252 −0.0373 0.4113 0.1704 – 1.4278 −0.1347 0.3853 0.1665 –
σ̂12 0.9053 −0.0322 0.3304 0.1101 – 0.8469 −0.0906 0.3122 0.1056 –
σ̂13 0.5312 −0.0313 0.3034 0.0930 – 0.4976 −0.0649 0.2876 0.0868 –
σ̂14 0.3142 −0.0233 0.2777 0.0776 – 0.2939 −0.0436 0.2600 0.0694 –
σ̂22 1.5404 −0.0221 0.4182 0.1752 – 1.4582 −0.1043 0.3995 0.1703 –
σ̂23 0.9110 −0.0265 0.3414 0.1171 – 0.8363 −0.1012 0.3208 0.1130 –
σ̂24 0.5444 −0.0181 0.3006 0.0906 – 0.5104 −0.0521 0.2840 0.0833 –
σ̂33 1.5511 −0.0114 0.4190 0.1755 – 1.4668 −0.0957 0.3992 0.1684 –
σ̂34 0.9298 −0.0077 0.3339 0.1114 – 0.8686 −0.0689 0.3145 0.1036 –
σ̂44 1.5645 0.0020 0.4096 0.1676 – 1.4636 −0.0989 0.3836 0.1568 –

50 θ̂11 −1.0228 −0.0228 0.5004 0.2507 0.9600 −1.0229 −0.0229 0.5007 0.2510 0.9590
θ̂12 1.0178 0.0178 0.4374 0.1914 0.9420 1.0179 0.0179 0.4377 0.1917 0.9420
θ̂13 1.9968 −0.0032 0.0848 0.0072 0.9470 1.9968 −0.0032 0.0849 0.0072 0.9470
θ̂21 0.9876 −0.0124 0.5125 0.2625 0.9490 0.9877 −0.0123 0.5129 0.2630 0.9470
θ̂22 3.0105 0.0105 0.4394 0.1930 0.9540 3.0104 0.0104 0.4398 0.1934 0.9540
θ̂23 4.9991 −0.0009 0.0854 0.0073 0.9550 4.9991 −0.0009 0.0854 0.0073 0.9540

σ̂11 1.5497 −0.0128 0.3117 0.0972 – 1.4891 −0.0734 0.2995 0.0950 –
σ̂12 0.9332 −0.0043 0.2583 0.0667 – 0.8958 −0.0417 0.2494 0.0639 –
σ̂13 0.5701 0.0076 0.2406 0.0579 – 0.5486 −0.0139 0.2323 0.0541 –
σ̂14 0.3424 0.0049 0.2322 0.0539 – 0.3289 −0.0086 0.2232 0.0498 –
σ̂22 1.5589 −0.0036 0.3169 0.1004 – 1.5072 −0.0553 0.3078 0.0977 –
σ̂23 0.9392 0.0017 0.2693 0.0725 – 0.8928 −0.0447 0.2592 0.0691 –
σ̂24 0.5671 0.0046 0.2476 0.0613 – 0.5456 −0.0169 0.2390 0.0573 –
σ̂33 1.5618 −0.0007 0.3291 0.1082 – 1.5102 −0.0523 0.3201 0.1051 –
σ̂34 0.9356 −0.0019 0.2660 0.0707 – 0.8982 −0.0393 0.2569 0.0675 –
σ̂44 1.5526 −0.0099 0.3128 0.0979 – 1.4918 −0.0707 0.3006 0.0953 –

100 θ̂11 −0.9854 0.0146 0.3532 0.1248 0.9570 −0.9853 0.0147 0.3533 0.1249 0.9560
θ̂12 0.9905 −0.0095 0.3124 0.0976 0.9450 0.9906 −0.0094 0.3125 0.0976 0.9430
θ̂13 2.0014 0.0014 0.0602 0.0036 0.9510 2.0014 0.0014 0.0602 0.0036 0.9510
θ̂21 0.9968 −0.0032 0.3599 0.1294 0.9470 0.9969 −0.0031 0.3601 0.1295 0.9470
θ̂22 2.9953 −0.0047 0.3073 0.0943 0.9520 2.9953 −0.0047 0.3074 0.0944 0.9510
θ̂23 5.0010 0.0010 0.0587 0.0034 0.9560 5.0010 0.0010 0.0587 0.0034 0.9560

σ̂11 1.5500 −0.0125 0.2147 0.0462 – 1.5194 −0.0431 0.2104 0.0461 –
σ̂12 0.9292 −0.0083 0.1733 0.0301 – 0.9104 −0.0271 0.1703 0.0297 –
σ̂13 0.5688 0.0063 0.1598 0.0256 – 0.5579 −0.0046 0.1571 0.0247 –
σ̂14 0.3414 0.0039 0.1594 0.0254 – 0.3346 −0.0029 0.1562 0.0244 –
σ̂22 1.5561 −0.0064 0.2140 0.0458 – 1.5299 −0.0326 0.2111 0.0456 –
σ̂23 0.9413 0.0038 0.1815 0.0329 – 0.9179 −0.0196 0.1782 0.0321 –
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Table 2 (continued)

n COPLS estimators ML estimators
sm bias std mse cp sm bias std mse cp

σ̂24 0.5632 0.0007 0.1699 0.0288 – 0.5523 −0.0102 0.1671 0.0280 –
σ̂33 1.5702 0.0077 0.2233 0.0499 – 1.5441 −0.0184 0.2202 0.0488 –
σ̂34 0.9409 0.0034 0.1889 0.0357 – 0.9220 −0.0155 0.1856 0.0347 –
σ̂44 1.5686 0.0061 0.2237 0.0500 – 1.5376 −0.0249 0.2192 0.0486 –

Table 3
Measurements on 11 girls and 16 boys, at 4 different ages 8, 10, 12, 14.

Girls 8 10 12 14 Boys 8 10 12 14

1 21 20 21.5 23 1 26 25 29 31
2 21 21.5 24 25.5 2 21.5 22.5 23 26.5
3 20.5 24 24.5 26 3 23 22.5 24 27.5
4 23.5 24.5 25 26.5 4 25.5 27.5 26.5 27
5 21.5 23 22.5 23.5 5 20 23.5 22.5 26
6 20 21 21 22.5 6 24.5 25.5 27 28.5
7 21.5 22.5 23 25 7 22 22 24.5 26.5
8 23 23 23.5 24 8 24 21.5 24.5 25.5
9 20 21 22 21.5 9 23 20.5 31 26

10 16.5 19 19 19.5 10 27.5 28 31 31.5
11 24.5 25 28 28 11 23 23 23.5 25

12 21.5 23.5 24 28
13 17 24.5 26 29.5
14 22.5 25.5 25.5 26
15 23 24.5 26 30
16 22 21.5 23.5 25

Mean 21.18 22.23 23.09 24.09 Mean 22.87 23.81 25.72 27.47

(a) First, we assume quadratic equations in time t for the growth curves of 16 boys and 11 girls. Here m = 2, p = 3,

t1 = −3, t2 = −2, t3 = 1, t4 = 3, design matrix X =


111 0
0 116


, profile matrix Z ′

=


1 1 1 1

−3 −1 1 3
9 1 1 9


and regression

coefficient Θ =


θ11 θ12 θ13
θ21 θ22 θ23


.

By (16) and (21), we obtain the estimate of the regression coefficient matrix

Θcopls =


22.6819 0.4783 −0.0026
24.6444 0.7887 0.0501


and the least squares estimator of covariance

Σcopls =

5.4081 2.7388 3.8882 2.7176
2.7388 4.1187 2.9932 3.2951
3.8882 2.9932 6.3896 4.1528


.

In the above Θcopls, θ̂13 and θ̂23 are so close to zero that it motivates us to consider linear growth curve for 11 girls and 16
boys.

(b) We assume linear equations in time t for the growth curves of 11 girls and 16 boys. Then p = 2, profile matrix
Z ′

=


1 1 1 1

−3 −1 1 3


and regression coefficient Θ =


θ11 θ12
θ21 θ22


. Other are same as that stated in (a).

Also by Eqs. (16) and (21), we obtain the estimate of regression coefficient

Θcopls =


22.6665 0.4765
24.9382 0.8255


and the least squares estimator of covariance

Σcopls =

5.4262 2.708 3.8958 2.7228
2.708 4.1624 2.9985 3.2771
3.8958 2.9985 6.3563 4.1732
2.7228 3.2771 4.1732 4.9708

 .

7. Concluding remarks

When covariance in a linear model is known, the ordinary least squares method can give us a BLUE of the regression
coefficient matrix. However, inference on the regression coefficient matrix strongly relies on the pre-estimated covariance
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matrix for the cases where covariance is unknown. So, before doing two-stage generalized least squares, we need a good
first-stage estimator of covariance.

To provide a method to seek a good first-stage estimate of covariance, we develop a framework for directly doing least
squares estimation to covariance in the growth curve model (1) without assumption of normality. Based on the idea of
analogy, our consideration startswith using the outer product of the residual vector of data to estimate unknown covariances
of random errors. An outer product least squares approach is formulated and an outer product least squares estimatorΣcopls(Y) is obtained by the proposed framework. The COPLS estimator of covariance has an explicit expression in matrix
quadratic forms and has been shown to have the properties: (1) following a linear transformation of two independent
Wishart distribution for a normal errormatrix; (2) having asymptotic normality for a nonnormal errormatrix; and (3) having
unbiasedness and invariance under a linear transformation group. These support the COPLS estimator as an excellent
competitor to the maximum likelihood estimator of covariance. Taking the Σcopls(Y) as the first-stage estimator, we obtain
the corresponding two-stage GLS estimator for the regression coefficient matrix and show its asymptotic normality.

Simulation studies with sample size 20, 30, 50, 100 to the growth curve model with a normal error demonstrate that
the two-stage GLS estimators Θcopls(Y) obtained by our framework are alternative competitors with more efficiency in the
sense of MSE to the maximum likelihood estimators for the regression coefficients in finite samples.

The outer product least squares approach is suitable to estimate unknown parameters in covariance for a class of linear
models with independent and identically distributed errors. The further development and applications of this approach are
on progress.
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