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Abstract

By direct numerical calculations the influence of a physically relevant infrared cutoff and running coupling on the gluon
density and structure function of a large nucleus is studied in the perturbative QCD approach. It is found that the infrared cutoff
changes the solutions very little. Running of the coupling produces a bigger change, considerably lowering both the saturation
momentum and values of the structure functions.

0 2003 Published by Elsevier B.V. Open access under CC BY license.

1. Introduction In the leading order it does not take into account the
running of the strong coupling constant at all. Stud-
ies of the next-to-leading order, which takes into ac-
count terms linear in 1%/A%¢p), have indicated
that the fixed coupling constant of the leading or-
der indeed starts to run according to the standard
QCD rules [10]. So a reasonable first approximation
seems to be the leading order in the running cou-
pling constant, rather than in the fixed one. In view
of these limitations inherent in the perturbative ap-
proach to smallx physics we consider it fruitless
to study properties of the BK equation as it stands
at very low momenta (or large spatial distances). In
particular its generalization to include pomeron di-
mensions much greater than those of the target nu-
cleus and derive consequences as to the behaviour of
the resulting amplitudes in the limit — 0 [11] are
T E-mail address. mijail@fpaxpl.usc.es (M.A. Braun). cgrtainly intere;ting from_ the mathemat_ical point. of
1 permanent address: Department of High-Energy Physics, VIEW but have little physical relevance in our opin-
St. Petersburg University, 198504 St. Petersburg, Russia. ion. Rather one has to study the dependence of the

In high-colour perturbative QCD the interaction of
a probe with the nucleus at low is described by a
non-linear BFKL-like Balitsky—Kovchegov evolution
equation, which sums pomeron fan diagrams [1-3].
There has been considerable activity to study the re-
sulting nuclear structure functions and gluon distrib-
utions [4-8]. However one has to remember that the
BFKL dynamics [9] put at the basis of this equa-
tion is only an approximation, whose validity is re-
stricted to not too small values of transverse mo-
menta, where the mere notion of gluons becomes
meaningless. Also the BFKL dynamics uses the de-
velopment in powers of the fixed coupling constant.
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equation and its solutions on the infrared region and
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2. Thenon-linear evolution equation with an

running of the coupling. Should such dependence be infrared cutoff and running coupling

very strong, the results obtained in the current ap-
proach, where the coupling is fixed and no infrared
cutoff is introduced, would have little physical sense.

Note that these problems has been extensively stud-

ied for the original BFKL equation ([12,13] and refer-
ences therein).

The first numerical solutions of the non-linear
evolution equation have shown that the resulting
gluon density is concentrated at quite high values of

The non-linear evolution equation derived in [2,3]
for an extended target reads

0
(8—+H)¢(y,k)=—¢2(y,k)- @
y

Herey = (a;N. /7)Y, H is the BFKL Hamiltonian
and¢ (v, k) is a Fourier transform o® (Y, r) /(27 r?)
where® has a meaning of the cross-section for the

momenta, around the so-called saturation momentum scattering of a colour dipole on a target at a given

0Qs(Y) which grows exponentially with the rapidity
Y =In(1/x). This gives some hope that the non-linear
equation is not sensitive to the infrared region at all
and in this way retains a full physical meaning in the
realistic world with confinement, unlike the original
BFKL equation, in which at sufficiently low the
well-known diffusion into the infrared region [14]
inevitably involves unphysical gluons of extremely
small momenta and thus the problem of confinement.
However this point has not been fully proven, due to
the fact that the equation itself does not involve the
gluon density itself but some integral of it, which is
not at all negligible in the infrared region and, in fact,
grows logarithmically towards small momenta. In this
Letter we intend to study the infrared dependence of
the non-linear evolution equation by direct numerical
calculations. Our results confirm that the solutions at
small enoughr indeed depend on the infrared region
only weakly.

Another point which we study is inclusion of the
running coupling. Clearly this cannot be done in any
rigorous way. We employ a simple intuitive model for
the running of the coupling, taking it dependent on the
smallest momentum in a given 3-gluon vertex. Our
calculations show that with the running coupling the
solutions do not change qualitatively, but the quantita-
tive change is quite noticeable. In particular the slope
of the dependence of the saturation momentunyon
drops by a factor 2—3, so that its values go down by
4 orders of magnitude at larg&ststudied. The result-
ing structure functions also drop by an order of magni-

impact parametds. In fact both¢ and® also depend

on b through the initial condition ay = 0. Eq. (1)

is infrared stable, that is, preserves its meaning when
k varies over the whole positive axis. Of course in
numerical calculations one has to limit these values at
both small and largé. Typically in our calculations
[3,4] we chosekmin ~ 10°1° GeV/c and kmax ~
1040 GeV/c. With these values the solution does
not change when the interval df is taken still
larger. Obviously these cutoffs served to a purely
calculational purpose and the obtained solutions in fact
correspond to the completely uncut equation.

The physical infrared cutoff has to be of the order
Aqcp ~ 0.3 GeV/c. We may introduce it into the
equation in two different ways. One is simply to cut
the allowed values of to k > kmin and choosé&min
to be aroundAqcp (a “hard cutoff” choice). With
such a cutoff the momenta of the intermediate real
gluons are not cut and may be arbitrary small. To also
cut these latter, one may introduce an effective gluon
massm, of the same order in all gluon propagators
and leave the overall cutoffs on momenta the same as
in the original equation (a “soft cutoff choice”). As
we shall see, our numerical calculations show that the
resulting solutions are rather similar for both choices.
In calculations we varied bothmin and m, in the
interval 0.3-0.6 GeV. No big difference was observed
inside this interval. Below we report on the results with
kmin=mg = Agcp = 0.3 GeV.

Passing to the running coupling, we recall that this
is an unsolved problem even for the linear BFKL equa-

tude. We consider these results quite promising, since tion. To see the qualitative features of the solution, all

the values ofD obtained from the original non-linear
equation, without infrared cutoff nor running of the
coupling, are very large and grow unreasonably fast
with Y.

one can do is to introduce the running coupling in a
purely intuitive way, based on scale arguments. The
3-gluon BFKL vertex inside the BFKL Hamiltonian
depends on the three gluon momektaky, k3, two
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of the virtual gluons and the third of the emitted real where k2 is in (GeV/c)2. In our calculations we
gluon. We choose to introduce the running coupling compare four cases: no cutoff, no running coupling
for the vertex at a scale which is the smallest of the (case A), hard cutoff, no running coupling (case B),

squares of these three momekga= min{k?, k2, k3}. soft cutoff, no running coupling (case C) and finally
This choice can be understood as follows. Assume that soft cutoff, running coupling (case D). In all cases the
k? ~ k3 > k2. Then obviouslyk; ~ k» andks is or-  gluon distribution turns out to have a sharp maximum

thogonal to them both. Passing to the system where at a certain “saturation momentun®,(y), which
k1~ ko = 0 we find that the vertex depends onlylcgn grows withy. With a fixed coupling (cases A—C) to a
So for two momenta of the same order and larger than good precisionD; (v) o< exp(Ay). The slopeA results
the third, the coupling has to depend on the smaller practically independent of the introduced infrared cut-
momentum. Our choice is a generalization to a situa- off and its value lies between 2.2 and 2.3. However
tion where all three momenta may have different or- with a running couplingQ,(y) grows with y much
ders of magnitude. Using the soft cutoff we have fur- slowlier and not as the exponential, the slopedi-
ther to define the coupling for values of momenta be- minishing from 1.0 aty =5 to 0.63 aty = 10. As a
low Aqcp. Our choice is to freeze the coupling below  result, values of the saturation momentum with a run-

some scale, for which we take the same sc&dgp. ning coupling are much lower than with a fixed one.

To do this we change in the denominator of the run- |, Fig. 1 we show the saturation momentugy (y)

ning couplingu; (k) for the described four cases. With the running cou-
K2 K2 pling the scaled rapidity has been defined as=

In 2 In(A +‘) @9 N, /7)Y, which implies that for comparison the
QCD QCD

fixed coupling has been taken equal to 0.2 for cases
with a constant chosen to have the desired frozen A—C. The form of the gluon distribution is shown in

2 2 ; i . :
value ofa; atk® = Agcp. In our numerical calcula-  Figs, 2 and 3 wherg(y, k) is plotted against the scal-
tions we have taken the frozen value of the coupling ing variablez = k/Q,(y). In Fig. 2 the distributions

©]
constanty;~ = 0.2. are presented for a relatively small rapidity= 3,
when the initial conditions are not completely forgot-
3. Numerical results ten yet. One then observes a small difference in the
three curves for fixed coupling (A—C) especially no-
3.1. Gluondistribution ticeable at small values of. The running coupling
] o ] curve is considerably different: it is narrower and its
We define the gluon distribution as in [3] peak is larger. This difference becomes still more pro-
dx G(x., k2 N. npunced at higher rapid_itie_s, v_vhich is illustrated in
i = 55 h(. k), Fig. 3, where we show distributions for all four cases
d4bdk 2o . .
- at y =6 andy = 10 simultaneously. All fixed cou-
h(y, k) =k“Vid(y, k). ) pling curves practically coincide for both rapidities,

Our aim is to study the influence of the cutoff and Showing a clear scaling behaviour, which has been dis-
running coupling on this distribution. For this aim the covered earlier for the original solution without cut-
dependence on the impact parameter is irrelevant, so®ffs [3,4,8]. So at thesg the influence of the phys-
that we shall assume(y = 0, k) and consequently ically relevant infrared cutoff is totally forgotten: the

¢ (v, k2) independent ob. Physically it corresponds to gluon density does not change and remains scale in-
assuming a constant nuclear profile function (approx- variant in spite of the introduction of a scale of the or-
imation of a “cylindrical nucleus”). For the initial dis- ~ der 0.3 GeVc. This is exactly what was conjectured

tribution, following [4], we chose the Golec-Biernat— N [3]: at not too smally the internal scal@; gener-
Wuesthoff [15] form ated by the non-linear dynamics is much larger than

) infrared cutoffs, be it 0.3 Gext or much smaller.
$(0, k) = _} Ei(— k ) 3) On other he_md_, wit_h the running coupling, the form
2 0.3657 of the gluon distribution changes considerably. Peaks
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Fig. 1. The saturation momentu@ (y) as a function ofy = (as N./7) In(1/x). Curves from top to bottom correspond to cases A, C, B and D
(see the text). The lower curve corresponds to the running coupling (case D).
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Fig. 2. The gluon distribution as a function of the scaling varidg@;(y) at y = 3. Curves with maxima from top to bottom correspond to
cases D, A, C and B (the first referring to the running coupling).
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Fig. 3. Same as in Fig. 2 for = 6 and 10. The two upper curves correspond to the running coupling (the uppermest ). All the rest
correspond to fixed coupling, either with an infrared cutoff or without it.

of the running coupling curves become nearly twice behaviourinx remains practically unchanged. A more
larger than for a fixed coupling and the curves them- significant change occurs with a running coupling. The
selves become much narrower. However the difference structure function then grows with/1 considerably
between the running coupling curvesyat 6 and 10 slowlier. Its values atQ? = 10000 (GeVc)? and

is quite small, which indicates that even with arunning smallx become~ 4 times smaller than without cutoffs
coupling, to a good approximation, scalingzifs still and running coupling and this difference seems to be
observed. growing at still smaller.

3.2. Structure function
. . 4. Conclusions

To see more physically noticeable consequences of
the cutoffs and running coupling we also calculated
the structure function of Pb for the mentioned 4 By direct numerical calculations we studied the
cases. For the initial function (now depending ion gluon density and structure function of a large nucleus
we have chosen the same eikonalized Golec-Biernat—at smallx which follow from the non-linear evolution
Wuesthoff distribution which was used in our earlier equation with a physically reasonable infrared cutoff
calculations according to the original equation, so and also with a running coupling. Our results show
that we could read the results for case A directly thatthe gluon density does not change qualitatively. In
from [4]. Our results are presented in Figs. 4 and 5 all cases it has a strong peak at a certain saturation mo-
for 02 =100 and 10000 (GeXt)?, respectively. The  mentum,Q,(y), which grows with Irf1/x). The intro-
change due to the physical infrared cutoff is now duction of an infrared cutoff of the order 0.3 Ga\by
more pronounced: the structure functions with such itself does not practically change the value@f nor
a cutoff are somewhat smaller than without cutoff, the form of the gluon distribution around it. Running
the difference growing withQ2. At Q02 = 10000 of the coupling, on the other hand, does change both:
(GeV/c)? introduction of a infrared cutoff lowers the  Q,(y) grows with In(1/x) much slowlier and not as an
structure function by~ 2 times at lowx. Still the exponential, the gluon distribution becomes narrower
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Fig. 4. The structure function of Pb a2 =100 (Ge\//c)z. Curves from top to bottom on the left correspond to cases A, C, B and D (the last
for the running coupling).
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Fig. 5. Same as Fig. 4 fap? = 10000 (GeVc)2.
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and its height greater. Still in all cases scaling of the [3] M.A. Braun, Eur. Phys. J. C 16 (2000) 337.

distribution ink/Qy is preserved. [4] N. Armesto, M.A. Braun, Eur. Phys. J. C 20 (2001) 517,
The structure functions go down with the introduc- N. Armesto, M.A. Braun, Eur. Phys. J. C 22 (2001) 351.

tion of an infrared cutoff and especially with a running [5] E.M. Levin, K. Tuchin, Nucl. Phys. B 573 (2000) 833,

. E.M. Levin, K. Tuchin, Nucl. Phys. A 693 (2001) 787.
coupling. In the latter case the growth of the structure (6] .M. Levin, M. Lublinsky, Nucl. Phys. A 696 (2001) 833.
function with 1/x is found to be considerably slower. [7] M.A. Kimber, J. Kwiecinski, A.D. Martin, Phys. Lett. B 508

Our results confirm that the non-linear evolution (2001) 58.
equation is more or less infrared stable, in contrast {S} EANL‘i?"ZfOk\y'SE:J- Jph,\i’j-cf-fhzsl (2230?1137561)3:;38.
to the linear BFKL equation. Changes introduced by EA. KFLrae\}, L.N. Lipatov, \); Fadin, Sov. Phys. JETP 45
an infrared cutoff are of no qualitative nature and of (1977) 199;
minor quantitative influence. Running of the coupling Ya.Ya. Balitskij, L.N. Lipatov, Sov. J. Nucl. Phys. 28 (1978)
produces a somewhat bigger change. It is important 822.
that this change is in the right direction: fixed cou- [10]V:S. Fadin, L.N. Lipatov, Phys. Lett. B 429 (1998) 127;

. . M. Ciafaloni, G. Camici, Phys. Lett. B 430 (1998) 349.
pling solutions lead to a very fast growth @ (y) [11] A. Kovner, U.A. Wiedemann, Phys. Lett. B 551 (2003) 511;
with y and as a consequence to unreasonably large val- A kovner, U.A. Wiedemann, Nucl. Phys. A 715 (2003) 871.

ues for it. Introduction of the running coupling consid- [12] N.N. Nikolaev, B.G. Zakharov, V.R. Zoller, Phys. Lett. B 328

erably improves the situation. (1994) 486;
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