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The antiinflammatory and antiapoptotic effects of chondroitin sulfate (CS) are being used to treat
osteoarthritis. Recent evidence has revealed that those peripheral effects of CS may also have therapeutic
interest in diseases of the central nervous system (CNS). We review here such evidence. Perineuronal
nets (PNNs) formed by chondroitin sulfate proteoglycans (CSPGs) may have a neuroprotective action
against oxidative stress potentially involved in neurodegeneration. On the other hand, in human
neuroblastoma SH-SY5Y cells CS has antioxidant and neuroprotective effects by activating the signaling
pathway PKC/PI3K/Akt and inducing the antioxidant enzyme hemoxygenase-1. Consistent with this is
the observation that protein kinase C (PKC) blockade overcomes inhibition of neurite outgrowth elicited
by CSPGs. In addition, CS protects cortical neurons against excytotoxic death by phosphorylation of
intracellular signals and the suppression of caspase-3 activation. Of interest is the finding that a disac-
charide derived from CSPG degradation (CSGP-DS) protects neurons against toxicity both in vitro and in
vivo. Furthermore, CSGP-DS efficiently protects against neuronal loss in experimental autoimmune
encephalomyelitis and uveitis, decreases secretion of tumor necrosis factor-a (TNF-a) and block necrosis
factor kappa B (NF-kB) translocation. In conclusion, CS may have neuroprotective properties linked to its
antioxidant and antiinflammatory effects.

� 2010 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Introduction

Chondroitin sulfate (CS) is a natural glycosaminoglycan (GAG)
present in the extracellular matrix (ECM) surrounding cells, especially
in the cartilage, skin, blood vessels, ligaments, tendons and brain,
where it constitutes an essential component of proteoglycans (PGs)1.
Multiple controlled clinical trials in patients with osteoarthritis (OA)
have reported clinical benefits of CS (800e1200mg) to reduce pain,
joint swelling and effusion and improve joint function with an excel-
lent safety profile2e4. The majority of the clinical efficacy literature
describes the results of studies inwhich theobjectivewas todetermine
the efficacy of CS in the symptomatic treatment of knee OA through
placebo-controlled studies, and also through comparator studies in
which CS treatment has been directly compared with diclofenac
sodium5 or celecoxib6. Several studies have also been reported that
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assessed efficacy in finger/hand OA7 and long-term studies provided
evidence for a disease-modifying effect of CS8,9. Accordingly, CS has
been classified as a symptomatic slow acting drug in osteoarthritis
(SYSADOA) and a structure/disease-modifying anti-osteoarthritis drug
(S/DMOAD)10. Likewise, the OsteoArthritis Research Society Interna-
tional (OARSI) and the European League Against Rheumatism (EULAR)
support the usefulness of CS as an SYSADOA for the management of
knee OA in their last recommendation guidelines11,12.

However, the symptomatic effectiveness of CS in the osteoar-
thritic joint is still controversial andCS studies havebeen sometimes
criticized for small sample sizes or short length of therapy. It is
noteworthy that OA is a chronic disease which often develops
slowly, so that it can take from years to decades to develop from
early OA, where only metabolic events can be detected, to clinical
OA, where symptomatic events are manifest. Even though good
quality randomized clinical trials have been performed with CS for
periods ranging from a couple of months to 2 years, this time
interval is still short to study a chronic disease. The combination of
this factor and the fact that CS presents a slow but gradual decrease
of the clinical symptoms of OA patients could explain some of the
weaknesses observed in the clinical trials carried out with this drug.
ublished by Elsevier Ltd. All rights reserved.
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Fig. 1. Proposed mechanism for the antioxidant and neuroprotecting action of CS. CS
activates PKC that will increase the phosphorylation of phosphoinositide 3-kinase
(PI3K) and activates the Akt signaling pathway which will induce the synthesis of the
antioxidant HO-1. Stress will increase the production of reactive oxygen species (ROS)
that may be neutralized by HO-1.
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On the other hand, in a meta-analysis recently published13 it was
concluded that the symptomatic benefit of CS is minimal. However,
the authors acknowledge that the 20 trials included showed a high
degree of heterogeneity, which obviously imposes serious uncer-
tainties on the adequacy of the conclusions drawn in the study14.
However, the rest of meta-analyses performed with CS have
concluded that it is effective in treating the symptoms of OA with
possible disease-modifying effects. Combined with a strong safety
profile and a carry-over effect, such conclusions have created support
for the use of CS in the treatment of OA15e17. The beneficial effects of
CS described above are likely due to its condroprotective effects
linked to reduction of chondrocyte apoptosis, decrease of synthesis
and/or activity of ECM metalloproteases and augmentation of the
synthesis of articular cartilage PGs as seen in several in vitro and in
vivo studies with CS. Furthermore, CS exhibits well documented
immunomodulatory effects such as reduction of NF-kB nuclear
translocation, decrease in the production of proinflammatory cyto-
kines Interlekin-1 b (IL-1b) and tumor necrosis factor-a (TNF-a), and
diminution of the expression and activity of nitric oxide synthase-2
(NOS-2) and cyclooxygenase-2 (COX-2)14. More recent studies show
that these properties of CS may also have therapeutic applications in
diseases of the central nervous system (CNS).

Neurodegenerative diseases and stroke have pathogenic mecha-
nisms related to oxidative stress, inflammation, apoptosis and
neuronal loss. Thus, therapeutic strategies based in immunomodula-
tory and antiinflammatory drugs are being studied18. One of such
drugs is CS that exhibits antioxidant, immunomodulatory and neuro-
protective effects in neuronal tissues. Furthermore, there is increasing
interest in clarifying the role of chondroitin sulfate proteoglycans
(CSPGs) in regeneration and plasticity of the CNS19. Hence, we will
review next the evidence supporting a role for CS and CSPGs in
neurological repair and neuroprotective mechanisms that could
inspire development of novel medicines with potential therapeutic
impact in neurodegenerative diseases, stroke and CNS trauma.

CSPGs in the CNS: role on brain plasticity and repair

CSPGs are the most abundant types of PGs in the mammalian
CNS. They mainly act as barrier molecules that affect cell migration,
axon regeneration and brain plasticity, particularly through their
GAG chains. Actions of GAG chains have been explored with (1)
chondroitinase, that digests GAGs to form disaccharides20,21 and (2)
GAG synthase inhibitors such as sodium chlorate and b-D-xylo-
sides22. On the basis of these studies, it seems that removing CS-GAG
chains, possibly combined with treatments that enhance the
intrinsic regenerative or plastic capabilities of adult CNS neurons,
may be of considerable promise as a therapeutic strategy to augment
CNS repair after injury23.

Antioxidant and neuroprotective actions of CS

Specialized forms of the ECM are perineuronal nets (PNNs), first
described by Ramón y Cajal and Golgi as reticular structures
covering cell bodies and proximal dendrites in subpopulations of
neurons. They are formed by aggregating CSPGs whose GAGs form
highly negative charged structures that can contribute to reduce
local oxidative stress by scavenging and binding redox-active iron,
thus providing neuroprotection to net-associated neurons. These
neurons have been found to be less frequently affected by lipofuscin
accumulation than neurons without a net both in normal-aged and
Alzheimer’s disease (AD) human brains. As lipofuscin is an intra-
lysosomal pigment composed of cross-linked proteins and lipids
generated by iron-catalysed oxidative processes, the above results
suggest a neuroprotective function of PNNs against oxidative stress,
potentially involved in neurodegeneration24.
We have recently reported evidence proving that CS has
antioxidant and neuroprotective actions in human neuroblastoma
SH-SY5Y cells25. In these studies, CS used was highly purified
chondroitins 4 and 6 sulfate of bovine origin in a concentration not
less than 98% with an average molecular weight of z15e16 kD, an
intrinsic viscosity of z0.02e0.06 m3/kg and a ratio between the
sulfated groups located in positions 4 and 6 on N-acetyl-D-galac-
tosamine of 2. To produce neuroprotective and antiapoptotic
effects, CS was incubated for 24 h before adding the free radical
producing agents (H2O2 or combined oligomycin plus rotenone). CS
drastically reduced the generation of free radicals produced by
H2O2 or combined oligomycin plus rotenone. Furthermore, CS
augmented the phosphorylation of Akt and heme oxygenase-1
(HO-1), suggesting that this signaling pathway was involved in its
neuroprotective effects. In fact, CS augmented Akt phosphorylation,
an effect that was prevented by chelerythrine, a protein kinase C
(PKC) inhibitor. Consistent with this idea is the observation that
chelerythrine and LY294002, a PI3K/Akt inhibitor, prevented the
neuroprotective effect of CS. On the basis of these results, we sug-
gested that CS could protect SH-SY5Y cells under oxidative stress
conditions by activating PKC, which phosphorylates Akt that via the
PI3K/Akt pathway, induces the synthesis of the antioxidant protein
HO-1 (Fig. 1). Consistent with this signaling pathway is the obser-
vation that PKC blockade overcomes the effects of CSPGs, i.e., the
inhibition of neurite outgrowth26.

Still more recently, it was shown that CS elicits neuroprotective
effects in an in vitro model of calcium-dependent excitotoxicity.
Thus preincubation of rat cortical neurons with a highly sulfated CS
(CS-E) reduced death induced by N-methyl-D-aspartate (NMDA),
(S)-a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid or
kainate. Other less sulfated CS preparations or highly sulfated
polysaccharides such as heparin and dextran sulfate had no neu-
roprotective effects. The neuroprotective effects of CS-E seems to be
related with phosphorylation of intracellular signals and the
suppression of caspase-3 activation27. It is noteworthy that in this
study, CS had to be preincubated during 24 h before adding the
neurotoxic agent in order to exert its neuroprotective action. This
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agrees with the report of Canas et al.25, who showed that CS also
requires 24 h preincubation to exert its neuroprotective effects
against oxidative stress. We might speculate that this time is
required to induce antioxidant enzymes that will protect neurons
against oxidative stress. It could be interesting to explore whether
a common signaling pathwaymediates the neuroprotective actions
in rat cortical neurons stressed with calcium-dependent excito-
toxicity27 and human neuroblastoma cells subjected to oxidative
stress25. In this latter study, it was reported that CS did not exert
neuroprotection in a calcium-overload model of cell death.

CS effects in neuroinflammation

Inflammation has been actively related with the onset of several
neurodegenerative disorders, including AD. A current hypothesis
considers that an extracellular insult to neurons could trigger the
production of cytokines such as TNF-a, IL-1b and IL-6 that could
affect normal neuronal activity. For instance, TNF-a is produced by
activated microglia28 mainly in response to amyloid beta (Ab1-40
and Ab1-42), oxidative stress29, glutamate30, and lipopolysaccharide
(LPS)31. These effects have been linked to AD pathogenesis.

On the other hand, IL-6 production occurs in activated glia such
as astrocytes and microglial cells32. This cytokine has been impli-
cated in the pathogenesis of ADwith acute or chronic inflammatory
components33, Parkinson’s disease, multiple sclerosis and HIV
encephalopathy34. An interesting recent finding reveals that
peripheral LPS injection in IL-6 knockout mice is refractory to
develop involvement of IL-6 in impairment of working memory
providing an additional support to the AD35. The possible role of
other inflammatory mediators in AD and the controversy
surrounding them have been recently reviewed36.

A disaccharide degradation product of CSGP (CSGP-DS) modu-
lates inflammatory responses. CSGP-DS has been generated ex vivo
by degrading CSPG by using chondroitinase ABC; this degradation is
likely to produce large amounts of Di-6S on the galactosamine unit.
In addition, other DS molecules, including Di-0S are expected to be
produced as a result of degradation37,38. This is particularly
interesting because of the small size of this disaccharide consisting of
4-deoxy-L-threo-hex-4-enopyronasyluronic acid and N-acetyl-D-
galactosamine-6-sulfate. In experimental autoimmune encephalo-
myelitis (EAE) and experimental autoimmune uveitis (EAU), the
dramatic increase in T cells infiltrating the CNS is far in excess of the
number needed for regular maintenance. The disaccharide CSGP-DS
markedly alleviated the clinical symptoms of EAE and protected
against neuronal loss in EUA. The disaccharide decreases the secre-
tion of TNF-a and blocks NF-kB translocation38. This, together with
the previous report showing that the disaccharide protects neurons
against toxicity both in vitro an in vivo37, suggests that disaccharides
derived from CS may have therapeutic potential for the modulation
of the local immune response in general, and to overcome inflam-
mation associated with neurodegenerative diseases in particular.

Perspective and therapeutic potential

Because CSPGs act as a barrier that impairs axonal growth and
brain repair after brain injury, stroke or neurodegenerative
diseases, it seems clear that removal promotes plasticity, providing
potential treatments for those CNS disorders. However, although
short term degradation of PNNs with for instance chondroitinase
ABC may promote plasticity39, it is uncertain whether PNNs
absence for long periodsmay damage neurons. An interesting point
is the idea that a therapeutic window for CSPG degradation may
exist i.e., during the acute phase of spinal cord injury, CSPG
degradation may promote repair and plasticity; at later stages this
intervention will have opposite effects40. This hypothesis should be
more widely tested. In the light that chondroitinase ABC is being
expected to become a useful therapy for CNS injury, the time
window for its application has to be considered carefully.

The pharmacological modulation of the PKC/PI3K/Akt pathway
may also be a good strategy for neuroprotection with for instance
CS25. Induction of the HO-1 by CS will reinforce the antioxidant
capability of vulnerable neurons. The large molecular weight of CS
does not limit its access to the brain when systemically adminis-
tered; indeed, following oral and intravenous administration of 131I
labeled CS to rats, it was demonstrated that CS and disaccharides
are found in the brain but at concentrations lower than in blood.
Supporting these reports, it has been found that systemic admin-
istration of the Ddi-6S disaccharide of CS to mice does elicit directly
or indirectly an effect in the CNS38. The observation that a small
disaccharide derived from CSPG degradation has potent anti-
neuroinflammatory and neuroprotective actions in EAE and
EAU37,38 should stimulate the use of such small molecules to
explore their potential neuroprotective effects both in in vitro and
in vivo models of neuronal death.
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