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Abstract

By direct numerical calculations the influence of a physically relevant infrared cutoff and running coupling on the
density and structure function of a large nucleus is studied in the perturbative QCD approach. It is found that the infrar
changes the solutions very little. Running of the coupling produces a bigger change, considerably lowering both the s
momentum and values of the structure functions.
 2003 Published by Elsevier B.V. Open access under CC BY license.
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1. Introduction

In high-colour perturbative QCD the interaction
a probe with the nucleus at lowx is described by a
non-linear BFKL-like Balitsky–Kovchegov evolutio
equation, which sums pomeron fan diagrams [1–
There has been considerable activity to study the
sulting nuclear structure functions and gluon distr
utions [4–8]. However one has to remember that
BFKL dynamics [9] put at the basis of this equ
tion is only an approximation, whose validity is r
stricted to not too small values of transverse m
menta, where the mere notion of gluons becom
meaningless. Also the BFKL dynamics uses the
velopment in powers of the fixed coupling consta
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In the leading order it does not take into account
running of the strong coupling constant at all. Stu
ies of the next-to-leading order, which takes into
count terms linear in ln(q2/Λ2

QCD), have indicated
that the fixed coupling constant of the leading
der indeed starts to run according to the stand
QCD rules [10]. So a reasonable first approximat
seems to be the leading order in the running c
pling constant, rather than in the fixed one. In vi
of these limitations inherent in the perturbative a
proach to smallx physics we consider it fruitles
to study properties of the BK equation as it stan
at very low momenta (or large spatial distances)
particular its generalization to include pomeron
mensions much greater than those of the target
cleus and derive consequences as to the behavio
the resulting amplitudes in the limitx → 0 [11] are
certainly interesting from the mathematical point
view but have little physical relevance in our opi
ion. Rather one has to study the dependence of
se.
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equation and its solutions on the infrared region a
running of the coupling. Should such dependence
very strong, the results obtained in the current
proach, where the coupling is fixed and no infra
cutoff is introduced, would have little physical sen
Note that these problems has been extensively s
ied for the original BFKL equation ([12,13] and refe
ences therein).

The first numerical solutions of the non-line
evolution equation have shown that the result
gluon density is concentrated at quite high values
momenta, around the so-called saturation momen
Qs(Y ) which grows exponentially with the rapidit
Y = ln(1/x). This gives some hope that the non-line
equation is not sensitive to the infrared region at
and in this way retains a full physical meaning in t
realistic world with confinement, unlike the origin
BFKL equation, in which at sufficiently lowx the
well-known diffusion into the infrared region [14
inevitably involves unphysical gluons of extreme
small momenta and thus the problem of confinem
However this point has not been fully proven, due
the fact that the equation itself does not involve
gluon density itself but some integral of it, which
not at all negligible in the infrared region and, in fa
grows logarithmically towards small momenta. In th
Letter we intend to study the infrared dependence
the non-linear evolution equation by direct numeri
calculations. Our results confirm that the solutions
small enoughx indeed depend on the infrared regi
only weakly.

Another point which we study is inclusion of th
running coupling. Clearly this cannot be done in a
rigorous way. We employ a simple intuitive model f
the running of the coupling, taking it dependent on
smallest momentum in a given 3-gluon vertex. O
calculations show that with the running coupling t
solutions do not change qualitatively, but the quant
tive change is quite noticeable. In particular the slo
of the dependence of the saturation momentum oY

drops by a factor 2–3, so that its values go down
4 orders of magnitude at largestY studied. The result
ing structure functions also drop by an order of mag
tude. We consider these results quite promising, s
the values ofQs obtained from the original non-linea
equation, without infrared cutoff nor running of th
coupling, are very large and grow unreasonably
with Y .
2. The non-linear evolution equation with an
infrared cutoff and running coupling

The non-linear evolution equation derived in [2
for an extended target reads

(1)

(
∂

∂y
+ H

)
φ(y, k) = −φ2(y, k).

Here y = (αsNc/π)Y , H is the BFKL Hamiltonian
andφ(y, k) is a Fourier transform ofΦ(Y, r)/(2πr2)

whereΦ has a meaning of the cross-section for
scattering of a colour dipole on a target at a giv
impact parameterb. In fact bothφ andΦ also depend
on b through the initial condition aty = 0. Eq. (1)
is infrared stable, that is, preserves its meaning w
k varies over the whole positive axis. Of course
numerical calculations one has to limit these value
both small and largek. Typically in our calculations
[3,4] we chosekmin ∼ 10−15 GeV/c and kmax ∼
10+40 GeV/c. With these values the solution do
not change when the interval ofk is taken still
larger. Obviously these cutoffs served to a pur
calculational purpose and the obtained solutions in
correspond to the completely uncut equation.

The physical infrared cutoff has to be of the ord
ΛQCD ∼ 0.3 GeV/c. We may introduce it into the
equation in two different ways. One is simply to c
the allowed values ofk to k > kmin and choosekmin
to be aroundΛQCD (a “hard cutoff” choice). With
such a cutoff the momenta of the intermediate r
gluons are not cut and may be arbitrary small. To a
cut these latter, one may introduce an effective gl
massmg of the same order in all gluon propagato
and leave the overall cutoffs on momenta the sam
in the original equation (a “soft cutoff choice”). A
we shall see, our numerical calculations show that
resulting solutions are rather similar for both choic
In calculations we varied bothkmin and mg in the
interval 0.3–0.6 GeV. No big difference was observ
inside this interval. Below we report on the results w
kmin = mg = ΛQCD = 0.3 GeV.

Passing to the running coupling, we recall that t
is an unsolved problem even for the linear BFKL eq
tion. To see the qualitative features of the solution,
one can do is to introduce the running coupling in
purely intuitive way, based on scale arguments. T
3-gluon BFKL vertex inside the BFKL Hamiltonia
depends on the three gluon momentak1, k2, k3, two
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of the virtual gluons and the third of the emitted re
gluon. We choose to introduce the running coupl
for the vertex at a scale which is the smallest of
squares of these three momentak2

0 = min{k2
1, k

2
2, k2

3}.
This choice can be understood as follows. Assume
k2

1 ∼ k2
2 � k2

3. Then obviouslyk1 	 k2 andk3 is or-
thogonal to them both. Passing to the system wh
k1 	 k2 = 0 we find that the vertex depends only onk2

3.
So for two momenta of the same order and larger t
the third, the coupling has to depend on the sma
momentum. Our choice is a generalization to a sit
tion where all three momenta may have different
ders of magnitude. Using the soft cutoff we have f
ther to define the coupling for values of momenta
low ΛQCD. Our choice is to freeze the coupling belo
some scale, for which we take the same scaleΛQCD.
To do this we change in the denominator of the r
ning couplingαs(k)

ln
k2

Λ2
QCD

→ ln

(
k2

Λ2
QCD

+ c

)

with a constantc chosen to have the desired froz
value ofαs at k2 = Λ2

QCD. In our numerical calcula
tions we have taken the frozen value of the coupl
constantα(0)

s = 0.2.

3. Numerical results

3.1. Gluon distribution

We define the gluon distribution as in [3]

dx G(x, k2)

d2b dk2 = Nc

2π2αs

h(y, k),

(2)h(y, k) = k2∇2
k φ(y, k).

Our aim is to study the influence of the cutoff a
running coupling on this distribution. For this aim th
dependence on the impact parameter is irrelevan
that we shall assumeφ(y = 0, k) and consequentl
φ(y, k2) independent ofb. Physically it corresponds t
assuming a constant nuclear profile function (appr
imation of a “cylindrical nucleus”). For the initial dis
tribution, following [4], we chose the Golec-Bierna
Wuesthoff [15] form

(3)φ(0, k) = −1

2
Ei

(
− k2

0.3657

)
,

where k2 is in (GeV/c)2. In our calculations we
compare four cases: no cutoff, no running coupl
(case A), hard cutoff, no running coupling (case
soft cutoff, no running coupling (case C) and fina
soft cutoff, running coupling (case D). In all cases
gluon distribution turns out to have a sharp maxim
at a certain “saturation momentum”Qs(y), which
grows withy. With a fixed coupling (cases A–C) to
good precisionQs(y) ∝ exp(∆y). The slope∆ results
practically independent of the introduced infrared c
off and its value lies between 2.2 and 2.3. Howe
with a running couplingQs(y) grows with y much
slowlier and not as the exponential, the slope∆ di-
minishing from 1.0 aty = 5 to 0.63 aty = 10. As a
result, values of the saturation momentum with a r
ning coupling are much lower than with a fixed on

In Fig. 1 we show the saturation momentumQs(y)

for the described four cases. With the running c
pling the scaled rapidityy has been defined asy =
(α

(0)
s Nc/π)Y , which implies that for comparison th

fixed coupling has been taken equal to 0.2 for ca
A–C. The form of the gluon distribution is shown

Figs. 2 and 3 whereh(y, k) is plotted against the sca

ing variablez = k/Qs(y). In Fig. 2 the distributions
are presented for a relatively small rapidityy = 3,
when the initial conditions are not completely forgo
ten yet. One then observes a small difference in
three curves for fixed coupling (A–C) especially n
ticeable at small values ofz. The running coupling
curve is considerably different: it is narrower and
peak is larger. This difference becomes still more p
nounced at higher rapidities, which is illustrated
Fig. 3, where we show distributions for all four cas
at y = 6 andy = 10 simultaneously. All fixed cou
pling curves practically coincide for both rapiditie
showing a clear scaling behaviour, which has been
covered earlier for the original solution without cu
offs [3,4,8]. So at thesey the influence of the phys
ically relevant infrared cutoff is totally forgotten: th
gluon density does not change and remains scale
variant in spite of the introduction of a scale of the
der 0.3 GeV/c. This is exactly what was conjecture
in [3]: at not too smally the internal scaleQs gener-
ated by the non-linear dynamics is much larger th
infrared cutoffs, be it 0.3 GeV/c or much smaller.

On other hand, with the running coupling, the fo
of the gluon distribution changes considerably. Pe
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Fig. 1. The saturation momentumQs(y) as a function ofy = (αsNc/π) ln(1/x). Curves from top to bottom correspond to cases A, C, B and D
(see the text). The lower curve corresponds to the running coupling (case D).

Fig. 2. The gluon distribution as a function of the scaling variablek/Qs(y) at y = 3. Curves with maxima from top to bottom correspond to
cases D, A, C and B (the first referring to the running coupling).
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Fig. 3. Same as in Fig. 2 fory = 6 and 10. The two upper curves correspond to the running coupling (the uppermost fory = 6). All the rest
correspond to fixed coupling, either with an infrared cutoff or without it.
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of the running coupling curves become nearly tw
larger than for a fixed coupling and the curves the
selves become much narrower. However the differe
between the running coupling curves aty = 6 and 10
is quite small, which indicates that even with a runn
coupling, to a good approximation, scaling inz is still
observed.

3.2. Structure function

To see more physically noticeable consequence
the cutoffs and running coupling we also calcula
the structure function of Pb for the mentioned
cases. For the initial function (now depending onb)
we have chosen the same eikonalized Golec-Bier
Wuesthoff distribution which was used in our earl
calculations according to the original equation,
that we could read the results for case A direc
from [4]. Our results are presented in Figs. 4 an
for Q2 = 100 and 10 000 (GeV/c)2, respectively. The
change due to the physical infrared cutoff is n
more pronounced: the structure functions with su
a cutoff are somewhat smaller than without cuto
the difference growing withQ2. At Q2 = 10 000
(GeV/c)2 introduction of a infrared cutoff lowers th
structure function by∼ 2 times at lowx. Still the
behaviour inx remains practically unchanged. A mo
significant change occurs with a running coupling. T
structure function then grows with 1/x considerably
slowlier. Its values atQ2 = 10 000 (GeV/c)2 and
smallx become∼ 4 times smaller than without cutoff
and running coupling and this difference seems to
growing at still smallerx.

4. Conclusions

By direct numerical calculations we studied t
gluon density and structure function of a large nucl
at smallx which follow from the non-linear evolution
equation with a physically reasonable infrared cu
and also with a running coupling. Our results sh
that the gluon density does not change qualitatively
all cases it has a strong peak at a certain saturation
mentum,Qs(y), which grows with ln(1/x). The intro-
duction of an infrared cutoff of the order 0.3 GeV/c by
itself does not practically change the value ofQs nor
the form of the gluon distribution around it. Runnin
of the coupling, on the other hand, does change b
Qs(y) grows with ln(1/x) much slowlier and not as a
exponential, the gluon distribution becomes narro
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Fig. 4. The structure function of Pb atQ2 = 100 (GeV/c)2. Curves from top to bottom on the left correspond to cases A, C, B and D (the last
for the running coupling).

Fig. 5. Same as Fig. 4 forQ2 = 10000 (GeV/c)2.
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and its height greater. Still in all cases scaling of
distribution ink/Qs is preserved.

The structure functions go down with the introdu
tion of an infrared cutoff and especially with a runni
coupling. In the latter case the growth of the struct
function with 1/x is found to be considerably slowe

Our results confirm that the non-linear evoluti
equation is more or less infrared stable, in contr
to the linear BFKL equation. Changes introduced
an infrared cutoff are of no qualitative nature and
minor quantitative influence. Running of the coupli
produces a somewhat bigger change. It is impor
that this change is in the right direction: fixed co
pling solutions lead to a very fast growth ofQs(y)

with y and as a consequence to unreasonably large
ues for it. Introduction of the running coupling consi
erably improves the situation.
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