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In [6] Schirmer (1985) established that, if ϕ : X � X is an n-valued map defined on a
compact triangulable manifold of dimension at least three, then the appropriate Nielsen
number, N(ϕ), is a sharp lower bound for the number of fixed points in the n-valued
homotopy class of ϕ. In this note we generalize this theorem by allowing X to be any
compact polyhedron without local cut points and such that no connected component is a
two-manifold.
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A multifunction ϕ : X � Y from a topological space X to a topological space Y is a function ϕ : X → P(Y ) − {∅} where
P(Y ) is, as usual, the power set of Y . If X and Y are both compact metric spaces, and ϕ is a multifunction such that ϕ(x)
is a closed subset of Y for each x ∈ X , then ϕ is continuous if it is continuous as a function into the (compact) metric space
of all nonempty closed subsets of Y with the Hausdorff metric. An n-valued map, ϕ : X � Y is a continuous multifunction
such that ϕ(x) is an unordered subset of exactly n points of Y for each x ∈ X . It is a classical theorem in this area (see [4])
that, if X is a compact, Hausdorff simply connected space, then an n-valued map ϕ : X � X splits into n distinct maps, i.e.
ϕ(x) = { f1(x), . . . , fn(x)} for all x ∈ X where each f i is a single valued map. If X is a compact polyhedron and ϕ : X � X is
an n-valued map, then ϕ is simplicial if its restriction to any closed simplex, σ , splits: ϕ|σ = { f1, . . . , fn} where each f i is
a single-valued function that maps σ affinely onto a simplex of X .

In [5] Schirmer defined a Nielsen number, N(·), for n-valued maps, and then in [6] she established the following Wecken
[2,7–9] theorem using certain general position arguments to ensure that all the homotopies involved are n-valued.

Theorem 0. Let X be a compact manifold (with or without boundary) of dimension greater than or equal to three, and let ϕ : X � X
be an n-valued map, then there is an n-valued homotopy between ϕ and an n-valued map with N(ϕ) many fixed points.

For the general position arguments to work it is crucial that X be a manifold of sufficiently high dimension as stated in
Theorem 0.

In the following note we generalize Theorem 0 by allowing X to be a more general type of space. A local cut point, x, of
a topological space X , is a point which has an open neighborhood, U , such that U − x is disconnected.

Theorem 1. Let X be a compact polyhedron without local cut points and such that no connected component is a two-manifold. Let
ϕ : X � X be an n-valued map. Then there is an n-valued homotopy between ϕ and an n-valued map with N(ϕ) many fixed points.

We will establish this theorem by making fundamental use of the fact that the first step in proving Theorem 0 (obtaining
an n-valued homotopy between our given n-valued map and a fix-finite one) yields a simplicial n-valued map w.r.t. some
subdivision of the domain. This will enable us to work with PL paths and we will be able to eliminate intersections of these
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paths to produce the desired n-valued homotopy. In this way we will sidestep the general position arguments originally
used by Schirmer.

Recall that the gap of an n-valued map ϕ : X � X where X is a metric space is defined as:

γ (ϕ) := inf
{

d(xi, x j): xi �= x j, xi, x j ∈ ϕ(x), x ∈ X
}
.

We first establish some preliminary lemmas we shall make use of in the proof of our theorem.
Throughout, X denotes a compact/finite simplicial complex without any local cut points and such that no connected

component (in the ordinary point set topology sense) is a two manifold. This last condition is equivalent to the existence
(possibly with respect to some subdivision) of a 1-simplex that is the common face of at least three 2-simplexes. Likewise,
I will denote the unit interval.

By a PL (piecewise linear) path in X we mean a path p : I → X which, for some subdivision of L of I , maps each simplex
of L affinely into a simplex of X . The image of a vertex of L is called a corner of p. A PL path is normal if (1) it doesn’t
pass through any vertex of X , (2) it has no multiple self-intersections and it has no self-intersections at its corners, and (3)
p(t) is in maximal simplexes of X for all but a finite number of values t ∈ I , and p(t) goes from one maximal simplex into
another when t passes across any of these exceptional values. A PL arc is a PL path with different endpoints and without
self-intersections.

For the reader’s convenience, we recall the definition of Schirmer’s Nielsen number for n-valued maps.
Suppose ϕ : X � X is an n-valued map defined on a compact polyhedron. We define two fixed points of ϕ to be in the

same fixed point class (FPC) if there is path p : I → X from one fixed point to the other, such that one has ϕ◦ p = { f1, . . . , fn}
with f1 ∼ p (rel. endpoints). One thus obtains a partition of Fix(ϕ) into finitely many FPCs [6, Theorem 5.2]. To define the
index of a FPC, one first obtains an open neighborhood, U , of the FPC with Fix(ϕ) ⊂ int(U ), and a sufficiently close fixed
finite approximation of the given n-valued map with all fixed points located in maximal simplexes, and no fixed points on
FrX U . One then defines the index of the FPC to be the sum of the indices of all the fixed points in U ; where the index of a
fixed point is defined to be its ordinary fixed point index when viewed as a fixed point of one of the maps in the splitting
of the restriction of the n-valued map we have obtained to the maximal simplex it is contained in.

Definition 1. Let ϕ : X � X be an n-valued map, and let p : I → X be an arc. Suppose that ϕ|p(I) = { f1, . . . , fn} is a (local)
splitting of ϕ , then define:

S1
ϕ,p :=

⋃
1�i, j�n, i �= j

(
f i ◦ p(I) ∩ f j ◦ p(I)

)

and:

S2
ϕ,p :=

⋃
1�i�n

(
f i ◦ p(I) ∩ p(I)

)

Definition 2. With ϕ and p as in Definition 1, a point z ∈ S1
ϕ,p is a multiple intersection point if:

z = f i ◦ p(a1) = f j ◦ p(a2) = fk ◦ p(a3)

where i, j and k are all distinct.

Lemma 1 (Creation of a fixed point in a simplex with prescribed characteristics). Let ϕ : X � X be a simplicial (possibly w.r.t. some
subdivision of the domain) fixed-finite n-valued map, with all fixed points located in maximal simplexes. Suppose p : I → X is a normal
PL arc (w.r.t. the subdivision of the domain) from one fixed point, x1 , to a point, x2 /∈ Fix(ϕ) located in a maximal simplex (w.r.t. the
subdivision of the domain), σ , that has an edge that is common to at least two other simplexes, and with Fix(ϕ) ∩ p(I) = {x1}. Then
there is an n-valued homotopy between ϕ and φ where Fix(φ) = Fix(ϕ) ∪ {x2}.

Proof. Choose ε > 0 small enough so that:

Ut = Ut(x2;εt) = {
x ∈ X: d(x, x2) � εt

} ⊂ σ

and:

ϕ(U1) =
n∐

i=1

f i(U1)(= V i) and ϕ(U1) ∩ U1 = ∅

and p(I) ∩ U1 is a line segment, where ϕ|U1 = { f1, . . . , fn} is a (local) splitting. Now, X − ∐
1�i�n V i is path-connected,

so there is a PL path q : I → X − ∐
2�i�n V i (see Fig. 1) with q(0) = f1(x2) s.t. p ∼ q ◦ ( f1 ◦ p) (rel. endpoints). Finally, one

applies the following n-valued homotopy:

Φ(x, t) =
⎧⎨
⎩

ϕ(x) if x /∈ Ut

{ f1((
2
εt d(x, x2) − 1)x + (2 − 2

εt d(x, x2))x2), f2(x), . . . , fn(x)} if 0 < εt
2 < d(x, x2) � εt

{q(1 − t + 2 d(x, x )), f (x), . . . , f (x)} if 0 � d(x, x ) � εt

ε 2 2 n 2 2
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Fig. 1. Creation of fixed point.

Notice that there is a subdivision of I s.t. if φ|p(I) = { f ′
1, . . . , f ′

n} is a (local) splitting of φ, then each f ′
i ◦ p is a PL

path. �

Lemma 2 (Obtaining finitely many points of intersection of PL paths). Let ϕ : X � X be a fix-finite n-valued map with all fixed points
located in maximal simplexes. Let p : I → X be a normal PL arc from x1 to x2 , with Fix(ϕ)∩ p(I) = {x1, x2} s.t. if ϕ|p(I) = { f1, . . . , fn}
is a (local) splitting of ϕ then each fi ◦ p is a PL path and f1 ◦ p ∼ p (homotopic rel. endpoints). Then there is a partial special n-valued
homotopy defined on p(I) between ϕ and an n-valued map φ such that S1

φ,p ∪ S2
φ,p is finite.

Proof. Label the vertices of I with respect to which p is PL as s0, . . . , sm and consider an intersection of the form:

f i ◦ p
([sl, sl+1]

) ∩ f j ◦ p
([sk, sk+1]

) = f i ◦ p
([a1,a2]

)
or:

f i ◦ p
([sl, sl+1]

) ∩ p
([sk, sk+1]

) = f i ◦ p
([a1,a2]

)
where f i ◦ p([a1,a2]) consists of more than one point, and k �= l if i = j. Suppose f i ◦ p([a1,a2]) ⊂ σ , where σ is a maximal
simplex, and take any point in σ that doesn’t lie on the line � through f i ◦ p([a1,a2]). Denote by P the plane that contains
this point and the line �. Next, consider all the line segments in

⋃
1�i�n fi ◦ p(I) ∪ p(I) (a union of PL paths) that cross �

at a non-zero angle and are contained in P . Let θ denote the minimum of all the angles these line segments make with �

if this set is non-empty (note that a line segment makes two different angles with �). We consider the following cases:
Case 1: Suppose that either 1 � l < m − 1 and 1 � i � n, or l ∈ {0,m − 1} and i �= 1 in f i ◦ p([sl, sl+1]). Pick y ∈ (P − �)∩σ

such that (see Fig. 2):

(i) if θ1 is the angle made between the line segment [ f i ◦ p(a1), y] and f i ◦ p([a1,a2]), θ2 is the angle between the line
segment [ f i ◦ p(a2), y] and f i ◦ p([a1,a2]), then max{θ1, θ2} < θ

(ii) if L denotes the set of all line segments in
⋃

1�i�n fi ◦ p(I) ∪ p(I) that lie in P but don’t intersect f i ◦ p([a1,a2]) then
dist(y, f i ◦ p([a1,a2])) < dist(L, f i ◦ p([a1,a2]))

(iii) 0 < ε = dist(y, f i ◦ p([a1,a2])) < min{γ (ϕ),min{d( f i(x), x): x ∈ p([sl, sl+1])}} (note that min{d( f i(x), x): x ∈ p([sl,

sl+1])} > 0 since f i is fixed point free on p([sl, sl+1]).

Case 2: Suppose that l ∈ {0,m − 1} and i = 1. In this case we are considering an intersection of the form:

f1 ◦ p
([0, s1]

) ∩ p
([0, s1]

) = f1 ◦ p
([0,a1]

)
or:

f1 ◦ p
([sm−1,1]) ∩ p

([sm−1,1]) = f1 ◦ p
([a1,1])

Choose y exactly as in Case 1, except that this time:

0 < ε = dist(y, f1 ◦ p
([0,a1]

)
< γ (ϕ)

Now in Case 1, define: f ′
i to be equal to f i on p([0,a1]) ∪ p([a2,1]) and to map p([a1,

a1+a2
2 ]) affinely to [ f i ◦ p(a1), y],

p([ a1+a2
2 ,a2]) affinely to [y, f i ◦ p(a2)]; define f ′

i similarly in Case 2. In all cases, there is clearly an ε-homotopy
between f i and f ′

i that is constant on p([0,a1]) ∪ p([a2,1]). Now, consider Φ : p(I) × I � X given by: Φ(x, t) =
{ f1(x), . . . , f it (x), . . . , fn(x)}. This multimap is n-valued since ε < γ (ϕ); it is a special n-valued homotopy in Case 1 be-
cause ε < min{d( f i(x), x): x ∈ p([sl, sl+1])}, and for obvious reasons in Case 2.
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Fig. 2. Finitely many intersections of PL paths.

Repeat the above procedure finitely many times until one obtains φ as in the statement of the lemma (this follows from
the fact that there are only finitely many intersections of the forms described above). �

Lemma 3 (Elimination of multiple intersections). Let ϕ : X � X be a fixed finite n-valued map with all fixed points located in maximal
simplexes, and let p : I → X be a normal PL arc from x1 to x2 with Fix(ϕ)∩ p(I) = {x1, x2}. Suppose that, if ϕ|p(I) = { f1, . . . , fn} is a
(local) splitting of ϕ then each fi ◦ p is a PL path, and f1 ◦ p ∼ p (rel. endpoints). Suppose too, that S1

ϕ,p ∪ S2
ϕ,p is finite. Then there is a

partial special n-valued homotopy defined on p(I) between ϕ and φ where S1
φ,p ∪ S2

φ,p is finite and there are no multiple intersections

in S1
φ,p .

Proof. Suppose z ∈ S1
ϕ,p is a multiple intersection. We consider the following cases.

Case 1: Suppose z ∈ σ where σ is a maximal simplex, and z = fm ◦ p([a1,a2]) where 0 < a1,a2 < 1 and 1 � m � n. Then
choose a3,a4 ∈ (0,1) with a3 < a1 � a2 < a4 s.t. the following conditions are satisfied:

(i) fm ◦ p([a3,a4]) ⊂ σ
(ii) fm ◦ p([a3,a4]) is either a line segment or a union of two line segments meeting at “z”

(iii) 0 < δ1 < dist( fm ◦ p([a3,a4]), S1
ϕ,p − {z}).

Now pick y ∈ σ − (�1 ∪ �2) (where �i , i = 1,2 are the lines through fm ◦ p([a3,a1]) and fm ◦ p([a1,a4]) respectively — note
that it may be the case that �1 = �2) s.t. the following conditions are satisfied:

(i) 0 < δ = d(y, z) < min
{
γ (ϕ), δ1, δ2, δ3, δ4

}
and:

(ii) max{θ1, θ2} < min
{
θ ′

1, θ
′
2

}
where:

0 < δ2 = min
{

d
(

p(y), fm ◦ p(y)
)
: y ∈ [a3,a4]

}
0 < δ3 = dist

(
L1, fm ◦ p

([a3,a4]
))

0 < δ4 = dist
(
L2, fm ◦ p

([a3,a4]
))

and Li , i = 1,2 are defined analogously to L in Lemma 2 with P replaced by Pi , the planes containing y and �i , i = 1,2
respectively, θ ′

i , i = 1,2 are defined analogously to θ (in Lemma 2) but considering the planes Pi separately.
Next, define f ′

m to be equal to fm on p(I − (a3,a4)) and to map [p(a3), p(a1)] affinely to [ fm ◦ p(a3), x] and [p(a1), p(a4)]
affinely to [x, fm ◦ p(a4)]. Obviously, there is a δ-homotopy between fm and f ′

m which yields a special n-valued homotopy
between ϕ and φ where φ has one less multiple intersection.

Case 2: If z ∈ σ and σ is a non-maximal simplex with dim(σ ) � 1, then proceed similarly to Case 1, with y ∈ σ ∩ fm ◦
p([a3,a4]) if (say) fm ◦ p([a3,a4]) ⊂ σ .

Case 3: If z is a vertex (of X ) then let γ be a normal PL arc (w.r.t. some subdivision of [a3,a4] as shown in Fig. 3) that
is sufficiently close to fm ◦ p (the estimate is similar to the one in Case 1) and define:

f ′
m(x) =

{
fm(x) if x ∈ p(I − (a3,a4))

γ ◦ p−1(x) if x ∈ p([a ,a ])
3 4
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Fig. 3. Elimination of multiple intersections.

Clearly f ′
m is homotopic to fm (by a homotopy with track equal to the above mentioned estimate), and setting: φ =

{ f1, . . . , f ′
m, . . . , fn} we obtain an n-valued map with one less multiple intersection.

Finally, repeat the above procedure until all (finitely many) multiple intersections have been eliminated.
If z = fm ◦ p([0,a1]) (or z = fm ◦ p([a1,1])) then choose ε > a1 s.t. fm ◦ p(ε) is sufficiently close to z and define:

H
(

p(x), t
) =

{
fm((1 − t)p(x) + tp(ε)) if 0 � x � ε
fm ◦ p(x) if ε � x � 1

(This is the homotopy between fm and f ′
m in this case.) �

Lemma 4 (Eliminating intersections with p(I)). Let ϕ : X � X be a fixed-finite n-valued map with all fixed points located in maximal
simplexes. Let p : I → X be a normal PL arc from x1 to x2 with Fix(ϕ) ∩ p(I) = {x1, x2} and s.t. if ϕ|p(I) = { f1, . . . , fn} is a (local)
splitting, then each fi ◦ p is a PL path, and f1 ◦ p ∼ p (rel. endpoints). Suppose that S1

ϕ,p ∪ S2
ϕ,p is finite, and there are no multiple

intersections in S1
ϕ,p . Then there is a special n-valued homotopy defined on p(I) between ϕ and φ where if φ = {g1, . . . , gn} is a

splitting of φ , then g1 ◦ p(I) ∩ p(I) = {x1, x2} and for all other values of i, gi ◦ p(I) ∩ p(I) = ∅, while S1
φ,p is finite and there are no

multiple intersections in this set.

Proof. First, suppose z ∈ σ and z ∈ f i ◦ p(I) ∩ f j ◦ p(I) ∩ p(I) where dim(σ ) � 3. Let 0 < ε1 = dist(z, S1
ϕ,p − {z}) and 0 <

ε2 = γ (ϕ)
2 . By an 0 < ε < min{ε1, ε2} PL perturbation of f i and f j in a neighborhood of z we can eliminate this intersection

with p(I).
Next, let p([si, s j]) be a portion of p(I) s.t. each line segment is contained in a simplex of dimension two, and that is

maximal (order by inclusion) with respect to this property.
Case 1: Suppose [si, s j] ⊂ (0,1). Consider the line segment p([sl, sl+1]) (where i � l � j − 1). Take a line segment ll in

carr(p(sl)) centered on p(sl) and another line segment, ll+1 in carr(p(sl+1)) centered on p(sl+1) such that the line seg-
ments between respective endpoints of ll and ll+1 are both parallel to p([sl, sl+1]). Denote the parallelogram one obtains in
this way by Pl . Let T1 denote an equilateral triangle containing the edge li that is contained in the closure of a maximal
simplex of dimension greater than two that abuts the simplex containing Pi . Choose T1 such that (T1 − �i) ∩ p(I) = ∅.
Likewise choose T2. Let S1 = T1 ∪ (

⋃
��i� j−1 Pl) ∪ T2 and let g : S1 → S2(⊆ R

2) be a homeomorphism that maps each Ti
(i = 1,2) and each Pl (i � l � j − 1) affinely as shown in Figs. 4, 5. Next, label the images under g of the intersections
of the different f j ◦ p(I) with S1 as Li again as shown in Figs. 4, 5. If Li = f j ◦ p([x1, x2]), refer to x1 as the “left end-
point of Li” and x2 as the “right endpoint of Li”. Given z ∈ Li ∩ g ◦ p(I) where z = g ◦ f j ◦ p(x1) = g ◦ p(x2) and x1 < x2
we say Li can be moved to the right, else we say Li can be moved to the left. Now, a posteriori, notice that we could
have chosen the �i so small that there are no intersections among the different Li in g(S1 − p(I)), s.t. after performing
any necessary PL perturbations all intersections of Li with S1 are bas in Figs. 4, 5, and such that we have the follow-
ing situation. Consider any Li that can be moved to the left, then its left endpoint is greater than the right endpoints of
all other L j to the left of this that can be moved to the right. Obviously, with a little care we can ensure that if two
different Li intersect at a point in p(I) and can both be moved to the right, then we can move them off p([si, s j]) in
such a way that the corresponding f ′

k , f ′
l we obtain in this way don’t map a single point of p(I) to the same point of

X . One can now, by performing PL “moves” as shown in Figs. 4, 5, obtain a special n-valued homotopy between ϕ|p(I)
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Fig. 4. Eliminating intersections with p(I).

Fig. 5. Eliminating intersections with p(I).

and an n-valued map defined on p(I) such that the images of the usual single-valued maps in its splitting don’t intersect
p([si, s j]).

Case 2: This case is handled similarly. �
Lemma 5 (Eliminating intersections of PL paths in local splittings). Let ϕ : X � X be a fixed-finite n-valued map with all fixed points
located in maximal simplexes. Let p : I → X be a normal PL arc from x1 to x2 with Fix(ϕ) ∩ p(I) = {x1, x2} and s.t. x1 is contained in
a maximal simplex that has an edge that is common to at least two other simplexes. Suppose that if ϕ|p(I) = { f1, . . . , fn} is a (local)
splitting of ϕ , then each fi ◦ p is a PL path, and f1 ◦ p ∼ p. Suppose too that S1

ϕ,p is finite, there are no multiple intersections in S1
ϕ,p ,

and f1 ◦ p(I)∩ p(I) = {x1, x2} whereas fi ◦ p(I)∩ p(I) = ∅ for all other values of i. Then there is a special n-valued homotopy defined
on p(I) between ϕ and φ where if φ = {g1, . . . , gn} is a splitting of φ , then g1 = f1 , and for 1 < i � n one has gi ◦ p(I) reduced to a
single point.

Proof. Consider n copies of the unit interval, I1, . . . , In . On Ii (1 � i � n), label [a1,a2] as dij if there is a point of intersec-
tion:

z = f i ◦ p
([a1,a2]

) = f j ◦ p
([a3,a4]

)
where a2 < a3 if i = j and [a1,a2] is maximal w.r.t. this property (order by inclusion). There is naturally an ordering on dij
(1 � j � n); Label the kth element as dilk . Introduce the following equivalence relation on dijk

:

dijm ∼ d jil if f i ◦ p
([a1,a2]

) = f j ◦ p
([a3,a4]

)
and: dijm corresponds to [a1,a2] whilst d jil corresponds to [a3,a4].

Case 1. Now, suppose that dij1
∼ d ji1

with i, j �= 1, i �= j where dij1
corresponds to [a1,a2] and d ji1

corresponds to
[a3,a4]. If a2 > a4, then letting ε > 0 be small enough that a4 + ε < a5 where d ji2

corresponds to [a5,a6], we can “slide”
f j ◦ p([0,a4 + ε]) through itself and past this point of intersection without creating any new points of intersection. The
homotopy that accomplishes this is given by:

f jt

(
p(x)

) =
{

f j ◦ p(t(a4 + ε) + (1 − t)x) if x ∈ [0,a4 + ε]
f j ◦ p(x) if x ∈ [a4 + ε,1]

If a2 < a4 one proceeds similarly.
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Fig. 6. Eliminating intersections of PL paths in local splittings.

Case 2. Now, suppose dii1 ∼ diil (i, l > 1) (so f i has a self-intersection). Then, again, for a suitably chosen ε > 0, we
can “slide” f i ◦ p([0,a2 + ε]) (where dii1 corresponds to [a1,a2]) through itself and past this point of intersection without
creating any new intersections exactly as above.

Case 3. If we don’t have any of the intersections of the types considered in Case 1 or Case 2 we claim that we must
have:

dij1 ∼ d jil (l > 1, i �= j)

where dijl corresponds to [a3,a4], dij1
corresponds to [a1,a2] and a3 > a2, in which case we can “slide”, for a suitably

chosen ε > 0, f i ◦ p([0,a2 + ε]) past the point of intersection as above/before. (See Fig. 6.)
We establish this by a short argument by contradiction. Suppose the claim is false. Consider the m copies of I i that have

labeled subsets. Upon relabeling the Ii (if necessary) one obtains a string of inequalities:

d121 > d21k1
> d231 > d32k2

> · · · > d j( j+1)1 > d( j+1) jk j
> · · · > dlj1

> d jlkl

where: di(i+1)1 ∼ d(i+1)iki
ki > 1 and dij1

> d jit
if dij1

corresponds to [a1,a2], d jit
corresponds to [a3,a4], and a1 > a4. But,

one has:

d j( j+1)1 > d jlkl
and d jlkl

> d j( j+1)1

a contradiction.
Finally, if i = 1 in any of the above cases, a little extra care is required in removing the intersection. That is, one can’t

“slide” f1 ◦ p([0,a2 + ε]) through itself since this homotopy would not be special (x1 wouldn’t remain a fixed point as time
varies). So, one eliminates the intersection by homotoping f j . �
Lemma 6 (Obtaining a non-surjective homotopy). Let X be a finite/compact simplicial complex without local cut points and such that
no connected component is a two manifold. Let p, q be two normal PL arcs from x1 to x2 that are homotopic rel. endpoints, with p ◦q−1

homeomorphic to S1 , and let z1, . . . , zn−1 be n − 1 distinct points in X − (p(I) ∪ q(I)). Then there is a homotopy (rel. endpoints) that
avoids z1, . . . , zn−1 , between q and a normal PL arc, r, and there is another homotopy (rel. endpoints) between r and p that avoids a
two simplex, σ .

Proof. First, suppose that X contains a maximal simplex, σ1, of dimension greater than two. Subdivide X so that p ◦ q−1 is
a one-dimensional subcomplex. We may assume, WLOG, that (w.r.t. some subdivision of I2) the path homotopy, H , from p
to q is simplicial on I × {0,1}. By the Relative Simplicial Approximation Theorem [10], upon further subdivision of I2, one
can obtain a simplicial approximation to H that is equal to H on I × {0,1}. This homotopy then, obviously misses σ1. In
this case we may take r = q.

Next suppose that X is a two complex. Subdivide X so that p ◦ q−1 is a one subcomplex, and (upon application of
the Relative Simplicial Approximation Theorem) let H denote a simplicial (w.r.t. some subdivision of I2) homotopy (rel.
endpoints) between p and q as above. Let P = H−1(p(I)), notice that WLOG we may assume that there is no path in P
from {0}× I to {1}× I , and consider one of its connected components, P1. Label the connected components of I2 − P that are
contained in discs bounded by simple closed loops in P1, as C1, . . . , Cm , and consider one such connected component, C1.
Let H1 : I2 → I2 be a map with H1(C1) = �1, H1(�2) = �1, H1|B ∪ A ∪ �3 ∪ P c

1 = id as in Fig. 7. Repeat this procedure with
all the connected components Ci . Next proceed as above with P2, then P3 until all such connected components have been
considered. Notice that one obtains in this fashion a (path) homotopy H = H ◦ Hk ◦ · · · ◦ H1 between p and q such that
I2 − H−1(p(I)) is path connected. Subdivide if necessary and let σ ⊂ X − (p(I) ∪ q(I) ∪ {z1, . . . , zn−1}) be a two simplex
such that X − σ has the same defining properties as X . Define a PL arc, γ , in I2 − (H−1(p(I)) ∪ (0,1) × {0}) from (0,0) to
(1,0) such that H(γ ) is a normal PL arc with H−1(σ ) contained in the disc bounded by I × {0} ∪ γ , and with z1, . . . , zn−1
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Fig. 7. Obtaining a non-surjective homotopy step I.

Fig. 8. Obtaining a non-surjective homotopy step II.

contained in the complement of this disc in I2. See Fig. 8 for a graphic description of γ . Finally, setting r = γ we clearly
have the two path homotopies in the statement of the lemma. �
Theorem 1. Let X be a compact polyhedron without local cut points and such that no connected component is a two-manifold. Let
ϕ : X � X be an n-valued map. Then there is an n-valued homotopy between ϕ and an n-valued map, φ , with N(ϕ) many fixed points.

Proof. The proof proceeds in several steps.
Step 1. Apply the Hopf construction for n-valued maps, to obtain a simplicial (possibly w.r.t. some subdivision of the

domain) fixed-finite n-valued map, ϕ′ with all fixed points located in maximal simplexes.
Step 2. Let σ1 denote a maximal simplex that has an edge that is common to at least two other simplexes and, if ϕ′

has l FPCs, pick l distinct points zi , 1 � i � l in σ1 and choose representatives from each Nielsen class, xi , 1 � i � l, together
with normal PL arcs pi : I → X (1 � i � l) as in [3] from zi to xi such that pi(I) ∩ p j(I) = ∅ when i �= j, and such that
Fix(ϕ) ∩ pi(I) = {xi}, for 1 � i � l. For each {zi, xi} and pi , 1 � i � l, apply Lemmas 1–5 in that order. Let ϕ′

i = { f1i , . . . , fni }
denote the splitting of the n-valued map ϕ′

i we obtain upon application of Lemmas 1–5. Now, apply Lemma 6 with p = pi ,

q = f1i ◦ pi , zki = fk+1i ◦ p(I) to obtain r = f 1i ◦ pi . Now, let σ2i denote the maximal simplex that is missed by Hi (the
special homotopy of special paths (pεi (s) = pi(s − ε sin(sπ)) and f 1i ◦ pi ) given by [3]), and let q ji , 2 � j � n denote arcs
with qki (I) ∩ qli (I) = ∅, k �= l and q ji (I) ∩ ( f 1i ◦ p(I) ∪ p(I)) = ∅ from zki , 1 � k � n − 1, to distinct points in σ2i . Now, apply
a special n-valued homotopy that “moves„ zki , 2 � k � n into σ2i along qki .

Step 3: Let Ui denote a small simply connected open neighborhood of pi(I) with Ui ∩ σ2i = ∅. Apply [3, Theorem 5.2]
to obtain a special homotopy between f 1i and a map f ′

1i
that is a proximity map w.r.t. a sufficiently fine subdivision

of X that ensures that f ′ (p(I)) ⊂ Ui . The corresponding n-valued homotopy is obtained by letting the other maps the
1i
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splitting remain constant. Let V i denote a small open neighborhood of pi([0,1)) with zi ∈ V i , and extend the special
n-valued homotopy that is constant on X − V i and is the composition of all the special n-valued homotopies given by
the application of Lemmas 1–6 on p(I), to a special n-valued homotopy defined on all of X . Now choose a small simply
connected neighborhood of p([0,1)), W i ⊂ X − σ2i with zi ∈ W i such that, if ϕ′′

i |W i = { f ′
1i

, . . . , f ′
ni

} is a (local) splitting of
the n-valued map we have obtained so far, then f ′

ji
(W i) ⊂ σ2i for 2 � j � n, and f ′

1i
(W i) ⊂ Ui . Apply lemmas in [1] to move

xi along p(I) to zi by a homotopy with support contained in W i . Letting f ′
ji

for 2 � j � n we obtain an n-valued homotopy
(defined on all of X ) between ϕ′′

i and an n-valued map ϕ′′′
i with Fix(ϕ′′′

i ) = Fix(ϕ′′
i ) − {xi} ∪ {zi}.

The above procedure is repeated l times to obtain a representative in σ1 for each FPC.
Step 4: Now, obtain a system of normal PL Nielsen arcs from the fixed points in the different FPCs to the zi that are

contained in X − ⋃
1�i�l V i and intersect each other only at their final end-points. This is important as we would like the

maps in our (local) splittings of the restriction of the n-valued map obtained at each stage to these arcs to be simplicial —
w.r.t. some subdivision of the domain-and in specially extending our n-valued homotopy in Step 3, we obtain an n valued
map that is not simplicial on V i . Use these arcs as above to obtain an n-valued homotopy to an n-valued map that has
{z1, . . . , zl} as fixed point set. As a final step eliminate all the fixed points that have index zero as in [6], to obtain the
n-valued map in the statement of the theorem. �
References

[1] R. Brown, The Lefschetz Fixed Point Theorem, Scott Foresman, 1971.
[2] R. Brown, Wecken properties for manifolds, Contemp. Math. 152 (1993) 9–21.
[3] B. Jiang, On the least number of fixed points, Amer. J. Math. 102 (1980) 749–763.
[4] H. Schirmer, Fixed finite approximations of n-valued multifunctions, Fund. Math. 121 (1984) 73–80.
[5] H. Schirmer, An index and a Nielsen number for n-valued multifunctions, Fund. Math. 124 (1984) 207–219.
[6] H. Schirmer, A minimum theorem for n-valued multifunctions, Fund. Math. 126 (1985) 83–92.
[7] F. Wecken, Fixpunktclassen I, Math. Ann. 117 (1941) 659–671.
[8] F. Wecken, Fixpunktclassen II, Math. Ann. 118 (1942) 216–234.
[9] F. Wecken, Fixpunktclassen III, Math. Ann. 118 (1942) 544–577.

[10] E.C. Zeeman, Relative simplicial approximation, Math. Proc. Cambridge Philos. Soc. 60 (1964) 39–43.


	A Wecken theorem for n-valued maps
	References


