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The seven co-located sites of the Crustal Movement Observation Network of China

(CMONOC) in Shanghai, Wuhan, Kunming, Beijing, Xi'an, Changchun, and Urumqi are

equipped with Global Navigation Satellite System (GNSS), very long baseline interferometry

(VLBI), and satellite laser ranging (SLR) equipment. Co-location surveying of these sites was

performed in 2012 and the accuracies of the solved tie vectors are approximately 5 mm.

This paper proposes a mathematical model that handles the least squares adjustment of

the 3D control network and calculates the tie vectors in one step, using all the available

constraints in the adjustment. Using the new mathematical model, local tie vectors can be

more precisely determined and their covariance more reasonably estimated.
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1. Introduction

Sites equippedwith twoormore space geodesy instruments

suchas theGlobalNavigationSatellite System (GNSS), very long

baseline interferometer (VLBI), and satellite laser ranging (SLR),

are called co-located sites, which are essential for connecting

diverse space geodetic techniques via local tie vectors for

computing the International Terrestrial Reference Frame (ITRF)

[1]. A local tie vector is a 3D baseline vector between the

reference points (RPs) of two telescopes [2,3]. An RP is the

perpendicular intersection point of the primary fixed axis and

secondary axis of a telescope [4], which can be approximately

regarded as the geometric rotation center of an SLR or VLBI

telescope, or the antenna reference point (ARP) of a GNSS

antenna [5]. To determine the RP of an SLR or VLBI telescope,

targets mounted on the telescope need to be measured during

rotation sequences around the primary and secondary axes.

Methods for computing RPs using a target's observed

coordinates are found in references [2,3,5e7].

The 7 co-located sites of the Crustal Movement Observa-

tion Network of China (CMONOC) are shown in Fig. 1. All the

sites are equipped with GNSS instruments; the sites in

Shanghai, Kunming, Beijing, Xi'an, Changchun, and Wuhan

are also equipped with SLR instruments, and the sites in

Shanghai, Kunming, and Urumqi are equipped with VLBI

instruments. The tie vectors at Shanghai, Wuhan, and

Beijing were measured several years ago [8e12]. To measure

the targets fixed on the SLR and VLBI telescopes, at least two

and four control points, respectively, are required and these

were determined by first establishing a 3D control network.

A precise terrestrial survey of CMONOC co-located sites was

performed from September to November 2011 using both

GNSS and conventional terrestrial measurements, and

details of the field work can be referred from Gong [5].

In their tie vector solutions, Gong [5] and Ma [13] implicitly

assume that the primary axis of a VLBI or SLR telescope

intersects with and is perpendicular to its secondary axis, the
Fig. 1 e Locations of seven c
deflection of the vertical can be neglected when computing

the rotation center, and the rotation centers around the

primary axis of different targets fixed on a telescope have the

same horizontal coordinates, while those around the

secondary axis have the same vertical coordinates. Besides,

the least squares adjustment of the 3D control network and

the determination of the RP were performed separately, and

some conditions such as the distance between two targets

not being changed during rotation of the telescopes were

neglected. Moreover, Gong [5] also assumed that the

coordinates of the rotation centers of different rotation circles

were independent. Since these assumptions cause

approximately 3 mm of error on the solved tie vector [3], this

paper introduces a new mathematical model for obtaining

precise local tie vector solutions.
2. Mathematical models for solving
CMONOC local tie vectors

The GNSS vectors of the 3D control points were computed

using GAMIT v10.35 and Bernese v5.0 Software, which use

the absolute phase center variation models. Then, the 3D

GNSS vectors, the terrestrial observations of the control

network, and the target points were solved together in Gong

[5] and Ma [13] using the 3D least squares adjustment by

fixing the IGS stations as the initial values. Therefore, the

3D coordinates of all the target points were derived in the

3D adjustment. Since each target rotating around an axis

forms a plane circle, it gives rise to two constraining

conditions [14e16]:

axi þ byi þ czi þ d ¼ 0 (1)

and

ðxi � uÞ2 þ �yi � v
�2 þ ðzi �wÞ2 ¼ r2 (2)

where a, b, c, d denote the parameters forming a plane, u, v, w

are the coordinates of the rotation center and r is its radius,
o-located sites in China.
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xi; yi; zi are the coordinates of target point i, which can be

expressed as xi, yi, zi derived by 3D least squares adjustment

and corrections vxi, vyi, vzi. Thereby, equations (1) and (2) for all

points can be linearized and expressed as the following

pseudo observation equation,

Axþ Bv ¼ w1 (3)

where x is the vector of parameters, A is its design matrix, v

denotes the correction vector of a target's coordinates, B is its

design matrix, w1 is the misclosure vector of the constraining

equations. The solution x of (3) can be derived using the least

squares adjustment with its covariance matrix Sx. If a total of

m1 andm2 solutions are derived for the circles rotating around

the primary and secondary axes, respectively, the coordinates

of an RP computed by Gong [5] are,
�
N
E

�
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(5)

where N, E, and U are the coordinates of RPs in the terrestrial

topocentric coordinate system, 4;l are the geodetic latitude

and longitude of the rotation center of the primary axis, and

ðup
i ;v

p
i ;w

p
i Þ and ðus

i ;v
s
i ;w

s
i Þ are the coordinates of the rotation

centers around the primary and secondary axes, respectively.

Since the covariance matrices of the rotation centers have

already been derived in the least squares adjustment, the

covariance matrix of an RP can be easily derived from (4) and

(5) using the law of error propagation. The simple average of

the coordinates of the rotation centers in (4) and (5) imply

that these coordinates are independent; however, they are

actually correlated. Ma [13] introduced the following

additional conditions to establish a direct relationship

between the coordinates of RPs and the coordinates of

rotation centers:

sin 4 cos luP
i þ sin 4 sin lvP

i � cos 4wP
i � sin 4 cos lx0

�sin 4 sin ly0 þ cos 4z0 ¼ 0
sin luP

i � cos lvP
i � sin lx0 þ cos ly0 ¼ 0

cos 4 cos lus
i þ cos 4 sin lvs

i þ sin 4ws
i

�cos 4 cos lx0 � cos 4 sin ly0 � sin 4z0 ¼ 0

(6)
Table 1 e Tie vectors and formal errors by Gong [5].

Tie vector DX (m) DY (m) DZ (m

BJFS-SLR �16.5166 118.3174 �146.2

CHAN-SLR 40.2996 46.0158 �13.3

KUNM-VLBI 103.1364 118.3366 �226.3

KUNM-SLR �20.2160 �18.8560 45.7

SHAO-SLR 989.0580 914.3549 �296.5

SHAO-VLBI 46.3460 67.6428 �41.8

GUAO-VLBI �68.5363 �24.1483 35.5

WUHN-SLR �11964.9994 �4386.8925 �1496.7

XIAA-SLR �14.8656 14.6918 �28.0
where x0, y0, z0 denotes the coordinate of an RP. The condi-

tions in (6) can be expressed as,

Cxþ C0x0 ¼ w2 (7)

where x0 ¼ (x0, y0, z0)
T is the coordinate of an RP, C and C0 are

the coefficient matrices, and w2 is the misclosure vector.

Solving the pseudo observation equation (3) and constraining

it with (7) can directly provide the coordinate of an RP as well

as its covariance. Therefore, the mathematical model of Ma

[13] is an improved version of Gong [5]. However, the

impacts of the deflections of the vertical are all neglected in

equations (4), (5), and (7).
3. Results analysis

The local tie vectors (DX, DY, DZ) and their formal errors

(MDX, MDY, MDZ) in the ITRF2008 frame solved by Gong [5] are

presented in Table 1, where BJFS, CHAN KUNM, SHAO, GUAO,

WUHN, and XIAA denote the GNSS stations at the Beijing,

Changchun, Kunming, Shanghai, Urumqi and Xi'an sites,

respectively; the SLR and VLBI denote SLR and VLBI stations

at those sites in addition to GNSS stations. The formal errors

of all the coordinate components in Table 1 are less than 5mm.

Ma [13] only solves the tie vectors for the Shanghai and

Changchun sites, and these results and their discrepancies

from Gong [5] are presented in Tables 2 and 3, respectively.

The formal errors of Ma [13] are slightly smaller than those

of Gong [5], and the largest discrepancy of the coordinate

components is up to 0.6 mm.

The tie vectors at the Shanghai and Wuhan sites were also

surveyed by the Institute G�eographique National (IGN) in 2003

[9,10], and the discrepancies between Gong [5] and IGN are

shown in Table 4. The discrepancy in the three coordinate

components at the Wuhan site in Table 4 are all less than

10 mm, although the distance of the tie vector is up to 13 km

and the surveying data of Gong [5] is approximately 10 years
) MDX (mm) MDY (mm) MDZ (mm)

835 1.25 1.90 0.27

399 0.35 1.01 0.17

731 2.37 0.62 2.90

754 0.39 0.72 1.24

724 0.42 0.96 0.77

153 0.71 1.43 1.12

471 0.66 4.90 0.54

445 4.68 2.02 1.37

790 2.03 1.01 0.87
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Table 2 e Tie vectors and formal errors by Ma [13].

Tie vector DX (m) DY (m) DZ (m) MDX (mm) MDY (mm) MDZ (mm)

CHAN-SLR 40.3000 46.0155 �13.3405 0.2 0.2 0.2

SHAO-SLR 989.0582 914.3543 �296.5728 1.4 0.6 0.5

SHAO-VLBI 46.3462 67.6422 �41.8154 0.8 0.8 0.9

Table 3 e Discrepancies in tie vectors between Gong [5]
and Ma [13] (unit: mm).

Tie vector DX DY DZ

CHAN-SLR 0.4 �0.3 �0.6

SHAO-SLR 0.2 �0.6 0.4

SHAO-VLBI 0.2 �0.6 �0.1

Table 4 e Discrepancies of the tie vectors between Gong
[5] and IGN (unit: mm).

Vector DX DY DZ DN DE DU

SHAO-VLBI �10.0 17.4 10.2 �1.6 �0.5 22.4

WUHN-SLR �2.5 �8.9 �5.6 �1.2 5.9 �8.9

g e o d e s y and g e o d yn am i c s 2 0 1 5 , v o l 6 n o 1 , 1e64
late. At the Shanghai site, the discrepancies of the north and

east (N, E) coordinate components are less than 2 mm, and

the discrepancy of the vertical (U) coordinate component is

as large as 22.4 mm.
4. Mathematical model for precise local tie
vector solutions

As pointed out in Gong [5], the formal errors of their tie

vectors are approximately 5 mm, because their field

surveying and data processing methods only guarantee the

precision of the tie vectors to approximately 5 mm.

However, the ITRF innovation requires local tie vectors to

achieve a precision of 2 mm or less. In addition, the field

surveying work and data processing should be more

rigorous. In this paper, we only discuss the mathematical

model for obtaining precise local tie vector solutions.

According to Dawson [3], neglecting the inter-axis and

inter-circle geometrical conditions causes an error of

1.2e3.4 mm. Therefore, besides the conditions of (1) and

(2), the following inter-axis and inter-circle conditions must

be taken into account when computing precise local tie

vectors.

First, all the rotation circles around the primary axis have

the same normal vector denoted by np ¼ ðap; bp; cpÞT. If the

secondary axis doesn't change when it rotates for different

circles, all circles also have the same normal vector expressed

as ns ¼ ðas; bs; csÞT. Furthermore, the same target also has the

same intercepts for different circles, denoted by dp and ds for

the circles around the primary and secondary axes, respec-

tively. These conditions should be taken into account when

solving the conditional equation (1).
Second, the same target must have the same rotation

center and radius, denoted by ðup;vp;wpÞ and rp for circles

around the primary axis, and ðus; vs;wsÞ and rs for those

around the secondary axis. These conditions should also be

taken into account when solving the conditional equation (2).

Third, when a telescope rotates, the distance between two

targets is fixed. The following condition for targets i and j

should be further introduced:

�
xi
k�xj

k

�2
þ
�
yi
k�yj

k

�2
þ�zik�zik

�2¼�xi
l�xj

l

�2
þ
�
yi
l�yj

l

�2
þ�zil�zil

�2
(8)

where k and l denote the two positions of the telescope.

Fourth, the deflections of the vertical must be considered.

If the deflection of the vertical is 10 s, its impact will be

approximately 0.5 mmwhen computing the coordinates of an

RP for a telescope with a radius of 10 m. Therefore, the con-

ditional equations (4) and (5) or (6) cannot be used to obtain

precise tie vector solutions. To determine the coordinates of

an RP, the conditions of a linear line formed by the rotation

center are first introduced for the primary axis:

0
B@

ui
p

vi
p

wi
p

1
CA ¼

0
@ x0

y0

z0

1
Aþ lip

0
@ap

bp

cp

1
A (9)

where lip is the scale parameter of the line, x0; y0; z0 denote the

coordinate of the RP, since RP is on the linear line. Similarly,

the expression for the secondary axis is

0
@ui

s

vi
s

wi
s

1
A ¼

0
@ xs

ys

zs

1
Aþ lis

0
@as

bs

cs

1
A (10)

where lis is the scale parameter of the line of the secondary

axis, xs; ys; zs represents the coordinate of a point on the sec-

ondary axis with the least distance to the primary axis. On the

other hand, the secondary axis does not intersect the primary

axis, and neglecting the offset between the two axes in-

troduces an error of approximately 0.5 mm [3].

Fifth, the line with the minimum the distance from the

secondary axis to the primary axis must be perpendicular to

both axes. Therefore, its normal vector n is orthogonal to both

np and ns, and can be computed as

n ¼ np � ns ¼
0
@bpcs � bscp

ascp � apcs
apbs � asbp

1
A (11)

Because x0; y0; z0 and xs; ys; zs are all on the line, we have the

following conditions:

0
@ x0

y0

z0

1
A ¼

0
@ xs

ys

zs

1
Aþ l

0
@bpcs � bscp

ascp � apcs
apbs � asbp

1
A (12)
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where l is the scale parameter to be estimated. Obviously, in

equations (9), (10) and (12), nine unknowns have been intro-

duced, i.e., x0; y0; z0 and xs; ys; zs as well as lip, l
i
s, and l. Even

observing one circle around the primary axis and one circle

around the secondary axis give nine conditions in equations

(9), (10) and (12). Therefore, these unknowns can also be solved

with the conditions.

All the above conditions can be briefly expressed as,

Axþ By ¼ w (13)

where x is the vector of parameters introduced by the condi-

tional equations, A is its designmatrix; y denotes the vector of

parameters of the 3D control network, B is its designmatrix;w

is a misclosure vector. The observational equation of the 3D

control network is denoted as,

l ¼ Hyþ e (14)

where l is the observation vector with the observation error e,

and H is the design matrix. Because terrestrial observations,

such as horizontal and vertical angles and leveling height

differences, are determined based on the plumb line, the pa-

rameters of the deflections of the vertical must be introduced

in the vector y. The observational equation (14) constrained by

the conditional equation (13) is solved by least squares

adjustment. We emphasize here that the coordinates of RPs

and their covariance are directly computed in the

adjustment, since the coordinates of RPs are introduced in

the equations (9) and (12).
5. Conclusions

This study analyzed the solutions of Gong [5] and Ma [13]

for determining the tie vectors of the seven co-located sites

of the CMONOC. The accuracies of the solved tie vectors by

Gong [5] and Ma [13] are approximately 5 mm, and the

discrepancies of the tie vectors between them are up to

0.6 mm, which does not fulfill the requirement of obtaining

precise local tie vector solutions. A mathematical model was

presented for obtaining precise tie vector solutions in this

study. The key points of our mathematical model are

summarized as follows: 1) The 3D control network

adjustment and the RP determination are processed in one

step; 2)Except for the constraints of equations (1) and (2), the

distances between different targets are fixed when the

telescope rotates, and normal vectors as well as the

distances between the rotation centers are also fixed in

different rotation circles; 3)The offsets between the primary

and secondary axes must be taken into account; 4)The

deflections of the vertical cannot be neglected. With the new

mathematical model, local tie vectors can be more precisely

determined and the covariance matrix more reasonably

estimated.
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