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β-Functions for abelian and nonabelian gauge theories are studied in the regime where the large N flavor
expansion is applicable. The first nontrivial order in the 1/N expansion is known for any value of Nα,
and there are also various indications as to the nature of higher order effects. The singularity structure
as a function of Nα has implications for the existence of nontrivial fixed points.
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For a sufficiently large number of flavors a nonabelian gauge
theory will loose asymptotic freedom and will in this way resem-
ble an abelian gauge theory. We shall thus focus our attention on
the abelian case and then later extend the discussion to the non-
abelian case.

It is generally believed that a U (1) gauge theory with N
charged fermions has a running coupling that grows monotoni-
cally towards the ultraviolet, and thus suffers from a Landau pole.
This is the indication from the one-loop β-function. But there is
much more known about the perturbative β-function and there
have been recent calculations that have extended our knowledge
to 5-loops. We also have complete knowledge of the first nontriv-
ial order in the 1/N expansion for any value of Nα, and so this
makes the large N expansion a useful way to organize the pertur-
bative expansion. The question is whether any of this allows us to
glean anything further about the possible existence of nontrivial
fixed points. Although any perturbative approach will introduce a
renormalization scheme dependence, it can still be hoped that the
existence or nonexistence of a fixed point will leave some mark on
the perturbative results.

According to a lattice result [1] there is no nontrivial fixed point
in a U (1) gauge theory for N = 4. We shall be concerned with
larger N where the large N expansion suggests other possibili-
ties. This provides some motivation to study larger N values on
the lattice as well, for sufficiently large values of Nα. Extending
the current lattice result to N = 8,12,16, . . . would appear to be
relatively straightforward.
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The U (1) β-function is defined as

β(α) = ∂ lnα

∂ lnμ
. (1)

The one loop result is β(α) = 2A/3 where A ≡ Nα/π . We may
write an expansion in 1/N as follows,

3

2

β(α)

A
= 1 +

∞∑
i=1

Fi(A)

Ni
. (2)

The “1” corresponds to the one loop result and we shall refer to it
as the zeroth order term in the 1/N expansion. Each Fi(A) repre-
sents a class of diagrams having the same dependence on N when
A is held fixed, and such diagrams exist to all orders in A. If the
functions |Fi(A)| were bounded then for sufficiently large N one
could conclude that the zeroth order term dominates and that the
Landau pole is unavoidable. But singularities in the Fi(A) will keep
us from drawing this conclusion.

We collect together what is known about the Fi(A)’s in the MS
renormalization scheme.

F1(A) =
A
3∫

0

I1(x)dx, (3)

I1(x) = (1 + x)(2x − 1)2(2x − 3)2 sin(πx)3Γ (x − 1)2Γ (−2x)

(x − 2)π3
,

(4)
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Fig. 1. The sum of the known contributions to 3β(α)/2A in (3)–(7).

Fig. 2. F1(A) as defined in (3).
F2(A) = − 3

32
A2 +

(
95

288
− 13

12
ζ(3)

)
A3

+
(

4961

13824
+ 11π4

2880
− 119ζ(3)

144

)
A4 + · · · , (5)

F3(A) = − 69

128
A3 + · · · , (6)

F4(A) =
(

4157

2048
+ 3

8
ζ(3)

)
A4 + · · · . (7)

Important for our study is the fact that F1(A) is known com-
pletely [2]. We have expressed the integrand I1(x) in a form that
makes more clear the location of its zeros and poles. The A3 terms
in F2(A) and F3(A) were calculated in [3], the A4 term in F2(A)

in [4], and the F4(A) term in [5]. The latter two results are 5-loop
calculations.

One way to express the results in (3)–(7) is to plot their sum
and ignore what is not known. The result for the 3β(α)/2A for
various N is displayed in Fig. 1. A zero would indicate a nontrivial
fixed point, but the zeros are occurring at values of A that are too
high to ignore higher order terms. Thus we cannot deduce much
from this plot, except to notice sensitivity of the β-function to N .
The 2-loop contribution to β(α) involves one fermion loop and
one internal photon and it gives rise to the first term in the expan-
sion of F1(A), which is 3

4 A. The higher order terms in F1(A) corre-
spond to the insertion of the appropriate number of fermion loops
on the photon line, and these bubble chains have been summed
up to produce the result (3) [2]. An important feature of F1(A) is
that its expansion displays a finite radius of convergence, which is
nonvanishing due to the slower than factorial growth in the num-
ber of diagrams. We expect this to be true of the other Fi(A)’s as
well.

Simple poles of alternating sign appear in I1(x) at x = 5
2 +n for

integer n � 0. The integration can be handled with a Cauchy prin-
cipal value prescription and the result is shown in Fig. 2. Clearly
F1(A) only changes logarithmically as the singular points are ap-
proached. And these singularities become weaker for larger n.
Close to the first singularity at A = 15/2 we find

F1(A) ≈ 7

15π2
�

(
log

(
1 − 2

15
A

))
+ 0.3056. (8)

Nevertheless even this weak singularity can cause the β-function
at this order to vanish at a fixed value of N . As Fig. 2 indicates
there will be two nearly coincident zeros of 1 + F1(A)/N at
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A = 15

2
± 0.0117e−15π2 N/7. (9)

The lower (upper) one is an ultraviolet (infrared) fixed point. In
either case the running coupling achieves its fixed point value at
some finite scale μ∗ , and at this scale the running of the coupling
abruptly stops.

It is useful to compare the β-function to the γm-function de-
fined as

γm(α) = −∂ lnm

∂ lnμ
=

∞∑
i=1

Gi(A)

Ni
. (10)

G1(A) is also known to all orders in A, and in fact it is directly
related to F1(A). From the results of [2] one can deduce that

dF1(A)

dA
= 1

2A

(
1 − 2A

3

)(
1 + A

3

)
G1(A). (11)

Thus the singularities in these two functions occur at the same
locations. This could be expected since the bubble chain re-
summation is intrinsic to both functions. The strength of the sin-
gularities are also related; the logarithmic singularities in F1(A)

correspond to simple poles in G1(A).
It could be argued that the Cauchy principal value prescription

used in the evaluation of F1(A) is not unique. Rather than ap-
proaching the pole equally closely from the two sides, another pre-
scription would be to approach the pole unequally from the two
sides. This would shift the β-function on the right of a singular-
ity by an additive constant, as allowed by (11). But this ambiguity
does not alter the appearance of the fixed points at first order in
1/N .

It is important to know how large N has to be for the 1/N
expansion to be under control. We can require that the known ex-
pansion terms of the higher Fi(A)’s be sufficiently small for A as
large as the radius of convergence of F1(A), at A = 15/2. If we
rescale A = 15/2 Ã and N = 16Ñ then the expansion (2) numeri-
cally reads

1 + 1

Ñ

(
0.3516 Ã − 0.8057 Ã2 − 1.567 Ã3 + 5.342 Ã4

+ 1.60 Ã5 − 15.9 Ã6 + · · ·)
+ 1

Ñ2

(−0.0206 Ã2 − 1.602 Ã3 − 3.244 Ã4 + · · ·)

+ 1

Ñ3

(−0.0555 Ã3 + · · ·) + 1

Ñ4

(
0.1198 Ã4 + · · ·). (12)

We see that Ñ � 1 or more is needed for the terms of successively
higher powers of 1/Ñ to be under control. One can in particu-
lar compare the leading terms at each order in 1/Ñ , i.e. the Ãi

term at order 1/Ñ i . These terms correspond to the one fermion
loop diagrams, and they have a special significance in that they
are renormalization scheme independent [3].

Thus for sufficiently large N the higher orders in 1/N are un-
der control in the usual sense of an asymptotic series. But the
presence of singularities in the Fi(A) indicates that the 1/N ex-
pansion needs to be reconsidered for A close to these singularities.
Although the singularities of F1(A) are logarithmic, we do not ex-
pect this to continue for the higher Fi(A). The appearance of poles
in G1(A) reinforces this view. In particular if F2(A) has a simple
pole at A = 15/2 then this should completely dominate the log-
arithmic singularity of F1(A), as the exponentially small spacing
in (9) makes clear.

It is interesting that the first three coefficients in the expansion
of F2( Ã) are negative. This is certainly consistent with a pole, since
the expansion of the expression
Ã2 0.771 Ã + 0.010

Ã − 0.494
(13)

has the same first three terms. But we would argue that this does
little to prove the existence of a pole. In the F2(A) expansion we
note that the 2 fermion loop A3 term in F2(A) receives contribu-
tions from graphs with topology different from the 1 fermion loop
A2 term. That is, unlike the case of F1(A), dressing photon lines of
the A2 graphs does not give all A3 graphs. In fact the graphs with
the new topology (the light-by-light scattering contributions) give
the dominant contribution to the A3 term [3]. In this situation we
do not expect a Pade approximant to be very predictive until more
orders in the expansion are known.

An example of the appearance of a pole in an exact β-function
is provided by SU(Nc) SUSY pure gluodynamics where [6,7]

β(a) = 3a2

4

1

a − 2/Nc
, a ≡ αc

π
. (14)

A pole of this sign, as in (13), means that the coupling will evolve
towards the singularity in the infrared, and it does so from both
the weak and strong coupling sides of the pole. The coupling
reaches the singularity at some minimum finite renormalization
scale μ∗ , and the gauge theory ceases to provide a description be-
low this scale. This suggests that the theory develops a mass gap
and/or some fundamentally different description is needed for en-
ergies below μ∗ . The authors of [8] argue that there is evidence
of such a pole in the QCD β-function from the study of Pade
approximants. A pole of opposite sign would instead produce an
ultraviolet cutoff on the gauge theory description.

Beyond the A3 term in F2(A), including the known A4 term,
the diagrams are obtained by simply inserting fermion loops into
photon lines, thus building up bubble chains. This is true for suffi-
ciently high powers of A in the expansion of any Fi(A); one ends
up only dressing photons lines with fermion loops in graphs that
belong to a basic set of topologies. It is for this reason that all
these functions should have a nonvanishing radius of convergence,
and the bubble chains should generate singularities in the higher
Fi(A) just as they did for F1(A) and G1(A). We expect that the
set of locations of singularities in the higher Fi(A) will include the
locations of singularities in F1(A).

Let us consider a set of poles in F2(A) occurring at the same
locations at the singularities in F1(A) (we shall provide more ev-
idence for this shortly). Poles in F2(A) at An = 15

2 + 3n need to
be considered along with the zeroth order term in (2). Depending
on the sign of these poles, the result is the existence of various
nontrivial infrared and/or ultraviolet fixed points. For example an
infrared pole at A0 = 15/2, i.e. having the sign of 1/(A − A0) as in
(13) and (14), implies an ultraviolet fixed point at some AU V < A0
(see Fig. 3a). When the coupling is below AU V the theory flows to
the known weakly coupled behavior in the infrared, but in the ul-
traviolet the Landau pole has been eliminated in favor of a fixed
point. Possibilities for nontrivial fixed points in the regions be-
tween successive poles at Ai and Ai+1 are shown in Figs. 3b–3d.

We now describe some evidence that is relevant not only to
the existence of poles in F2(A), but also to their location and sign.
The first input comes from the γm-function, since it turns out that
G2(A) is also known to all orders in A. This comes from an im-
pressive calculation in QCD [9], from which the corresponding QED
result can be extracted. The surprisingly simple result is that the
singularities in G2(A) occur at the same locations as in G1(A), and
each simple pole in G1(A) has been replaced by a double pole in
G2(A).

Further input comes from examples of theories where the
analogs of G2(A) and F ′

2(A) have the same singularity structure;
that is the set of poles of these functions have the same location,
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Fig. 3. Schematic examples of the behavior of 3β/2A when poles are present. The arrows show the infrared flow close to the poles.
sign and order of pole. In particular in N flavor (φ2)2 theory in
d = 4 − 2ε dimensions the critical exponents λ(ε) and ω(ε) have a
correspondence to 1 − γm and 2β ′ . In [10] these critical exponents
are encoded in the corresponding critical exponents of the large N
σ -model in d = 2 − 2ε dimensions, where the functions appearing
at order 1/Ni are labeled λi(ε) and ωi(ε). These functions are the
analogs of −Gi(A) and F ′

i (A). From the results in [10] the func-
tions −λ2(ε) and ω2(ε) have singularities that match in location,
sign and order of pole, as do −λ1(ε) and ω1(ε).1

Thus it would not be surprising for QED to display similar be-
havior, so that G2(A) and F ′

2(A) exhibit a common singularity
structure just as G1(A) and F ′

1(A) do. Such behavior could be
expected due to the simple relationship between the graphs con-
tributing to Fi(A) and Gi(A), suggesting that the behavior also
extends to higher orders. Cutting out an external gauge field vertex
from any graph contributing to Fi(A) (vacuum polarization graphs)
and replacing the other external vertex with a mass insertion gives
a graph contributing to Gi(A) (mass renormalization graphs). This
is not true in QCD due to the gluon self-interactions, and so there
is no corresponding behavior for QCD even at first order in 1/N .

Thus supposing that F ′
2(A) and G2(A) have the same singular-

ity structure, the signs of the poles in F2(A) at An = 15
2 + 3n are

determined by the known results [9] for G2(A). This would imply
that the poles in F2(A) all have the same sign and that they are
all ultraviolet poles, i.e. opposite in sign to (13) and (14). Thus of
the various possibilities displayed in Fig. 3, the available evidence
suggests that only Fig. 3d is correct for the interval between any
two adjacent singularities.

If this is correct then at this order in the 1/N expansion there
is an infinite number of new theories each flowing towards an as-
sociated nontrivial infrared fixed point. There is still the weakly
coupled theory that flows to the trivial infrared fixed point. All the

1 ω1(ε) has simple poles, while ω2(ε) has an additional pole and all its poles are
fourth order.
theories are cut off in the ultraviolet by the UV poles. We also
note that for large N some of the nontrivial infrared fixed points
can occur at values of A smaller than the critical value for chiral
symmetry breaking, Acrit = N/3.

To proceed to higher order we must once again reconsider the
1/N expansion close to the singularities. As a singularity is ap-
proached the β-function experiences a significant change, and a
change of 3β/2A of order unity would be an indication that the
1/N expansion is breaking down for these values of A. The higher
Fi(A)’s must be considered in these regions. For these functions
to overcome the suppressions from large N and loop factors, they
would need to have progressively higher order poles.

In fact it is plausible that the Fi(A) function has (i − 1)th order
poles, since this behavior is already suggested by the increasing
order of the poles in the G1(A) and G2(A) functions. A 1/N ex-
pansion with poles of ever increasing order would indicate the
existence of a set of essential singularities in the β-function. But
the implications for fixed points remain similar to our discussion
of simple poles. Whenever an essential singularity drives 3β/2A
by an amount of order unity or more in the right direction then a
nontrivial fixed point can result.

We may speculate further about the nature of the higher order
poles based on an emerging pattern for poles of even or odd order.
The adjacent logarithmic (even order) singularities in F1(A) are al-
ternating in sign while the simple (odd order) poles in F2(A) are
all of the same sign. Let us consider the continuation of this pat-
tern (alternating even order poles and same sign odd order poles)
to higher orders, where we treat the overall sign at any order as
unknown. It means that on a given interval between adjacent sin-
gularities, and at any given order, 3β/2A diverges with opposite
signs on the two ends of the interval. The divergences of the all-
orders-summed result (assuming that the summed result diverges)
can then also be expected to come with opposite signs on the two
ends. This would imply at least one nontrivial ultraviolet or in-
frared fixed point on each such interval. Also, the sum of the odd
order poles produces a divergence pattern that is the same on ev-
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Fig. 4. H1(A) as defined in (16) for Nc = 3.
ery interval, while for the sum of the even order poles the pattern
flips in sign on adjacent intervals. Thus the existence of infrared
fixed points in the total result, at least on every second interval,
is made more likely if the odd poles are always of the ultravio-
let variety as in Fig. 3d. Due to cancellations it is also conceivable
that 3β/2A approaches finite or even vanishing values at the end-
points of some intervals. Such behavior that depends on the side
of approach can also be consistent with essential singularities.

We now turn to a SU(Nc) gauge theory, where results are ex-
pressed in terms of the Casimirs, CG = Nc , C R = (N2

c − 1)/2Nc ,
T R = 1/2. N still denotes the number of flavors. The term in the
β-function of zeroth order in the 1/N expansion is as before,
β(α) = 2A/3+· · ·, if we choose a new definition for A ≡ NT Rα/π .
Similarly the 1/N expansion is

3

2

β(α)

A
= 1 +

∞∑
i=1

Hi(A)

Ni
. (15)

From the results in [11] we can deduce that2

H1(A) = −11

4

CG

T R
+

A/3∫
0

I1(x)I2(x)dx, (16)

I2(x) = C R

T R
+ (20 − 43x + 32x2 − 14x3 + 4x4)

4(2x − 1)(2x − 3)(1 − x2)

CG

T R
. (17)

I1(x) is defined in (4) and so up to the definition of A and the
C R/T R factor, the C R term is just the QED result for F1(A). By
inspection of I1(x) and I2(x) one can see that the CG term brings
in a new pole in the integrand at x = 1 (A = 3). This pole is of the
same sign as the pole at A = 15/2. We show a plot of H1(A) in
Fig. 4 for Nc = 3. Compared to the F1(A) function of QED, H1(A)

is negative and its first singularity is occurring at a smaller value
of A (and α).

As in the QED case, a key question is how large N has to be
for the 1/N expansion to be under control, for A at least as large
as 3. It is apparent that higher N will be needed, since factors of
N must now compete with factors of Nc . If we rescale A = 3 Ã and
N = 32Ñ then the expansion (15) for Nc = 3 numerically reads

2 This result is presented somewhat more explicitly than in [11], but its series
expansion is in agreement.
1 + 1

Ñ

(−0.5156 + 0.8906 Ã − 0.6348 Ã2 − 0.2372 Ã3

+ 0.4372 Ã4 − 0.0994 Ã5 − 0.0912 Ã6 + · · ·)

+ 1

Ñ2

(−0.2241 Ã + 0.9216 Ã2 − 2.003 Ã3 + · · ·)

+ 1

Ñ3

(−0.1471 Ã2 + 1.073 Ã3 + · · ·)

+ 1

Ñ4

(−0.1412 Ã3 + · · ·). (18)

The leading terms of the expansions of H2(A), H3(A), H4(A) have
been obtained from the 4-loop results in [12]. Due to the pure
glue contributions, each order begins with a lower power of A as
compared to QED. The main observation here is that large values
of N are needed, N � 32 or more, for the 1/N expansion to be
under control.

For such large values of N , asymptotic freedom has been lost,
and the implications of the singularities in H1(A) and the higher
Hi(A)’s will resemble that of QED. The large N required also in-
dicates that the large N expansion lacks quantitative control for
the study of other interesting phenomena that occur for values of
N � 32.3 One such question is the lowest value of N at which the
Banks–Zaks fixed point survives before chiral symmetry breaking
occurs.

For completeness we give the answer to this question while
only keeping the 1 + H1(A)/N terms in (15). We can find the
N such that the zero of 1 + H1(A)/N occurs at the usual es-
timate for the critical coupling for chiral symmetry breaking, or
Acrit = NT R/3C R . For Nc = 3 this gives N = 8.88 as the lower
bound on the conformal window. This may be compared with the
conventional result of N = 11.9 which is derived from the 1- plus
2-loop terms of β(α). We plot 1 + H1(A)/N for N = 8.88 in Fig. 5.

At order 1/N2, the singularity structure of the QCD β-function
is significantly more complicated. And unlike QED, the singularity
structures of the γm and β-functions do not match. For example
H ′

1(A) has the additional singularity at A = 3 when compared to
the QCD γm-function at order 1/N , which is essentially the QED re-
sult G1(A). As mentioned before, this can be understood diagram-

3 Of course if the study involved values of A significantly less than A = 3 then
such large values of N would not be needed.
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Fig. 5. 3β(α)/2A at first order in 1/N where a zero occurs at the critical coupling for chiral symmetry breaking (N = 8.88 and Nc = 3).
matically in terms of additional contributions to the β-function
due to the gluon self-coupling. Nevertheless there will be contri-
butions to singularities in H ′

2(A) that can be associated with the
singularities that appear at order 1/N2 in the QCD γm-function.
Since the latter is known [9] we can deduce that the H2(A) singu-
larity structure will contain the following contributions: a simple
UV pole at A = 3/2, a positive log singularity at A = 3,4 a neg-
ative log singularity at A = 9/2, and IR poles of third order at
A = 15/2 + n. Some of these singularities could change sign or be
replaced by even stronger singularities in the full result for H2(A).
The UV pole is interesting since it would imply an infrared fixed
point just above A = 3/2.

In summary we have considered the implications of singulari-
ties appearing in the large N flavor expansion of the β-functions of
QED and QCD. The logarithmic singularities that appear at first or-
der in 1/N are the first signs of simple and higher order poles that
will appear at higher orders in 1/N . In the case of QED these sin-
gularities are expected to be related to those of the γm-function,
for which the singularity structure is surprisingly simple at order
1/N2. This gives information about the signs and locations of a set
of poles in the β-function at this order. This in turn implies an
infinite set of nontrivial infrared fixed points. The poles are likely
to turn into essential singularities when all orders of the 1/N ex-
pansion are considered, but the existence of nontrivial fixed points
will persist. For QCD we have indicated an even richer singularity
structure for which we have less information.
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