Experience with primary percutaneous coronary interventions in ST elevation myocardial infarction in tertiary care hospital

Wasim Rashid*, Dileep Tiwari, Upendra Kaul, Ashok Seth, Atul Mathur, T.S. Kler, Praveer Agarwal, Nisith Chandra, Vinay Jetley, Vishal Rastogi, Vijay Kumar
Fortis Escort Heart Institute, New Delhi, India

Background: Coronary artery disease is currently the most common, non-infectious disease in India. STEMI is the most catastrophic presentation. Primary PCI is the preferred reperfusion strategy in patients with STEMI presenting within 12 h to an experienced center. There is paucity of data regarding primary PCI in our milieu. This study is designed to prospectively look at the various aspects of contemporary practice of primary PCI at a tertiary care hospital and also to evaluate the 30-day outcomes.

Methods: All patients who present to emergency room as STEMI within 12 h of symptom onset and give informed consent for primary PCI as the reperfusion therapy are being enrolled for this study. The detailed demographic data is being collected systematically. In addition the ECG and echocardiographic findings and procedural details are reviewed by an independent investigator. Procedural success is defined as achievement of vessel patency to a residual stenosis <30%. The patients are being followed during their in-hospital stay for any acute complications and at 30 days for occurrence of major adverse cardiac events (all cause mortality, acute and sub acute stent thrombosis as per ARC definition, target lesion revascularization, and major bleeding as per BARC criteria). The 30 day follow up results are being recorded.

Results: In this ongoing study 56 patients, 51 (89.7%) males, mean age 59.3 years. 46 (81.4%) patients presented as Killip class I, 6 (11.1%) as Killip class II and 2 (3.7%) as Killip III and IV each. 32 (58.6%) patients had inferior while 21 (38.2%) had anterior wall MI at presentation. The mean time to hospital arrival from symptom onset was 3.4 h and mean door to balloon time was 59.9 min. On angiography 20 (37.03%) had single vessel disease while 22 (40.7%) had double and triple vessel disease respectively. All patients were loaded with aspirin 325 mg. The second antiplatelet agent was the clopidogrel in 16.6% cases and ticagrelor in 66.6% cases, given in emergency room, while prasugrel was given in 16.6% cases, given in 16.6% cases in cath lab after confirmation of coronary anatomy. Heparin alone was used in 12 (21.4%) cases, bivalirudin in 6 (10.7%) and heparin + GpIIb/IIIa inhibitors were used in 38 (67.8%) patients and the most common agent being abciximab (61.6% cases). Thrombus aspiration was done in 27 (48.1%) patients. All patients were treated with DES except one patient in which bioresorbable scaffold (Absorb) was deployed. Culprit vessel revascularization was the default strategy in majority (81%). In 5 cases multivessel revascularization was done, out of which it was done during the index procedure in 3 patients and as a staged procedure in 2 patients. There was one in-hospital death due to no reflow phenomenon during index procedure. At 30 days 2 patients died, one with sepsis and multigorgan failure and other had sudden death at home without establishing the cause and included as probable stent thrombosis. Bleeding complications included BARC subtype 1 in 13%, and type 2 in 3.4% patients. No major bleeding, BARC subtype 3, was recorded at 30 days follow up. All the bleeding complications were occurred in those patients, who received heparin + Gp IIb/IIIa inhibitor.

Conclusion: This ongoing study throws light on important aspects of the clinical and procedural profile of patients presenting with STEMI who are undergoing primary PCI. Data of 100 patients will be presented.

Experience with PCI in CKD patient (disease pattern, immediate and short term outcome)

Fortis Escorts Heart Institute and Research Centre Okhla Road, New Delhi, India

Background: Cardiovascular diseases (CAD) are the leading cause of morbidity and mortality in patients of CKD and they begin well before the onset of dialysis. Optimal approach of revascularization in patients with kidney disease has not been determined. With the availability of drug eluting stents & DAP, the scenario has changed. The objective of study was to see disease pattern, immediate and short term outcome of CAD in patients having CKD, with PCI.

Methods: We included 305 patients of CKD (with creatinine clearance <60 ml/min/1.73 m² having CAD, who underwent PCI with DES (study group) and compared with similar number of age and sex matched controls with creatinine clearance ≥60 ml/min/1.73 m², having CAD who underwent PCI with DES (control group). The clinical and angiographic follow-up data before and after PCI was collected at 1 month, 6 months and 12 months, using a standard questionnaire. Data about amount of dye used, type of dye used, renal outcomes at discharge, type of antiplatelet used, beta blockers, ACE inhibitors/ARB, statins used & Duration of stay in hospital was collected. Using a multiple logistic regression mode multivariable analysis was performed.

Results: The base line variables were similar in the 2 groups. There was a gradual increase in prevalence of HTN as creatinine clearance falls. More number of patients in study group had diabetes as compared to control group but the difference between two groups was not statistically significant. There was no significant difference between two groups regarding smoking and dyslipidemia. Height was not significantly different between two groups; however weight & BMI was significantly lower in study group. Ejection fraction was significantly lower in study group as compared to control group (p < .001). Mean ejection fraction was 47.39% in study group; it was 51.67% in control group. Hemoglobin, BUN, serum creatinine & mean eGFR were significantly lower in study group. To estimate creatinine clearance EPI-CKD equation was used.

Unstable angina as indication for PCI was significantly more in study group. In study group more patients had triple vessel disease, more lesions was of diffuse & calcified type (p < .001). Type B lesions were more in control group and type C lesions were more in study group (p < .001). Angiotensin converting enzyme inhibitors or angiotensin receptor blockers were used less in study group as compared to control group. Amount of dye used during PCI was higher in control group. Iodixanol (iso-osmolar) was used more in study group. More number of patients in study group developed contrast induced nephropathy. Rate of complete revascularization achieved was also less in lower creatinine clearance group (p < .001). Average number of days stayed in hospital was significantly more in study group (p < .001). Peri-procedural MI occurred...
in more number of patients in study group \((p = .003) \). From one month to six month significantly more number of patients in study group had MI and repeat revascularization. Total number of death, myocardial infarction and repeat revascularization at one year was significantly more in study group as compared to control group. Statistically higher number of patients in study group had combined MACCE at one year as compared to control group \((< .001) \).

Conclusions: During and after PCI decreased creatinine clearance is independently associated with death and major adverse events. It is a powerful predictor of in-hospital myocardial infarction and 1-year ischemic events including death, MI and repeat revascularization renal dysfunction patients.

Prospective observational Longitudinal Registry of patients with stable coronary artery disease (CLARIFY) – Global vs. Indian cohort

1 Fortis Hospital, Vasant Kunj, New Delhi, India
2 Kokilaben Dhirubhai Ambani Hospital, Mumbai, India
3 Fortis Escorts Hospital, Jaipur, India
4 G Kappuswamy Naidu Memorial Hospital, Coimbatore, India
5 CSM Medical University, Lucknow, India

Background: Coronary artery disease (CAD) continues to be the main cause of death worldwide. Data available from clinical trials or registries does not adequately represent populations with stable CAD. It is important to have longitudinal observations of a representative large cohort of patients with stable CAD, spanning several geographic regions, focusing on stable outpatients (as opposed to patients hospitalized or recently discharged from hospitals for acute manifestations of the disease), and including both symptomatic and asymptomatic patients.

Method: CLARIFY (The prospective observational Longitudinal Registry of patients with stable coronary artery disease) is an international, prospective, observational, longitudinal registry of outpatients with stable CAD, defined as prior myocardial infarction or revascularization procedure, evidence of coronary stenosis of \(> 50\% \), or chest pain associated with proven myocardial ischemia. A total of 33,438 patients were enrolled from 45 countries in Africa, Asia, Australia, Europe, the Middle East, and North, Central and South America. 809 patients were recruited from India, with representation from various cities. The data was collected at baseline and annually for 5 years to ascertain clinical events, hospitalization etc.

Results: Indian population differed from the global population in terms of having more patients with history of diabetes \((44.3\% \text{ vs. } 28.73\%) \) and average heart rate \((76.6 \text{ bpm vs. } 68.3 \text{ bpm}) \) at baseline. The 2 years outcomes data is in table

<table>
<thead>
<tr>
<th>Outcome Level</th>
<th>Level</th>
<th>n with event/n ill group (%)</th>
<th>HR (95% CI)</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>All cause death</td>
<td>1: Total CLARIFY population (excluding India)</td>
<td>28/31,692 (0.9%)</td>
<td>1.00 (-)</td>
<td>0.3930</td>
</tr>
<tr>
<td>Cardiovascular death</td>
<td>1: Total CLARIFY population (excluding India)</td>
<td>458/31,692 (1.4%)</td>
<td>1.00 (-)</td>
<td>0.8715</td>
</tr>
<tr>
<td>Non-cardiovascular death</td>
<td>1: Total CLARIFY population (excluding India)</td>
<td>10/805 (1.2%)</td>
<td>1.00 (-)</td>
<td>0.4048</td>
</tr>
<tr>
<td>Unknown cause of death</td>
<td>1: Total CLARIFY population (excluding India)</td>
<td>10/805 (1.2%)</td>
<td>1.00 (-)</td>
<td>0.31 (-)</td>
</tr>
<tr>
<td>Myocardial infarction (fatal or non-fatal)</td>
<td>1: Total CLARIFY population (excluding India)</td>
<td>5/805 (0.6%)</td>
<td>1.00 (-)</td>
<td>0.0256</td>
</tr>
<tr>
<td>Stroke (fatal or non-fatal)</td>
<td>1: Total CLARIFY population (excluding India)</td>
<td>7/805 (0.9%)</td>
<td>1.00 (-)</td>
<td>0.8738</td>
</tr>
<tr>
<td>Cardiovascular death or non-fatal MI</td>
<td>1: Total CLARIFY population (excluding India)</td>
<td>13/805 (1.6%)</td>
<td>0.82 (0.36. 1.08)</td>
<td>0.0903</td>
</tr>
<tr>
<td>Cardiovascular death</td>
<td>1: Total CLARIFY population (excluding India)</td>
<td>1049/31,689 (3.3%)</td>
<td>1.00 (-)</td>
<td>0.0458</td>
</tr>
<tr>
<td>Non-fatal MI or non-fatal stroke</td>
<td>1: Total CLARIFY population (excluding India)</td>
<td>16/805 (2.0%)</td>
<td>0.6 (0.37. 0.99)</td>
<td>0.8738</td>
</tr>
</tbody>
</table>