
J O U R N A L O F T H E AM E R I C A N C O L L E G E O F C A R D I O L O G Y V O L . 6 5 , N O . 1 1 , 2 0 1 5

ª 2 0 1 5 B Y T H E AM E R I C A N C O L L E G E O F C A R D I O L O G Y F O U N DA T I O N I S S N 0 7 3 5 - 1 0 9 7 / $ 3 6 . 0 0

P U B L I S H E D B Y E L S E V I E R I N C . h t t p : / / d x . d o i . o r g / 1 0 . 1 0 1 6 / j . j a c c . 2 0 1 5 . 0 1 . 0 1 7

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
ORIGINAL INVESTIGATIONS
Prevalence, Impact, and Predictive Value
of Detecting Subclinical Coronary and
Carotid Atherosclerosis in Asymptomatic Adults

The BioImage Study
Usman Baber, MD, MS,* Roxana Mehran, MD,* Samantha Sartori, PHD,* Mikkel Malby Schoos, MD, PHD,y
Henrik Sillesen, MD, DMSC,y Pieter Muntendam, MD,zMario J. Garcia, MD,x John Gregson, PHD,k Stuart Pocock, PHD,k
Erling Falk, MD, DMSC,{ Valentin Fuster, MD, PHD*
ABSTRACT
Fro

yD
Le

Tro

De

Va
BACKGROUND Although recent studies suggest that measuring coronary artery calcification (CAC) may be superior

to indirect atherosclerotic markers in predicting cardiac risk, there are limited data evaluating imaging-based biomarkers

that directly quantify atherosclerosis in different vascular beds performed in a single cohort.

OBJECTIVES The BioImage Study (A Clinical Study of Burden of Atherosclerotic Disease in an At-Risk Population)

sought to identify imaging biomarkers that predict near-term (3-year) atherothrombotic events.

METHODS The BioImage Study enrolled 5,808 asymptomatic U.S. adults (mean age: 69 years, 56.5% female) in a

prospective cohort evaluating the role of vascular imaging on cardiovascular risk prediction. All patients were evaluated

by CAC and novel 3-dimensional carotid ultrasound. Plaque areas from both carotid arteries were summed as the carotid

plaque burden (cPB). The primary endpoint was the composite of major adverse cardiac events (MACE) (cardiovascular

death, myocardial infarction, and ischemic stroke). A broader secondary MACE endpoint also included all-cause death,

unstable angina, and coronary revascularization.

RESULTS Over a median follow-up of 2.7 years, MACE occurred in 216 patients (4.2%), of which 82 (1.5%) were primary

events. After adjustment for risk factors, and compared with individuals without any cPB, hazard ratios for MACE were

0.78 (95% confidence interval [CI]: 0.31 to 1.91), 1.45 (95% CI: 0.67 to 3.14), and 2.36 (95% CI: 1.13 to 4.92) with

increasing cPB tertile, with similar results for CAC. Net reclassification significantly improved with either cPB (0.23) or

CAC (0.25). MACE rates increased simultaneously with higher levels of both cPB and CAC.

CONCLUSIONS Detection of subclinical carotid or coronary atherosclerosis improves risk predictions and reclassifica-

tion compared with conventional risk factors, with comparable results for either modality. Cost-effective analyses are

warranted to define the optimal roles of these complementary techniques. (BioImage Study: A Clinical Study of Burden

of Atherosclerotic Disease in an At-Risk Population; NCT00738725) (J Am Coll Cardiol 2015;65:1065–74) © 2015 by the

American College of Cardiology Foundation.
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C ardiovascular disease (CVD) is the
leading cause of morbidity and mor-
tality in both industrialized and low-

income to middle-income countries (1,2).
Global expenditures attributable to CVD are
projected to rise as cardiac risk factors con-
tinue to increase in prevalence. Prevention
of CVD is less costly than treating its
complications (3), thus, identification of sub-
clinical disease in the asymptomatic phase
has emerged as a public health and economic
imperative.
SEE PAGE 1075
Within this context, cardiac risk stratifi-
cation begins with calculating the probabil-
ity of an incident event using conventional
algorithms, such as the Framingham equation.
However, most initial cardiac events do not occur
among those considered “high risk,” highlighting
the need to improve risk stratification over ex-
isting approaches (4). Because atherosclerosis is a
systemic process, it is intuitive that assessing dis-
ease at multiple, rather than single, vascular sites
may provide greater insight on the overall burden
and risk associated with subclinical athero-
sclerosis. Although multiple studies have examined
such associations, many combined direct (i.e., coro-
nary artery calcium [CAC]) and indirect (i.e., carotid
intima-media thickness [cIMT]) markers of athero-
sclerosis, or classified disease using semiquan-
titative approaches (i.e., present/absent), potentially
rendering risk estimates imprecise (5–12). Moreover,
the clinical relevance of detecting subclinical
disease rests on improving prediction of CVD risk
over traditional factors (13). Accordingly, we sought
to evaluate the prevalence and risk associated
with subclinical atherosclerosis using CAC and a
novel carotid ultrasound (US) approach among
asymptomatic adults. We also examined the impact
of each technique on improving risk prediction
and reclassification compared with traditional risk
factors.
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METHODS

The BioImage Study (BioImage Study: A Clinical
Study of Burden of Atherosclerotic Disease in an At-
Risk Population; NCT00738725) was a prospective
study evaluating cross-sectional associations among
imaging and circulating biomarkers and their ability
to predict atherothrombotic events in asymptomatic
subjects. Methodological aspects were previously
described in detail (14). Herein, we report on the
primary objective of the BioImage Study, which was
to identify imaging biomarkers that predict near-term
(3-year) atherothrombotic events.

STUDY POPULATION. Between January 2008 and
June 2009, the BioImage Study enrolled 7,687
asymptomatic men 55 to 80 years of age and women
60 to 80 years of age who were members of the
Humana Health System and residents of the Chicago,
Illinois, or Fort Lauderdale, Florida, metropolitan
areas. Of these, 6,102 subjects entered the imaging
arm of the study. Subject eligibility, including
freedom from previous history of cardiovascular dis-
ease (myocardial infarction [MI], stroke, angina, heart
failure, arterial revascularization), was ascertained
by baseline review of administrative claims data,
followed by telephone interview, and finally by in-
person baseline examination and interview. Partici-
pants were additionally required to be free of active
cancer treatment, any medical condition precluding
long-term participation or inability to complete 3-
year follow-up, chest computed tomography (CT)
scan within the previous 12 months, and have no
language barrier or inability to comply with study
procedures. The BioImage Study was approved by
Institutional Review Board review. Before enroll-
ment, all study participants provided written
informed consent and Health Insurance Portability
and Accountability Act authorization.

BASELINE EXAMINATIONS. A nonfasting venous
blood sample was processed for routine chemistry
tests, including serum creatinine and lipid levels.
Diabetes mellitus was defined as current use of oral
hypoglycemic agents, insulin, or self-report of the
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diagnosis. Hypertension was defined as systolic blood
pressure $140 mm Hg, diastolic blood pressure
$90 mm Hg, or current use of antihypertensive medi-
cation. Current smoking status was self-reported.

US ASSESSMENT OF TOTAL PLAQUE BURDEN. De-
tails regarding US plaque quantification were previ-
ously published (15). Carotid plaque was defined as a
focal structure encroaching into the arterial lumen of
at least 0.5 mm; or 50% of the surrounding IMT value;
or demonstrating a thickness >1.5 mm, as measured
from the media–adventitia interface to the intima–
lumen interface (16,17). Assessment of plaque in
both carotid arteries was undertaken using a high-
resolution, linear array, 2-dimensional transducer by
scanning in longitudinal and cross section from the
proximal common carotid artery into the distal in-
ternal carotid artery. Plaque areas from all images in
the cross-sectional sweeps from both the right and
left carotid arteries were summed as plaque burden,
a quantitative metric of the total plaque area (mm2)
across the length of the visualized carotid (15). US
scans were read in the University of Copenhagen
core laboratory. Technologists performing all imaging
studies, and core laboratory readers were blinded to
results from other imaging modalities.

CAC SCORE. A Philips Brilliance 64-slice CT (Philips
Healthcare, Andover, Massachusetts) with prospec-
tive electrocardiographically gated acquisition was
used for noncontrast multidetector CT scans of the
coronary arteries to evaluate CAC. CT scans were
interpreted at the Icahn School of Medicine at Mount
Sinai core laboratory. Coronary calcium was quanti-
fied using the Agatston method. Patients and physi-
cians were notified of results if any of the following
were detected: emergent findings needing immediate
clinical evaluation, very high CAC score (>75th
percentile), or abdominal aortic aneurysm.

ENDPOINTS. An independent clinical events com-
mittee used source medical records to adjudicate
nonfatal and fatal events. Deaths were identified by
Social Security and National Death Index searches.
Upon confirmation of Health Insurance Portability
and Accountability Act authorization, source medical
records for both deaths and nonfatal events were
attained from healthcare institutions identified
through Humana Health System administrative
claims data. MI was defined according to the 2007
Universal Definition (18). Unstable angina was
defined according to the Braunwald classification
(19,20). Stroke was defined as a sudden focal
neurological deficit of cerebrovascular etiology per-
sisting beyond 24 h and not due to another identi-
fiable cause, such as a tumor or seizure, or as a
clinically relevant new lesion detected on CT or
magnetic resonance imaging (21). Deaths were clas-
sified as cardiovascular or noncardiovascular. The
primary endpoint included cardiovascular death,
spontaneous MI, or ischemic stroke (major adverse
cardiovascular events [MACE]). The secondary MACE
endpoint comprised all-cause death, spontaneous
MI, ischemic stroke, unstable angina, or coronary
revascularization.
STATISTICAL APPROACH. Baseline characteristics
were summarized using means and percentages for
continuous and categorical variables, respectively.
For each modality we grouped participants as either
having no measurable atherosclerosis or by tertile of
increasing CAC or carotid plaque burden (cPB). CAC
scores corresponding to the 1st, 2nd, and 3rd tertiles
were 1 to 62, 63 to 275, and 276 to 7,588, respectively.
The corresponding values for cPB in the 1st, 2nd, and
3rd tertiles were 4.3 to 169.4 mm2, 169.5 to 536.1 mm2,
and 536.2 to 6962.7 mm2, respectively. We performed
several cross-sectional analyses. First, we calcu-
lated the prevalence of polyvascular atherosclerosis,
defined as any measurable atherosclerosis in both
territories, for the entire cohort and within Framing-
ham risk groups. As many BioImage Study partici-
pants were on lipid-lowering medications at baseline,
we assigned Framingham risk groups using the office-
based version of the CVD risk prediction equation,
which substitutes body mass index for cholesterol
values (22). Secondly, we calculated the prevalence of
CAC within each cPB stratum and compared fre-
quencies across groups using the chi-square test.

Rates of adverse events were estimated at 3 years
using the Kaplan-Meier method and compared across
groups using the log-rank test. Associations between
CAC, cPB, and adverse events were assessed using
Cox proportional hazards regression. For each imag-
ing modality, we first generated a multivariable
model that included the following covariates: age;
race; and sex (Model 1). Subsequently, Model 2 was
additionally adjusted for diabetes mellitus; current
smoking; body mass index; systolic blood pressure;
antihypertensive agent use; low-density lipoprotein
cholesterol; high-density lipoprotein cholesterol; and
use of lipid-lowering drugs. The significance of
increasing CAC or cPB was assessed using a trend test
across groups. As exploratory analyses, we examined
these associations using quartiles of CAC or cPB and
performed formal interaction tests between the main
effects of CAC, cPB, and baseline use of lipid-lowering
therapy.

To evaluate the incremental value of adding CAC or
cPB to conventional risk factors (CRF) for risk pre-
diction, we compared the following metrics of model
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performance after adding CAC or cPB to our baseline
CRF model: overall fit; discrimination; calibration;
and reclassification. For these analyses, CAC and cPB
were entered as continuous variables after log trans-
formation. Changes in model fit were assessed using
the likelihood ratio test (23). Discrimination was
evaluated with the Harrell’s c-index (24). Changes
in the c-index were calculated using a cross-fold
validation approach, as described by Newson (25).
Calibration was assessed using a modified version of
the Hosmer-Lemeshow test (26). Reclassification was
calculated using the category-free and categorical
versions of the net reclassification index (NRI), as
described by Pencina et al. (27,28). Reclassification
tables were generated on the basis of Framingham
risk categories using the CVD risk prediction equation
(22) with CAC or cPB values >2nd tertile leading to
up-classification (high), values <2nd tertile leading to
down-classification (low), and values within the 2nd
tertile as intermediate (29). Separate calculations
were made for reclassification among intermediate-
risk participants alone to provide the clinical NRI.
Analogous NRI calculations were performed on the
basis of pooled cohort risk equations.

Per the study protocol, participants were followed
for a minimum of 3 years or until 600 events were
Study Participants in the HRP BioImage Study
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P ¼ high-risk plaque.
identified via semiannual questionnaires or claims
analysis. All study participants were followed until
time of death, end of enrollment in the Humana
Health System, or close of study, whichever came
first. All analyses were performed using Stata version
12.1 (College Station, Texas) and R software for
Macintosh (version 3.0.2, R Foundation for Statistical
Computing, Vienna, Austria).

RESULTS

Participant flow in the high-risk plaque (HRP) Bio-
Image Study is shown in Figure 1. Of 7,687 Humana
members who completed enrollment, a total of 6,102
were included in the bioimaging study group. Among
these, 294 were excluded due to missing covariates
and/or imaging data, yielding a final study population
of 5,808 adults. By the study end, a total of 1,139
(19.6%) study participants no longer were Humana
members and had not experienced any adverse
events during their membership. Median follow-up
among these individuals was 1.1 years. All analyses
were repeated after excluding these participants,
yielding similar results to the overall cohort.

Table 1 shows baseline demographic and clinical
characteristics for the entire cohort. The average age
was approximately 69 years, and 56% of participants
were female. The prevalence of polyvascular athero-
sclerosis is shown in Figure 2. Any subclinical
atherosclerosis in both carotid and coronary arteries
was detected in 58% of the entire cohort. This prev-
alence increased with higher Framingham risk group.
Cross-sectional associations between CAC and cPB are
shown in Online Figure 1. The prevalence of CAC
increased in a graded fashion with greater cPB.

Over a median follow-up of 2.7 years (interquartile
range: 2.5 to 3.1 years), there were a total of 216 first
MACE events (4.2%) including 108 deaths (2.2%), of
which 27 were cardiovascular (0.5%), 34 spontaneous
MIs (0.7%), 30 ischemic strokes (0.6%), 18 hospitali-
zations for unstable angina (0.3%), and 79 coronary
revascularization procedures (1.6%). There were a
total of 82 primary MACE events with a cumulative
incidence of 1.5% at 3 years. Figures 3A to 3D show the
crude 3-year event rates for primary and secondary
MACE by cPB and CAC groups. Marked trends of
higher risk were observed with increasing CAC and
cPB (log rank p < 0.001 for all). Similar patterns were
observed for the secondary MACE endpoint.

The Central Illustration shows 3-year event rates
among all study participants after cross-classification
by both CAC and cPB. The lowest-risk participants
were those without any measurable CAC or cPB,
whereas event rates were highest among those in the



TABLE 1 Baseline Characteristics of the HRP BioImage Cohort

(N ¼ 5,808)

Age, yrs 68.9 � 6.0

Female 3,281 (56.5)

White race 4,301 (74.0)

Diabetes mellitus 857 (14.8)

Current smoker 496 (8.5)

Hypertension 3,614 (62.2)

BMI, kg/m2 29.0 � 5.5

LDL-C, mg/dl 114.2 � 33.2

HDL-C, mg/dl 55.7 � 15.3

Total cholesterol, mg/dl 202.5 � 38.6

Systolic BP, mm Hg 139.4 � 18.5

Diastolic BP, mm Hg 78.2 � 9.1

Lipid-lowering therapy 1,993 (34.3)

Serum creatinine, mg/dl 0.97 � 0.21

Framingham 10-yr risk, mean 9.2%

<10% 3,829 (65.9)

10% to 20% 1,527 (26.3)

$20% 452 (7.8)

Pooled Equation 10-yr risk,* mean 7.2%

<7.5% 3,703 (64.0)

7.5% to 20% 1,879 (32.3)

$20% 223 (3.8)

Values are mean � SD or n (%). *10-Year risk estimates obtained from Pooled
Cohort Risk Equations (30).

BMI ¼ body mass index; BP ¼ blood pressure; HDL-C ¼ high-density lipoprotein
cholesterol; HRP ¼ high-risk plaque; LDL-C ¼ low-density lipoprotein cholesterol.

FIGURE 2 Prevalence of Polyvascular Atherosclerosis in the Overall Cohort and by

Framingham Risk Groups
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third tertile for both techniques. Within each stratum
of CAC, event rates increased with higher levels of
cPB and vice versa.

Table 2 shows hazard ratios for MACE associated
with CAC and cPB categories. Significant trends for
increasing risk associated with either CAC or cPB
persisted after adjusting for all risk factors for both
endpoints (Models 1 and 2). As shown in Online
Tables 1A and 1B, similar patterns of increasing risk
were observed with mutual adjustment for both im-
aging modalities. Associations between atheroscle-
rosis and MACE remained similar in magnitude and
direction after repeating all analyses using age/sex-
specific tertiles for CAC and cPB. Results were un-
changed when using quartiles of CAC or cPB (Online
Tables 2A and 2B). Formal interaction tests between
CAC, cPB, and baseline use of lipid-lowering therapy
use were nonsignificant for both MACE endpoints (all
p interaction > 0.1).

Table 3 shows the impact on model performance of
adding CAC or cPB to the baseline CRF model. Both
imaging parameters significantly improved model fit.
C-statistics for the primary and secondary MACE
outcomes associated with the baseline CRF model
were 0.66 and 0.68, respectively, comparable to re-
sults obtained with traditional risk factors in cohorts
with a similar age to BioImage Study participants
(31,32). The addition of CAC to the baseline model
significantly improved the c-statistic for both out-
comes, whereas cPB did not significantly change the
c-statistic for the primary MACE outcome. All models
were well calibrated, indicating good agreement be-
tween observed events and predicted estimates.

As shown in Table 3, both cPB (0.23) and CAC (0.25)
significantly improved category-free NRI when added
to the baseline CRF model. Online Tables 3 and 4 are
reclassification tables for the categorical NRI on the
basis of the Framingham risk score, showing compa-
rable changes for both CAC and cPB. As shown in
Online Figure 2, the clinical NRIs for the primary
MACE outcome with CAC and cPB were 0.53 and 0.49,
respectively. Similar results were noted for the sec-
ondary MACE outcome. Results for the categorical
and clinical NRIs on the basis of the Pooled Cohort
Risk Equations are shown in Online Tables 5 and 6,
and Online Figure 3, which also showed comparable
findings for CAC and cPB.

DISCUSSION

In the present study of approximately 6,000 asymp-
tomatic adults who underwent multimodality vas-
cular imaging of both coronary and carotid arteries,
we found that subclinical atherosclerosis was highly
prevalent, detectable in both vascular territories in
close to 60% of participants. Rates of adverse events
increased in a graded fashion with increasing CAC
or cPB, and associations remained significant after



FIGURE 3 Cumulative Incidence for Primary and Secondary MACE Endpoints Over 3 Years
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multivariable adjustment. Gradients in risk were
most apparent when considering results from both
modalities, suggesting a synergistic influence of poly-
vascular atherosclerosis on short-term CVD risk.
Moreover, we found that quantifying atherosclerosis
with either CAC or a novel 3-dimensional carotid US-
based method yields comparable gains over classical
risk factors in CVD risk prediction.

PREVALENCE. We observed a substantially higher
prevalence of polyvascular atherosclerosis than
estimated from other primary prevention cohorts
(6,7). For example, Lamina et al. (7) detected
atherosclerosis in both arteries in 38% of participants
in a German sample with a mean age of 50 years
evaluated by US in the carotid and femoral arteries.
The greater burden of atherosclerosis we observed
likely reflects the older age of HRP BioImage partici-
pants, coupled with the use of more sensitive mo-
dalities to detect atherosclerosis. Specifically, our
method for detection of carotid atherosclerosis
involved interrogation of both carotid arteries from
the clavicle to the jaw, rather than focusing on the
carotid bifurcation alone, which increased our sensi-
tivity to detect carotid plaques (15). Despite these
differences, our results and prior data consistently
found that a substantial proportion of individuals
with atherosclerosis are classified as low risk using
standard risk prediction algorithms (6). Our findings,
combined with earlier data, reinforce the imprecision
inherent in relying on traditional risk factors alone to
classify CVD risk.

ASSOCIATIONS BETWEEN CAC, cPB, AND ADVERSE

EVENTS. Consistent with earlier reports examining
coronary or carotid atherosclerosis in isolation,
we found that rates of adverse events increased
in a stepwise fashion with greater CAC or cPB
(5,7,8,33,34). By evaluating both modalities in con-
cert, however, we showed that the risk within each
vascular stratum was not uniform, but varied by the
degree of atherosclerosis in the corresponding



CENTRAL ILLUSTRATION Cumulative 3-Year Rates for Primary and Secondary MACE Endpoints by CAC and cPB Categories
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Crude rates were calculated as Kaplan-Meier estimates at 3 years. (A) Primary MACE endpoints, with the no atherosclerosis and 1st tertile groups

combined. (B) Secondary MACE endpoints. CAC ¼ coronary artery calcium; cPB ¼ carotid plaque burden; MACE ¼ major adverse cardiac event(s).
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TABLE 3 Impact of A

Model Performance f

Model

M

c2

Impact on model perfo

Model 1 (CRF) 41.

Model 1 þ cPB 50.

Model 1 þ CAC 61.

Impact on model perfo

Model 1 (CRF) 92.

Model 1 þ cPB 115.

Model 1 þ CAC 131.

*Changes in model fit asse
95% CI were calculated us
Hosmer (26). ‡NRI calculat

CRF ¼ conventional risk

TABLE 2 Hazard Ratios (95% CI) for Primary and Secondary MACE Endpoints Associated

With CAC and cPB

No
Atherosclerosis Tertile 1 Tertile 2 Tertile 3

p Value
(Trend)

Hazard ratios (95% CI) for primary MACE endpoint

cPB

Model 1 1.0 (ref) 0.87 (0.36–2.10) 1.56 (0.72–3.36) 2.85 (1.39–5.82) <0.001

Model 2 1.0 (ref) 0.78 (0.31–1.91) 1.45 (0.67–3.14) 2.36 (1.13–4.92) 0.03

CAC

Model 1 1.0 (ref) 1.13 (0.52–2.50) 1.54 (0.74–3.22) 3.15 (1.60–6.21) <0.001

Model 2 1.0 (ref) 1.11 (0.49–2.53) 1.58 (0.74–3.38) 2.99 (1.48–6.05) 0.01

Hazard ratios (95% CI) for secondary MACE endpoint

cPB

Model 1 1.0 (ref) 1.59 (0.92–2.74) 2.27 (1.36–3.79) 3.41 (2.08–5.58) <0.001

Model 2 1.0 (ref) 1.53 (0.89–2.65) 2.14 (1.28–3.59) 2.87 (1.73–4.74) 0.001

CAC

Model 1 1.0 (ref) 1.47 (0.91–2.36) 1.66 (1.04–2.64) 3.32 (2.16–5.10) <0.001

Model 2 1.0 (ref) 1.39 (0.85–2.25) 1.54 (0.96–2.47) 2.97 (1.92–4.60) <0.001

Model 1 was adjusted for age, race, and sex. Model 2 was additionally adjusted for: diabetes mellitus; current
smoking; body mass index; systolic blood pressure; antihypertensive agent use; low-density lipoprotein
cholesterol; high-density lipoprotein cholesterol; and use of lipid-lowering drugs.

CAC ¼ coronary artery calcium; CI ¼ confidence interval; cPB ¼ carotid plaque burden; CVD ¼ cardiovascular;
MACE ¼ major adverse cardiovascular event(s).
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vascular bed. Gradients in risk between increasing
CAC or cPB and adverse events remained indepen-
dent of one another and of other risk factors,
highlighting the incremental impact of systemic
atherosclerosis on short-term CVD risk. Although
several previous studies examined similar associa-
tions, many combined direct and indirect markers of
atherosclerosis or relied on semiquantitative ap-
proaches to measure disease. In a predominantly
Caucasian cohort from Rotterdam, for example,
van der Meer et al. (8) found that the risk for MI was
strongly associated with a composite atherosclerosis
score. By contrast, we studied a more contemporary
dding cPB or CAC to Conventional Risk Factors on

or Prediction of Primary and Secondary MACE Endpoints

odel Fit* Discrimination Calibration Reclassification

p Value
Change in C-Index

(95% CI)† c2 p Value NRI‡ (95% CI)

rmance for prediction of primary MACE endpoint

5 Ref. Model Ref. Model 4.3 0.37 Ref. Model

1 0.003 0.01 (�0.02 to 0.04) 3.4 0.49 0.23 (0.05 to 0.31)

5 <0.001 0.04 (0.01 to 0.08) 2.0 0.74 0.25 (0.12 to 0.36)

rmance for prediction of secondary MACE endpoint

3 Ref. Model Ref. model 7.8 0.09 Ref. model

6 <0.001 0.02 (0.00 to 0.04) 4.6 0.33 0.17 (0.11 to 0.26)

1 <0.001 0.03 (0.002 to 0.05) 3.1 0.55 0.22 (0.14 to 0.29)

ssed using the likelihood ratio test (23). †Differences in c-index between models and
ing the method of Newson (25). Calibration was assessed as described by May and
ed using the category-free version.

factor(s); NRI ¼ net reclassification improvement; other abbreviations as in Table 2.
and racially diverse population in whom atheroscle-
rosis was directly quantified on a continuous scale,
allowing us to more precisely estimate the accentu-
ated risk with increasing atherosclerotic burden. In
addition, when simultaneously adjusting for both
imaging modalities together, risk estimates for the
broader endpoint comprising all-cause mortality
associated with cPB were numerically higher
compared with the narrower primary MACE endpoint.
By contrast, risk ratios associated with CAC were
similar for both endpoints. These findings suggest
that mortality risk may vary by vascular bed, and are
consistent with the results of Allison et al. (35).

PREDICTIVE PERFORMANCE. The associations we
observed between CAC, cPB, and adverse events
notwithstanding, the clinical utility of detecting
subclinical disease is predicated on improving pre-
dictive measures over traditional risk factors (13).
Within this context, our results suggest that imaging-
based biomarkers that directly quantify atheroscle-
rosis, irrespective of anatomic territory, may be
ideally suited as adjuncts to conventional risk factors
in CVD risk stratification. Specifically, we found that
adding CAC or cPB to traditional risk factors
improved risk prediction and reclassification to a
similar degree. As a result, these techniques may
serve a complementary role to conventional risk
factors in refining short-term cardiovascular risk
estimation. Indeed, the comparable results we ob-
tained with both cPB and CAC contrast with reports
showing the superiority of CAC over other metrics of
carotid vascular disease, such as cIMT, in CVD risk
prediction. The most plausible explanation for these
differences is that cIMT is a more sensitive marker of
vascular changes that are due to hypertension,
rather than intimal atherosclerotic plaque (36,37).
Previous studies, for example, have shown the su-
periority of carotid atherosclerosis as a predictor of
thrombotic events compared with cIMT (38–40). In
one report, Mathiesen et al. (38) found that the
highest quartile of carotid plaque area was signifi-
cantly associated with increased risk for incident
stroke in asymptomatic men and women, whereas
similar associations were nonsignificant for cIMT.
Others have shown that alternative methods of
measuring carotid atherosclerosis, such as quanti-
fying plaque thickness, are also linked with higher
risk for vascular events (41). Thus, it is not entirely
unexpected that direct, albeit separate, measures
of atherosclerosis yield similar results in athe-
rothrombotic risk prediction. Moreover, from a bio-
logical perspective, our findings are concordant with
the existing paradigm of atherosclerosis as a diffuse



PERSPECTIVES

COMPETENCY IN MEDICAL KNOWLEDGE: Detection of

subclinical carotid atherosclerosis adds incremental value

beyond traditional risk factors and is comparable to CAC in

predicting short-term cardiovascular risk.

COMPETENCY IN PATIENT CARE: Incorporating detection

of subclinical atherosclerosis, irrespective of anatomic territory

should be considered when patient management decisions are

not sufficiently informed by assessment of conventional cardio-

vascular risk factors.

TRANSLATIONAL OUTLOOK: Future studies should compare

the cost effectiveness of various noninvasive vascular imaging

modalities for assessment of cardiovascular risk.
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and systemic disease. As such, the presence of sub-
clinical atherosclerosis in a certain vascular bed does
not preclude focal manifestations in a separate
anatomic territory.

STUDY LIMITATIONS. The design of our study intro-
duced several limitations. First, reliance on health
insurance claims to identify adverse events may have
resulted in a lower than expected rate of adverse
events. Although we obtained original source docu-
ments and adjudicated all events to minimize
misclassification, it is possible that certain events
were missed. However, we would expect such
underreporting to attenuate our point estimates to
the null, suggesting that the true associations be-
tween CAC, cPB, and CVD risk are larger than we
observed. Second, the follow-up period of approxi-
mately 3 years is relatively short when considered in
the context of other primary prevention CVD studies
and cohorts. Third, BioImage Study participants were
somewhat older compared with typical primary pre-
vention cohorts. Although this may not be the typical
patient population targeted for screening, the limi-
tations of classical risk factors in predicting CVD risk
in older (compared with younger) individuals high-
light the need to identify methods that might
enhance risk estimation in this growing segment of
the adult population (29,30,42). Fourth, because all
participants were members of Humana insurance, our
findings may not be generalizable to individuals with
different types of or no health insurance. Fifth,
differences in neck anatomy and carotid artery length
between study subjects may have introduced vari-
ability in our methodology to quantify carotid
atherosclerosis. Therefore, there may theoretically be
some proximal and distal parts of the common carotid
artery and some distal parts of the internal carotid
artery that were scanned at lesser length in people
with very short necks. However, we would expect this
to be of modest overall impact, because most carotid
atherosclerotic plaque is located at the bifurcation,
which is readily visualized by US in the vast majority
of individuals.

CONCLUSIONS

We found that detecting subclinical carotid or coro-
nary atherosclerosis identifies healthy individuals at
increased risk for adverse events and enhances risk
prediction compared with conventional risk factors,
with comparable results for either modality. Cost-
effective analyses are warranted to define the
optimal role of these complementary techniques as
tools for CVD prevention.
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