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a b s t r a c t

Bone is the most common site for metastasis in patients with solid tumours. Bisphosphonates are an
effective treatment for preventing skeletal related events and preserving quality of life in these patients.
Zoledronic acid (ZA) is the most potent osteoclast inhibitor and is licensed for the treatment of bone
metastases. Clodronate and pamidronate are also licensed for this indication.

In addition, ZA has been demonstrated to exhibit antitumour effect. Direct and indirect mechanisms
of anti-tumour effect have been postulated and at many times proven. Evidence exists that ZA
antitumour effect is mediated through inhibition of tumour cells proliferation, induction of apoptosis,
synergistic/additive to inhibitory effect of cytotoxic agents, inhibition of angiogenesis, decrease tumour
cells adhesion to bone, decrease tumour cells invasion and migration, disorganization of cell cytoskeleton
and activation of specific cellular antitumour immune response. There is also clinical evidence from
clinical trials that ZA improved long term survival outcome in cancer patients with and without bone
metastases. In this review we highlight the preclinical and clinical studies investigating the antitumour
effect of bisphosphonates with particular reference to ZA.

& 2014 Elsevier GmbH. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Bisphosphonates are proven to be effective in preventing/delaying
skeletal-related events in patients with bone metastases and poten-
tially preserving functional independence and quality of life. This effect
is mediated by the inhibitory effect of bisphosphonates on osteoclasts.

Recently, it has been reported that bisphosphonates may have
anti-tumour effect as well.

There are two classes of bisphosphonates that differ with regard
to structure and mechanism of action [1]. The first one includes
pyrophosphate-resembling bisphosphonates, such as clodronate and
etidronate, which are metabolically incorporated into nonhydrolyz-
able adenospine tri-phosphate (ATP) analogues that act as inhibitors
of ATP-dependent enzymes. The second class which is more recent
and potent includes nitrogen-containing bisphosphonates (N-BPs),
such as alendronate, pamidronate, risedronate, ibandronate and
zoledronic acid (ZA).

N-BPs inhibit a key enzyme, farnesyl diphosphonate (FPP)
synthase, in the biosynthetic mevalonate pathway. As a result, these
compounds interfere with a variety of cellular functions essential for
the bone-resorbing activity and survival of osteoclasts. Several

intermediates in this pathway (Fig. 1), including farnesyl pyropho-
sphate and geranylgeranyl pyrophosphate, are required for the post-
translational modification (i.e., prenylation) of guanosine
triphosphate-binding proteins such as Ras, Rho, and Rac. These
signalling molecules are involved in the regulation of cell prolifera-
tion, cell survival, and cytoskeletal organization [2,3].

ZA is reported to be more potent inhibitor of farnesyl dipho-
sphate synthase than the other bisphosphonates risedronate, iban-
dronate, incadronate, alendronate, and pamidronate [4].

Preclinical findings provide insight into possible mechanisms of
action of bisphosphonates that may explain their ability to inhibit
tumour cells. This report reviews the preclinical and clinical data
investigating the anti-tumour effects of ZA.

1.1. Preclinical rationale for potential anticancer effects of ZA

Preclinical data indicate that possible anti-cancer mechanisms
of ZA (and other bisphosphonates) may include (Fig. 2):

� Inhibition of tumour cell proliferation and induction of
apoptosis.

� Augmentation of inhibitory effect of cytotoxic agents (additive
and synergistic effect).

� Inhibition of angiogenesis.
� Decrease in tumour cell adhesion to bone.
� Decrease in tumour cells invasion and migration and disorga-

nization of cell cytoskeleton.
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� Activation of γδ T cells.
� Effects on tumour macrophage infiltration.

Preclinical studies investigating these possible mechanisms of
action are presented below and summarized in Table 1.

1.1.1. Inhibition of tumour cell proliferation and induction of
apoptosis

ZA inhibits a key enzyme of the mevalonate pathway, farnesyl
diphosphonate synthase.

Inhibition of this enzyme prohibits formation of isoprenoids,
such as farnesyl diphosphate (FPP) and geranylgeranyl dipho-
sphate (GGPP), which are required for regular prenylation of small
GTPbinding proteins, like Rho and Ras (Fig. 1) [5].

There is significant preclinical evidence to support the direct
antitumour effect of ZA. In a preclinical study, ZA strongly inhibited
in vitro proliferation, arrested cell cycle between S and G2/M
phases, and induced the apoptosis of human fibrosarcoma cells
[6]. The same group of investigators reported inhibition of growth

of osteosarcoma cells at the primary and secondary sites in a
murine model [7].

In another study, Zwolak et al. showed that ZA can be released
from bone cement (formed with increasing concentrations of ZA, up
to 1 mg/1.5 cm3 of bone cement) and the proliferation assay showed
ZA to have significant dose dependent cytotoxicity in cultures of
stromal giant cell tumour, multiple myeloma, and renal cell carci-
noma cells [8]. In a separate study, ZA showed direct antitumor
effects against four oral carcinoma cell lines at concentrations
ranging from 10 to 100 mM. ZA activated the potent pro-apoptotic
pathways caspase-3, -8 and -9 and induced cellular apoptosis and
increased the number of cells in apoptosis. Western blot analysis
showed that ZA increased cleaved anti-human poly(ADP-ribose)
polymerase expression and decreased Bcl-2 and Bid expression
[9]. In renal cancer cell lines (ACHN, A-498 and CAKI-2), a significant
reduction in viable cells was seen for all three cell lines following
treatment with ZA (at concentrations of 6.25–100 mM), compared
with untreated controls. A concomitant increase in the apoptosis
significant caspase-dependent M30 antigen was demonstrated.
This effect could be blocked by the pan-caspase inhibitor Z-VAD
[10]. Similar apoptotic effect of ZA (in concentrations of 5–40 mM)

Fig. 1. Flowchart showing the mevalonate pathway.
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was seen in dexamethasone resistant multiple myeloma (MM)
cells [11].

The preclinical evidence of antitumour effect is well documen-
ted for other solid tumour models as lung, breast and prostate
[12,13].

It seems that at least in the preclinical setting, there is substantial
evidence supporting the anti-proliferative effect of ZA mainly by
inducing apoptosis. This mechanism is amenable to be studied in
clinical setting. Although a 15min intravenous infusion of 4 mg ZA
achieves a maximum concentration 0.97 mM (Product Information:
RECLAST(R) IV injection, zoledronic acid IV injection. Novartis Pharma
Stein AG, Stein, Switzerland, 2008), some preclinical experiments in
mouse models with metastatic breast cancer to bone have demon-
strated in-vivo that alternative dosage regimens with ZA (daily and
weekly administration in divided doses) can cause decrease in tumour
burden in the bone (PMID: 17312309). Therefore daily or weekly
treatment regimens of ZA (in divided doses) may be amenable to
further investigation in clinical trials.

1.1.2. Augmentation of inhibitory effect of cytotoxic agents (additive
and synergistic effect)

Enhancing the cytotoxic effect of anti-cancer drugs on tumour
cells has always been an active area of research. In the clinical
setting, cancer patients on systemic anti-cancer therapy (chemo-
therapy or hormonal therapy) may receive ZA for reasons other
than its possible anti-tumour effect. It seems attractive to inves-
tigate potential additive/synergistic effect of ZA to chemotherapy
and/or hormonal therapy. The available literature confirms this
effect in pre-clinical studies.

In one study, hormone-refractory prostate cancer cell lines (PC3
and DU145) were treated with increasing concentrations of ZA in
the absence or presence of docetaxel. After 72 h incubation, ZA at
concentration of 25 μM reduced the viable cell number to 68% and

98% for PC3 and DU145 cells respectively. Docetaxel, on the other
hand, at a concentration of 0.1 ng/ml, had no effect on the viability.
However, a combination of ZA and docetaxel reduced the cell number
to 60% and 81% respectively. ZA in the concentration range 12.0–
50 μM enhanced the antitumoral effects of docetaxel (0.01–1 ng/ml)
in an additive and/or synergistic manner for both cell lines [14].

These results were repeated by another group of investigators
using the same agents and cell lines [15]. Additive/synergistic
inhibitory effect of ZA is also documented with other chemother-
apy agents as paclitaxel, docetaxel, doxorubicin, etoposide, 5-fluoro-
uracil, gemcitabine, and cisplatin [6,16,17].

The additive and/or synergistic effect of ZA may be dependent
on the sequence of treatment. Studies suggest that Sequential
treatment with chemotherapy followed by ZA elicit substantial
antitumor effects compared to the reverse sequence. Female MF1
nude mice were inoculated human breast cancer MDA-MB-436
cells. On day 7, the mice were injected weekly for 6 weeks with
saline, doxorubicin or ZA alone, combination of both, ZA followed
24 h later by doxorubicin, or doxorubicin followed 24 h later by ZA.
Treatment with doxorubicin followed by ZA almost completely
abolished tumour growth. Tumours from mice in this group had
significantly more caspase-3-positive cells than tumours from
mice treated with saline, with ZA alone or with ZA followed by
doxorubicin. This increase in the number of caspase-3-positive
cells was mirrored by a decrease in the number of tumour cells
positive for the proliferation marker Ki-67. The authors concluded
that sequential treatment with doxorubicin followed by ZA elicited
substantial antitumor effect [18].

Synergism is not only limited to chemotherapy. There is evi-
dence that ZA can augment inhibitory effect of hormonal therapy.
Aromatase-expressing breast cancer cells were treated with letro-
zole (100 nM) and ZA(10 μM) either simultaneously or in sequence,
each for 24 h. Letrozole and ZA induce levels of apoptosis in breast
cancer cells in vitro that are significantly greater compared with

Fig. 2. Possible mechanisms of anti-tumour effect of ZA.
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treatment with each drug alone. However, this potentially syner-
gistic relationship was drug-sequence dependent, occurring only
when cells were treated with letrozole, followed by ZA [19].

These studies suggest the additive and synergistic effect of
ZA with other anti-cancer agents. The exact mechanisms remain
unknown but down-regulation of anti-apoptotic genes has been
suggested [15]. Preclinical data showed increased anti-tumour effi-
cacy if ZA is sequenced after chemotherapy compared to the opposite
sequence [20]. Based on this observation, most clinical trials inves-
tigating the role of ZA in the neo-adjuvant setting including
NEOZOTAC [21], ANZAC [22] and NeoAZURE [23] administered ZA
after chemotherapy. The adjuvant phase III AZURE study is also an
example where investigators used ZA after chemotherapy [24].

The sequence of administration may need to be addressed in
future clinical trials. One clinical investigational approach will be

to randomize patients in the neoadjuvant or metastatic setting to
different sequences of ZA and specific anti-cancer therapy. Pre-
treatment and post-treatment biopsies to study molecular changes
may help elucidate mechanisms of this additive/synergistic effect.

1.1.3. Inhibition of angiogenesis
Angiogenesis is a prerequisite for the progressive growth of solid

tumours and their metastasis [25]. In malignant tumours, the devel-
opment of new vessels is directed and regulated by a complex
network of endogenous pro-angiogenic factors, e.g. vascular endothe-
lial growth factor (VEGF) and basic fibroblast growth factor (bFGF)
and by factors secreted by the tumour itself. Angiogenesis enables the
tumour to metastasize to various sites. Thus, inhibition of angiogen-
esis is a promising strategy in the treatment of malignant tumours.

Table 1
Summary of pre-clinical and early clinical [52,56,57] studies and publications describing various mechanisms of anti-tumour activity of nitrogen-containing
bisphosphonates.

Reference
number

Bisphosphosphonate(s) used Concentrations/
doses studied

Cell lines Results

Proliferation inhibition and apoptosis induction
[6] ZA Up to 10 mM Fibrosarcoma Inhibition, cell cycle arrest
[7] ZA 80 mg/kg Osteosarcoma Inhibition of growth
[8] ZA 1.55–4.48 mg/ml Giant cell tumour, myeloma,

renal cell carcinoma
Dose dependent cytotoxicity

[9] ZA 10–100 mM Oral carcinoma: 4 cell lines Induction of apoptosis (concentration dependent)
[10] ZA 6.25–100 mM Renal cell carcinoma: 3 cell lines Induction of apoptosis
[11] ZA Up to 20 mM Multiple myeloma Induction of apoptosis
[13] ZA Up to 10 mM Prostate and breast cancer Induction of apoptosis (concentration dependent)
[12] ZA 100 mM Non-small cell lung cancer

(NSCLC)
Cell cycle arrest, apoptosis induction

Additive and synergistic effect with cytotoxic agents
[14,15] ZA 12.5–50 mM Hormone resistant prostate

cancer
Additive and synergistic effect with docetaxel

5–30 mM
[16] ZA 10–100 mM Breast cancer Additive effect with paclitaxel
[17] ZA 100 mM NSCLC Additive effect with cisplatin
[6] ZA Up to 10 mM Fibrosarcoma Additive effect with various chemotherapy agents
[18] ZA 100 mg/kg Breast cancer Additive effect with doxorubicin (when used with or

after doxorubicin)
[19] ZA Up to 25 mM Breast cancer Synergistic effect with letrozole

Inhibition of angiogenesis
[12] ZA 10–100 mM Non-small cell lung cancer Reduction of VEGF secretion
[28] ZA Up to 200 mM Endothelial progenitor cells Reduction of viable cells

Decrease in tumour cell adhesion to bone
[37] ZA 100–1000 mM Multiple myeloma Decrease in bone marrow stromal cells, decreased

expression of adhesion molecules
[39] Ibandronate 1000 nM Breast and prostate cancer Inhibition of tumour cell binding to bone matrices
[40] Clodronate, pamidronate, olpedronate,

etidronate and ibandronate
1–100 mM

[38] Ibandronate 5 picoM
Pamidronate 0.1 mM
Clodronate 100 mM

Inhibition of tumour cell invasion and migration
[41,43] Reviews Breast and prostate cancer Inhibition of visceral metastasis
[42] ZA 1 mM
[44] ZA 0.5–5 mmg/

mouse
[45] Alendronate 30 mM Ovarian cancer Inhibition of cell migration

Activation of γδ T cells
[51] Alendronate, ibandronate and pamidronate 0.9–4 mM Multiple myeloma Reduced plasma cell survival due to activation of γδ T

cells
[52] ZA 4 mg every 3 weeks

(4 doses)
Metastatic bone disease Maturation of γδ T cells (in vivo)

[53] ZA 1 mM (with IL-2) Multiple myeloma Increase in number of γδ T cells
[55] ZA 1 mM (with IL-2) Small cell lung cancer and

fibrosarcoma
Marked increase in sensitivity to lysis by γδ T cells

[54] ZA 3 mM Pancreatic cancer Increased cancer cell cytotoxicity by γδ T cells
[56] ZA Unknown Prostate cancer Activation and increase in number of γδ T cells
[57] ZA 4 mg (1 dose) Breast cancer Activation of γδ T cells

ZA¼zoledronic acid; mM¼micromolar; mg¼milligrams; picoM¼picomolar; γδ¼gamma delta.
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There is evidence that ZA inhibits differentiation of cultured
human peripheral blood mononuclear cells into endothelial
progenitor cells [26]. ZA inhibits proliferation of human endothelial
cells in vitro and reduces vessel sprouting in cultured aortic
rings and chicken egg chorioallantoic membrane assay [27]. This
study also provided the first in-vivo evidence that ZA affects
angiogenesis occurring in non-mineralized tissue. However, ZA dose
of 100 μg/kg was required to achieve any significant antiangiogenic
effect.

In one study, ZA at concentration of 10–100 μm induced dose
dependent reduction both of mRNA and protein expression of VEGF
in A549 NSCLC cells associated with parallel decrease in VEGF
secretion in the culture medium after 2 days of treatment [12].

In another study, the viability of human umbilicord vein
endothelial cells (HUVEC) and endothelial progenitor cells (EPC)
was significantly reduced after incubation with bisphosphonates
compared with the non-treated control groups. The nitrogen-
containing bisphosphonates pamidronate and ZA had the greatest
impact on the cells, whereas the inhibitory effect of clodronate and
ibandronate on these cells was less distinct [28].

An in vivo studies show that ZA (20 μg/mouse) for 3 times a
week for3 consecutive weeks inhibited angiogenesis in Matrigel
plugs and inhibited the growth and neo-angiogenesis of CG5
xenografts in athymic nude mice [29]. Another in vivo study
documented that capillary densities were significantly lower in
mice pre-treated with low dose (30 μg/kg) and high dose ZA
(100 μg/k) than in control mice in response to surgically induced
hypoxia. Ischaemic tissue from ZA pre-treated mice also showed
impaired mobilization of endothelial progenitor-like cells and
lower levels of the active form of MMP-9 and VEGF compared to
ischaemic tissue from control mice [30].

Another in-vivo supporting evidence that ZA uptake occurs
in non-mineralized tissue is provided by Stresing et al. ZA inhibi-
ted the revascularization of the prostate gland in testosterone-
stimulated castrated rats. It also induced intracellular accumulation
of isopentenyl pyrophosphate (IPP) in endothelial cells by blocking
the activity of the IPP-consuming enzyme FPPS. Thus, these results
indicated that N-BPs inhibited angiogenesis in a FPPS-dependent
manner [31].

The more potent antiangiogenic effect of nitrogen-containing
bisphosphonates compared to other bisphosphopnates in precli-
nical studies mirrors their superior efficacy seen in clinical setting.

Recent in-vivo evidence showed that bone marrow endothelial
progenitor cells (BM EPCs) are affected after ZA administration. On
flow cytometry, BM EPCs increased in response to acute parathyr-
oid hormone therapy but not when treatment was combined with
ZA. This observation provides indirect suggestion to uptake of ZA
by bone endothelial cells [32].

Accumulating reports have shown that cancer patients who
have received nitrogen-containing bisphosphonates such as ZA
occasionally manifest bisphosphonate-related osteonecrosis of the
jaw (BRONJ) following dental treatments including tooth extrac-
tion. Little is known about the pathogenesis of BRONJ to date. The
results of Kobayashi Y and his colleagues0 work showed that ZA
alters oral bacterial behaviours and delays wound healing of the
tooth extraction socket by inhibiting osteogenesis and angiogen-
esis. They conclude that these actions of ZA may be relevant to the
pathogenesis of ONJ [33]. This conclusion is supported by clinical
observation of higher incidence of ONJ in cancer patients treated
with ZA and anti-angiogenic agents [34,35].

The available data not only demonstrate the importance of
anti-angiogenic properties of ZA but also elucidates the potential
mechanism and molecular targets of this property.

Most of preclinical supporting evidence for the anti-angiogenic
properties of ZA comes from in vitro models and therefore further
evaluation in more animal models and humans is needed. One

challenge in clinical studies will be the need for higher concentra-
tions which seem to be needed to achieve anti-angiogenesis.

1.1.4. Decrease in tumour cell adhesion to bone
Recent studies have shown the importance of the microenviron-

ment in the pathophysiology of metastatic bone disease. Adhesive
interactions of tumour cells play an important role in up-regulating
the production of cytokines and growth factors by bone marrow
stromal cells, which consequently enhance tumour growth, bone
destruction, and tumour survival [36]. Multiple myeloma (MM)
tumour cells naturally home at bone marrow (BM) and provide
a model for studying the effect of bisphosphonates on behaviour of
tumour cells in this environment. Adhesion molecules facilitate
binding of MM cells to the BM stroma. There is rising laboratory
evidence that ZA decrease tumour cells adhesion to bone micro-
environment.

In one study, BM stromal cells, obtained from BM mononu-
cleated cells of eight patients with MM, were treated with increas-
ing concentrations of ZA, ranging from 10�4 to 10�5 M. After 3 days
of exposure ZA induced decrease in proliferation and increase in
apoptosis. Among the adhesion molecules, CD106, CD54, CD49d,
and CD40, which were strongly expressed at baseline, showed
a statistically significant reduction compared with controls after
exposure to higher concentrations of ZA [37].

Bisphosphonate treatment in particular ZA and ibandronate
inhibit the binding of human breast and prostate cancer cells to
mineralized and unmineralized matrices [38–40].

Among possible anti-tumour mechanisms of ZA, the above
mechanism seems to be the one least studied in pre-clinical setting.
If this mechanism is confirmed in clinical setting, it may demon-
strate an impact on development of bone metastases rather than
direct anti-tumour effect.

1.1.5. Decrease in tumour cell invasion and migration, and
disorganization of cell cytoskeleton

Tumour cell invasion is intrinsically linked to localized cell
surface proteolytic activity driven by matrix metalloproteinases
(MMPs), which facilitates cell detachment from matrix proteins,
thereby promoting cell migration. Nitrogen-containing bisphospho-
nates (NBPs) inhibit breast and prostate cancer cell invasion [41–45].
High concentrations of bisphosphonates inhibit the zinc-dependent
proteolytic activity of MMPs, whereas submicromolar concentra-
tions are sufficient to inhibit tumour cell invasion [41]. Indeed,
alendronate and ZA inhibit ovarian and breast cancer cell migration,
by attenuating the geranylgeranylation of RhoA [42,44,45,37–39],
a key player in cell adhesion dynamics that drive cell motility. ZA
also inhibits the chemokine CXCL12-induced breast cancer cell
migration by decreasing the cell surface expression of CXCR4, the
receptor for CXCL-12 [42,37]. Therefore, the anti-invasive properties
of NBPs may be the result of the inhibition of distinct molecular
pathways that mediate cancer cell invasion in a coordinated fashion.
These compounds may eventually also inhibit MMP activity if high
local bisphosphonate concentrations are achieved in the tumour
microenvironment [46].

Denoyelle et al. studied the effect of ZA on the invasiveness
and morphology of MDA-MB-231 breast cancer cells. Treatment by
ZA for 18 h induced significant inhibition of cell invasion starting
at concentration of 1 μM with higher concentrations (10–100 μM)
inducing more inhibition. One micromolar concentration of ZA was
chosen to study the effect on cell morphology. Untreated cells were
flat and well spread. In contrast ZA induced dramatic morphological
changes characterized by a cell rounding and a disorganization of
actin cytoskeleton accompanied by a loss of stress fibres formation
[42]. The investigators found that the observed inhibition of cell
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invasion by ZA was associated with decreased translocation of RhoA
from cytoplasm to the cell membrane.

Later work by different group of investigators demonstrated
that ZA inhibits HUVEC adhesion, survival, migration and actin
stress fibre formation by interfering with protein prenylation
and has identified ERK1/2, JNK, Rock (RhoA target mediating actin
fibre formation), FAK and PKB as kinases affected by ZA in a
prenylation-dependent manner [47].

It remains to be seen if these anti-invasion and anti-migration
effects of ZA combined with other anti-tumour effects can be
translated into managing early stage breast cancer to prevent
relapse and metastases.

1.1.6. Activation of γδ T cells
T cells bearing the T-cell receptor (TCR)- γδ represent a minor

subset of human peripheral T cells (1–10%). The physiologic function
of γδ T cells remains elusive, though some evidence suggests that γδ T
cells play a role in the “first line of defence” against a broad spectrum
of invasive microorganisms such as mycobacteria. In addition, certain
hematopoietic tumour cells (e.g., Burkitt lymphoma cell line Daudi or
myeloma cell line RPMI 8226) are specifically recognized and lysed
by these T cells in vitro [48,49]. The recognition of ubiquitous
nonpeptide antigens by γδ T cells suggests a surveillance function
of these T cells for infected or transformed cells [50].

One of the early studies examining the stimulatory capacity of
bisphosphonates to γδ T cells was carried out by Kunzmann et al.
In their work alendronate, ibandronate, and pamidronate induced
significant expansion of γδ T cells (Vγ9Vδ2 subset) in peripheral
blood mononuclear cell cultures of healthy donors. Pamidronate-
activated γδ T cells produced cytokines (i.e., interferon [IFN]-γ) and
exhibited specific cytotoxicity against lymphoma (Daudi) and
myeloma cell lines (RPMI 8226, U266). Pamidronate-treated BM
cultures of 24 patients with MM showed significantly reduced
plasma cell survival compared with untreated cultures [51].

In another study examining the stimulatory capacity of ZA to γδ
T cells, nine patients with metastatic bone disease from breast and
prostate cancer were injected with ZA. Peripheral blood mono-
nuclear cells were collected before treatment, and 1 month and
3 months after the first administration. The objective of this study
was to evaluate the in vivo effect of ZA on subsets of Vγ9Vδ2 cells.
The final conclusion was that in vivo treatment with ZA induces
Vγ9Vδ2 cells to mature toward an IFNγ-producing effector pheno-
type, which may induce more effective antitumor responses [52].

Significant numbers of reports followed and confirmed the
stimulatory effect of ZA on γδ T cells. ZA induced proliferation of γδ
T cells from normal and MM patients. The cells produced IFN-γ and
exerted direct cell-to-cell antimyeloma activity. ZA plus IL-2
increased the absolute number of γδ T cells 298-768 fold after 14
days incubation [53].

Several studies showed that ZA not only induced marked
increase in sensitivity of tumour cells to lysis by γδ T cells [54,
55] but also increased the number of γδ T cell when IL-2 was co-
administered [56]. The activating effect of ZA on γδ T cells was also
observed in vivo in disease-free breast cancer patients after a
single-dose of ZA [57]. This observation may serve as a rationale
for clinical evaluation of ZA in the adjuvant setting. However,
recent evidence suggests that repeated treatment with ZA in vivo
reduces Vγ2Vδ2 T cell numbers and their responsiveness to
stimulation [58]. This may explain the inconsistent results seen
in large clinical trials investigating the role of ZA in adjuvant
setting (as discussed below).

1.1.7. Effects on tumour macrophage infiltration
Tumour cells interact with the surrounding microenvironment

to grow and develop. Macrophages are a major component of this

microenvironment, and are of particular interest as potential
therapeutic targets due to their central role in tumour progression.

It is accepted that tumour associated macrophages have an
important role in several stages of oncogenesis and tumour progres-
sion including tumour cell growth, angiogenesis, migration, inva-
sion, and metastasis [59]. Higher level of macrophage infiltration is
associated with poor prognosis in several tumour types [60]. There
is evidence that tumour macrophages play a role in regulating
angiogenesis and thus may promote tumour cells proliferation [61].

There is in vivo and in vitro evidence that tumour macrophages
uptake ZA. Exposure of J774 macrophages to 5 μM ZOL for 24 h
caused increased uptake of ZA. Higher doses and longer exposure
induced apoptotic cell death [62].

There is pre-clinical evidence that ZA is more potent macrophage
inhibitor than other bisphosphonates. J774A.1 cells were cultured in
a standard culture medium for 2-days. Bisphosphonates (alendro-
nate, pamidronate, etidronate, risedronate and ZA) were added
in the medium at concentration of 10�6–10�4 M during 3 days.
Etidronate did not cause significant apoptosis or necrosis, at any
concentration. Alendronate and pamidronate caused apoptosis and
death only at very high concentration [10�4 M]. On the contrary,
apoptotic and necrotic cells were evidenced with risedronate or ZA
at lower concentrations [63].

Enhanced expression of Matrix Metalloprotinase-9 (MMP-9) in
macrophages is induced by interactionwith tumour cells. This plays a
major role in tumour cells invasion and metastasis. In vivo, treatment
with amino-biphosphonates was shown to impair tumour growth,
decrease MMP-9 expression and decrease the number of macro-
phages in tumour stroma [64].

ZA has been found to reverse the polarity of peritoneal and
tumour-associated macrophages from M2 to M1. This is a very
important finding, as M1 macrophages possess tumoricidal activ-
ity, supporting that TAMS are a potential immune target of ZOL
therapy [65].

The macrophage mediated anti-tumour effect of amino-biphos-
phonates is well established in pre-clinical studies. However, there
is lack of clinical studies confirming this effect in cancer patients.

1.2. Early clinical (phase I/II) data regarding anticancer effects of
zoledronic acid

1.2.1. Direct cytotoxic effect of ZA
As discussed above, preclinical evidence suggests that bisphos-

phonates (with special reference to nitrogen containing bisphos-
phonates including ZA) possess inherent anti-tumour activity. These
data suggest that adding ZA to other systemic cancer therapies may
provide additional antitumor and anti-metastatic activity.

In the clinical setting, the results of large clinical trials inves-
tigating bisphosphonates less potent than ZA (clodronate and
pamidronate) were inconsistent [66,67]. Because of these potential
antitumor effects, ZA which is more potent than clodronate and
pamidronate has been investigated in early clinical studies in
cancer patients with and without metastases.

In one study, 40 patients with recurrent or metastatic advanced
cancer, without bone metastases, were randomized to receive ZA
or no treatment. Patients were followed up until bone metastases
were established. At 1 year, 60% of patients in ZA arm compared to
10% in the control group were bone metastases free (po0.0005).
At 18 months, the percentages were 20% and 5% (p¼0.0002) [68].

In a phase II trial, 120 women with clinical stage II–III breast
cancer planned for four cycles of neoadjuvant chemotherapy were
randomised to receive 4 mg ZA intravenously every 3 weeks or no
ZA for 1 year. The primary endpoint was the number of patients
with detectable disseminated tumour cells (DTCs) at 3 months.
At baseline, DTCs were detected in 43% of patients in the ZA group
and 48% of patients in the control group. At 3 months, 30% patients
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receiving ZA versus 47% of patients who did not receive ZA had
detectable DTCs (p¼0.054) [69]. The antitumour effect of ZA on
bone marrow DTC in women with early breast cancer was also
shown by other investigators [70,71].

1.2.2. Inhibition of angiogenesis
In an Italian study, 42 breast cancer patients with bone metastases

were treated with a single infusion of 4 mg ZA before anticancer
chemotherapy. The patients were prospectively evaluated for circulat-
ing levels of VEGF just before and at 1, 2, 7, and 21 days after ZA
infusion. Serum VEGF median levels were significantly decreased at
each time point after treatment, but the major reductionwas recorded
21 days after the infusion. Twenty-five patients (59.5%) experienced a
reduction of at least 25% in the VEGF circulating levels. The analysis of
survival showed that patients with a reduction in VEGF circulating
levels had longer time to first skeletal-related event (p¼0.0002), time
to bone progression disease (p¼0.0024), and time to performance
status worse (p¼0.0352) than those without the VEGF reduction. No
statistically significant differences were recorded in terms of overall
survival and time to visceral progression [72]. This study confirms that
ZA has an in vivo antiangiogenic property and that VEGFmodifications
may represent a surrogate marker to outcome.

These results were repeated by the same group in another 24
patients. Moreover, there was significant correlation between
median VEGF and the bone resorption marker betaCTX [73].

Interestingly, in both studies [72,73] serum VEGF levels showed
sustained suppression after a single dose of ZA. This is in parallel
to the finding that repeated treatment with ZA in vivo reduces
Vγ2Vδ2 T cell numbers and their responsiveness to stimulation
[58]. These findings raise the question of the number of ZA doses
that should be considered optimal for future clinical trials.

Reduction in circulating VEGF appeared to be long lasting and
persisted as long as patients were receiving ZA [74]. In a study of 60
breast cancer patients with bone metastases, metronomic ZA was
more effective than the conventional regimen and generated sus-
tained reductions in circulating VEGF and bone resorption marker
levels, as well as stabilization of serum CA 15-3 levels [75,61]. It is
interesting that metronomic dose of ZA (1 mg weekly) also reduced
serum level of VEGF in cancer patients in other studies [74,75]. Other
early clinical studies showed different results. In a study with 18
breast cancer patients with bone metastases, serum VEGF level
showed a statistically significant decrease 48 h after ZA infusion but
rose above the basal level at 7 days [76]. In another study of 30
patients with metastatic bone disease from breast and lung cancer
ZA acid did not exert significant reduction of VEGF and bFGF
circulating levels 7 days after treatment [77]. These studies further
bring to question the optimal dose and frequency of ZA that should
be used in future clinical trials.

1.2.3. Activation of γδ T cells
A phase I study showed that administration of ZA (with IL-2) to

patients with metastatic cancer promoted effector maturation of
γδ T cells. Three patients who showed sustained robust peripheral
γδ T cell populations had decrease in their tumour marker levels,
with one patient achieving partial response and two achieving
stable disease. In contrast, seven other patients who failed to
sustain peripheral γδ T cells showed clinical deterioration [78].

In a Japanese study, peripheral blood mononuclear cells from
15 patients with advanced non-small cell lung cancer (NSCLC)
were stimulated with ZA (5 μM) and IL-2 (1000 IU/ml) for 14 days.
Many of these cells expanded to γδ T cells. Administration of these
ex vivo expanded γδ T cells to patients with recurrent or advanced
lung cancer was well tolerated. The number of peripheral γδ T cells
gradually increased. All patients remained alive during the study
period with a median overall survival of 589 (range 202–1505)

days, and median progression free survival of 126 (range 34–285)
days [79]. According to the Response Evaluation Criteria in Solid
Tumours (RECIST), there were no objective responses. Six patients
had stable disease, whereas the remaining six evaluable patients
experienced progressive disease 4 weeks after the sixth transfer.

Although all of these patients had Eastern Cooperative Group
(ECOG) performance status 0 or 1 with minimal co-morbidities,
such a long period of survival is very encouraging for recurrent or
advanced lung cancer. The reported median survival in this study
is about 1.5 times longer than that reported in large phase III lung
cancer trial.

Results from other studies were less promising. For example, in
a study of 12 patients with renal cell carcinoma, ZA induced only
modest increase in γδ T cell frequency but not to the magnitude
anticipated from preclinical models [80].

Recently, investigators have shed some light on possible reason
for the lack objective responses of solid tumours to γδ T cells
expansion therapy. Using similar expansion technique, Kunzmann
et al. treated 21 adults with advanced malignancies (renal cell
carcinoma [RCC], malignant melanoma, and acute myeloid leu-
kaemia). No objective responses were observed in both cohorts of
solid tumours (RCC and malignant melanoma), whereas two
patients with acute myeloid leukaemia (25%) achieved objective
tumour responses. Pharmacodynamic analyses showed significant
in vivo activation (interferon-γ production) and expansion of γδ
T cells in all evaluable patients. High pretreatment serum VEGF
levels and an unexpected increase in VEGF induced ZA plus low-
dose interleukin-2 were correlated with the lack of a clinical
response. This study indicates that immunotherapy-induced VEGF
can limit clinical innate tumour immune responses, especially for
angiogenesis-dependent solid tumours. Adoptive immunotherapy
in this context is still at its infancy and further early clinical studies
may elucidate its potential role.

1.3. Phase III trials of zoledronic acid in early breast cancer

Based on early clinical data suggesting its anti-tumour effect,
ZA has been studied in multiple large randomized clinical trials in
early breast cancer.

In an Austrian study (ABCSG-12) [81], 1803 endocrine respon-
sive early breast cancer patients on adjuvant goserelin were
randomly assigned to receive, tamoxifen or anastrozole, with or
without ZA. The dose of ZA was 4 mg given intravenously every
6 months for 3 years. There was a 36% decrease in the risk of
disease progression (p¼0.01) in the ZA arms. This corresponded to
a 5 year disease free survival of 94% versus 90.8%, favouring ZA.
There were also fewer deaths in the ZA arms (16 versus 26, hazard
ratio 0.60, p¼0.11). Interestingly, patients on the ZA arms had
fewer events in all examined categories including loco regional
recurrence (10 versus 20), distant recurrence (29 versus 41), and
contra lateral breast cancer (6 versus 10) as compared to treatment
without ZA.

An integrated analysis [82] of two large randomized controlled
trials (Z-FAST and Zo-FAST) treating a total of 1667 patients with
early breast cancer was performed. The patients on these studies
were randomized to receive adjuvant hormonal therapy (letro-
zole), with either upfront ZA or delayed ZA (at time of decreased
bone mineral density). The analysis was aimed primarily to assess
the protective effect of ZA in prevention of bone density loss. One
of the secondary objectives of the analysis was time to disease
recurrence. The results showed that patients treated with upfront
ZA had significantly less recurrences at 12 months as compared to
the patients who received delayed ZA (0.84% versus 1.9%, p¼0.04).
An updated analysis of the ZO-FAST study at 36 months showed
continued benefit of upfront ZA in prolonging disease free survival
(41% relative risk reduction, p¼0.04) as compared to delayed ZA
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[83]. A more recent analysis at 60 months showed continued
benefit of prolonged disease free survival (HR0.66, p¼0.0375) in
the upfront ZA group [84].

A third study (AZURE) [24] randomized 3360 patients with
early breast cancer to receive standard adjuvant therapy with or
without ZA. ZA was administered immediately after each cycle of
adjuvant chemotherapy in line with pre-clinical data supporting
this sequence as discussed above and was continued for a total of
5 years.

At a median follow up of 59 months, the investigators found no
significant difference between the two arms in the primary end-
point which was disease free survival (77% in each group, p¼0.79).
Prospective subgroup analyses of the study showed that ZA
significantly increased disease free survival (HR¼0.76, po0.05)
in women who were at least 5 years past menopause at study
entry (n¼1041). ZA also improved overall survival (HR¼0.71,
p¼0.017, n¼1101) in this patient population along with women
of unknown postmenopausal status but age greater than 60 years
[85]. Of note, about 45.8% of patients in this study were preme-
nopausal, 95% of whom received chemotherapy, and only 0.2% of
these patients received goserelin. This is in contrast to the pre-
menopausal patient cohort in the ABCSG-12 trial, who all received
goserelin.

Apparently the results of the AZURE study are in contradiction
to the ABCSG-12 results. However, some authorities have argued
that in both studies, disease free and overall survival was seen in
patients who were either rendered menopausal (with goserelin in
ABCSG-12 trial), or who achieved menopause naturally (as seen
in the subset analyses of the AZURE trial), suggesting a possible
relationship of a menopausal or low oestrogen state with the
clinical benefit achieved from addition of ZA [86].

205 Patients in the AZURE study received neo-adjuvant treat-
ment including ZA. A retrospective analysis of pathologic response
in these patients [23] showed that the mean residual tumour size
in the ZA plus chemotherapy arm was significantly less (15.5 mm)
as compared to 27.4 mm in the chemotherapy only arm. The
pathologic complete response rate was 11.7% in the ZA arm versus

6.9% in the chemotherapy only arm, but this was not statistically
significant (p¼0.146).

Although the ABCSG-12 and AZURE studies have provided
provocative and interesting conclusions, the partly contradicting
results of these trials has delayed the incorporation of ZA in the
adjuvant treatment of women with early breast cancer.

A prospective study in postmenopausal patients is required to
validate and confirm the results of the ABCSG-12 and AZURE trials.
This will also be an opportunity to study specific biomarkers that
likely explain anti-tumour mechanism of ZA. As discussed above,
anti-angiogenesis and anti-proliferative properties of ZA seem to
be the most relevant mechanisms from early preclinical and small
clinical studies.

Several other large randomized controlled trials are evaluating
the anti-tumour efficacy of ZA in the adjuvant setting (Table 2).
Most of these studies have completed accrual and are awaiting
maturation of the data.

1.4. Trials showing lack of benefit from zoledronic acid

Although the above mentioned trials have shown some clinical
benefit from the use of ZA in solid tumours, results from other trials
do not show clear benefit from use of ZA. In a recent Italian study
[87], patients with controlled stage IIIA/B NSCLC were randomized
to receive ZA or no treatment. Progression free survival (PFS), which
was the primary endpoint of this trial, was 9 months for ZA versus
11.3 months for control (statistically non-significant difference). Rate
of development of bone metastases was also similar in both arms
(6.6% in ZA arm and 9% in control arm, no significant difference).

In an open label randomized phase II study, 119 female patients
with resectable stage II/III breast cancer [88], patients were
randomised to either receive ZA or no ZA starting with first cycle
of chemotherapy. At 61.9 months of follow up, there was no
difference between the two arms in terms of disease free survival
(secondary end-point) or overall survival (tertiary end-point). A
subset analysis did show benefit of ZA in improving disease free
survival (Hazard ratio 0.361, 95% confidence interval 0.148–0.880)

Table 2
A summary of ongoing large clinical trials evaluating the use of Zoledronic acid in different cancers.

Study
name

Patient population Study design and treatment Primary
endpoints

References

NATAN 654 BC patients Standard therapy þ/� EFS at 5 y ClinicaTrials.gov No.
NCT00512993

ZA (4 mg IV q1mo; q3mo; q6mo) German Breast Group
SUCCESS 3754 BC patients

(stages I, II, and IIIA)
FEC/DOC þ/� GEM, then endocrine therapy plus ZA
for 2 y or 5 y

DFS at 5 y The SUCCESS Study Group 2009
www.Success-studie.de

SWOG
0307

5400 BC patients
(stages I, II, and IIIA)

ZA (4 mg q1mo; q3mo); CLO (1600 mg/d);
IBN (50 mg/d)

DFS and OS up to
10 y

ClinicTrials.gov No. NCT00127205
Southwest Oncology Group

ZEUS 1498 PC patients
(high-risk, early)

Standard therapy þ/� ZA (4 mg IV q3mo) EFS at 4 y Register no. 66626762 〈http://
www.controlled-trials.com/〉
European Association of Urology

RADAR 1071 PC (stage T2b-4) ADT for 6 mo or 18 mo þ/� ZA (4 mg IV q3mo) PSA-RFS at 18 mo ClinicalTrials.gov No.
NCT00193856
Trans-Tasman Radiation Oncology
Group

STAMPEDE 3300 PC patients
(high risk)

ADT and (1) no additional therapy; (2) DOC (q3wk); (3) celecoxib (BID);
(4) ZA (q3wk; q4wk); (5) DOCþZOL; (6) celecoxibþZA

FFS and OS
(multiple phases)

ClinicalTrials.gov Identifier,
NCT00268476
Medical Research Council

Study 2419 446 NSCLC patients
(stage IIIA or IIIB)

ZA (4 mg IV q1mo) TTP ClinicalTrials.gov Identifier
NCT00172042
Novartis 2009

CALGB
90202

680 pts with met PrCa
on ADT

ZA 4 mg IV every month versus placebo PFS and OS ClinicalTrials.gov Identifier:
NCT00079001

BC indicates breast cancer; IBN, ibandronate; IV, intravenous; q4wk, every 4 weeks; þ/� , with or without; DFS, disease-free survival; FEC, combined 5-flurouracil,
epirubicin, and cyclophosphamide; DOC, docetaxel; ZA, zoledronic acid; EFS, event-free survival; q1mo, monthly; q3mo, every 3 months; GEM, gemcitabine; OS, overall
survival; CLO, clodronate; PC, prostate cancer; ADT, androgen-deprivation therapy; PSA-RFS, prostate-specific antigen recurrence-free survival; BID, twice daily; FFS, failure
free survival; NSCLC, non-small cell lung cancer; TTP, time to progression.
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and overall survival (Hazard ratio 0.375, 95% confidence interval
0.143–0.985) in patients whose tumours were oestrogen receptor
negative as opposed to oestrogen receptor positive, however the
study was not powered for this comparison. The authors suggest
that in oestrogen receptor negative breast cancer, ZA may have a
direct anti-tumour effect which may not be dependent on a low
oestrogen environment. The sample size in these two clinical
studies was too small to address the question of effect of ZA on
disease relapse in early cancer setting.

1.5. Other bone modifying agents in oncology

In addition to ZA and other bisphosphonates, there is a host of
other bone modifying agents in different phases of development.
These include (but are not limited to) Denosumab (a RANK-ligand
antibody), 223RaCl2 or Alpharadin (an alpha particle emitting agent),
and antibodies to sclerostin (which is an inhibitor of osteoblastogen-
esis) [89]. The detailed mechanisms of action of these agents and
whether they have anti-tumour effects are beyond the scope of this
review.

2. Conclusion

ZA has become an important component in treatment of cancer
patients. Apart from its role in bone preservation and reduction of
skeletal related events, there is preclinical and also clinical evidence
suggesting a direct anti-cancer effect of ZA. Several mechanisms of
action for this anti-tumour effect have been studied. The most
profound clinical evidence of this effect comes from a number of
large adjuvant breast cancer studies, although the results have not
been consistently in favour of antitumour effect of ZA. Other adjuvant
studies incorporating ZA are currently underway and those results
are awaited.

Conflict of interest statement

The authors declare that there are no conflicts of interest.

References

[1] Hosfield DJ, Zhang Y, Dougan DR, Broun A, Tari LW, Swanson RV, et al.
Structural basis for bisphosphonate-mediated inhibition of isoprenoid bio-
synthesis. J Biol Chem 2004;279(10):8526–9.

[2] Rogers MJ. From molds and macrophages to mevalonate: a decade of progress
in understanding the molecular mode of action of bisphosphonates. Calcif
Tissue Int 2004;75(6):451–61.

[3] Reinholz GG, Getz B, Sanders ES, Karpeisky MY, Padyukova N, Mikhailov SN,
et al. Distinct mechanisms of bisphosphonate action between osteoblasts and
breast cancer cells: identity of a potent new bisphosphonate analogue. Breast
Cancer Res Treat 2002;71(3):257–68.

[4] Dunford JE, Thompson K, Coxon FP, Luckman SP, Hahn FM, Poulter CD, et al.
Structure-activity relationships for inhibition of farnesyl diphosphate synthase
in vitro and inhibition of bone resorption in vivo by nitrogen-containing
bisphosphonates. J Pharmacol Exp Ther 2001;296(2):235–42.

[5] Luckman SP, Hughes DE, Coxon FP, Graham R, Russell G, Rogers MJ. Nitrogen-
containing bisphosphonates inhibit the mevalonate pathway and prevent
post-translational prenylation of GTP-binding proteins, including Ras. J Bone
Miner Res 1998;13(4):581–9.

[6] Koto K, Murata H, Kimura S, Horie N, Matsui T, Nishigaki Y, et al. Zoledronic
acid inhibits proliferation of human fibrosarcoma cells with induction of
apoptosis, and shows combined effects with other anticancer agents. Oncol
Rep 2010;24(1):233–9.

[7] Koto K, Horie N, Kimura S, Murata H, Sakabe T, Matsui T, et al. Clinically
relevant dose of zoledronic acid inhibits spontaneous lung metastasis in a
murine osteosarcoma model. Cancer Lett 2009;274(2):271–8.

[8] Zwolak P, Manivel JC, Jasinski P, Kirstein MN, Dudek AZ, Fisher J, et al.
Cytotoxic effect of zoledronic acid-loaded bone cement on giant cell tumor,
multiple myeloma, and renal cell carcinoma cell lines. J Bone Joint Surg Am
2010;92(1):162–8.

[9] Tamura T, Shomori K, Nakabayashi M, Fujii N, Ryoke K, Ito H. Zoledronic acid, a
third-generation bisphosphonate, inhibits cellular growth and induces apop-
tosis in oral carcinoma cell lines. Oncol Rep 2011;25(4):1139–43.

[10] Ullen A, Schwarz S, Lennartsson L, Kalkner KM, Sandstrom P, Costa F, et al.
Zoledronic acid induces caspase-dependent apoptosis in renal cancer cell
lines. Scand J Urol Nephrol 2009;43(2):98–103.

[11] Koizumi M, Nakaseko C, Ohwada C, Takeuchi M, Ozawa S, Shimizu N, et al.
Zoledronate has an antitumor effect and induces actin rearrangement in
dexamethasone-resistant myeloma cells. Eur J Haematol 2007;79(5):382–91.

[12] Di Salvatore M, Orlandi A, Bagala C, Quirino M, Cassano A, Astone A, et al.
Anti-tumour and anti-angiogenetic effects of zoledronic acid on human non-
small-cell lung cancer cell line. Cell Prolif 2011;44(2):139–46.

[13] Almubarak H, Jones A, Chaisuparat R, Zhang M, Meiller TF, Scheper MA.
Zoledronic acid directly suppresses cell proliferation and induces apoptosis in
highly tumorigenic prostate and breast cancers. J Carcinog 2011;10:2.

[14] Ullen A, Lennartsson L, Harmenberg U, Hjelm-Eriksson M, Kalkner KM,
Lennernas B, et al. Additive/synergistic antitumoral effects on prostate cancer
cells in vitro following treatment with a combination of docetaxel and
zoledronic acid. Acta Oncol 2005;44(6):644–50.

[15] Karabulut B, Erten C, Gul MK, Cengiz E, Karaca B, Kucukzeybek Y, et al.
Docetaxel/zoledronic acid combination triggers apoptosis synergistically
through downregulating antiapoptotic Bcl-2 protein level in hormone-
refractory prostate cancer cells. Cell Biol Int 2009;33(2):239–46.

[16] Jagdev SP, Coleman RE, Shipman CM, Rostami HA, Croucher PI. The bispho-
sphonate, zoledronic acid, induces apoptosis of breast cancer cells: evidence
for synergy with paclitaxel. Br J Cancer 2001;84(8):1126–34.

[17] Ozturk OH, Bozcuk H, Burgucu D, Ekinci D, Ozdogan M, Akca S, et al. Cisplatin
cytotoxicity is enhanced with zoledronic acid in A549 lung cancer cell line:
preliminary results of an in vitro study. Cell Biol Int 2007;31(9):1069–71.

[18] Ottewell PD, Monkkonen H, Jones M, Lefley DV, Coleman RE, Holen I.
Antitumor effects of doxorubicin followed by zoledronic acid in a mouse
model of breast cancer. J Natl Cancer Inst 2008;100(16):1167–78.

[19] Neville-Webbe HL, Coleman RE, Holen I. Combined effects of the bisphosphonate,
zoledronic acid and the aromatase inhibitor letrozole on breast cancer cells
in vitro: evidence of synergistic interaction. Br J Cancer 2010;102(6):1010–7.

[20] Neville‐Webbe HL, Rostami‐Hodjegan A, Evans CA, Coleman RE, Holen I.
Sequence‐and schedule‐dependent enhancement of zoledronic acid induced
apoptosis by doxorubicin in breast and prostate cancer cells. Int J Cancer
2005;113(3):364–71.

[21] Charehbili Ayoub, van deVen Saskia, Gerrit-Jan Liefers. NEOZOTAC: Efficacy
results from a phase III randomized trial with neoadjuvant chemotherapy
(TAC) with or without zoledronic acid for patients with HER2-negative large
resectable or stage II or III breast cancer (BC)—a Dutch Breast Cancer Trialists0

Group (BOOG) study. J Clin Oncol 2013;31(suppl) Abstract 1028.
[22] Winter MC, Wilson C, Syddall SP, Cross SS, Evans A, Ingram CE, et al. Neoadjuvant

chemotherapy with or without zoledronic acid in early breast cancer—a rando-
mized biomarker pilot study. Clin Cancer Res 2013;19(10):2755–65.

[23] Coleman RE, Winter MC, Cameron D, Bell R, Dodwell D, Keane MM, et al. The
effects of adding zoledronic acid to neoadjuvant chemotherapy on tumour
response: exploratory evidence for direct anti-tumour activity in breast
cancer. Br J Cancer 2010;102(7):1099–105.

[24] Coleman RE, Marshall H, Cameron D, Dodwell D, Burkinshaw R, Keane M, et al.
Breast-cancer adjuvant therapy with zoledronic acid. N Engl J Med 2011;365
(15):1396–405.

[25] Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med.
1971;285(21):1182–6.

[26] Yamada J, Tsuno NH, Kitayama J, Tsuchiya T, Yoneyama S, Asakage M, et al.
Anti-angiogenic property of zoledronic acid by inhibition of endothelial
progenitor cell differentiation. J Surg Res 2009;151(1):115–20.

[27] Wood J, Bonjean K, Ruetz S, Bellahcene A, Devy L, Foidart JM, et al. Novel
antiangiogenic effects of the bisphosphonate compound zoledronic acid.
J Pharmacol Exp Ther 2002;302(3):1055–61.

[28] Ziebart T, Pabst A, Klein MO, Kammerer P, Gauss L, Brullmann D, et al.
Bisphosphonates: restrictions for vasculogenesis and angiogenesis: inhibition
of cell function of endothelial progenitor cells and mature endothelial cells
in vitro. Clin Oral Investig 2011;15(1):105–11.

[29] Misso G, Porru M, Stoppacciaro A, Castellano M, De Cicco F, Leonetti C, et al.
Evaluation of the in vitro and in vivo antiangiogenic effects of denosumab and
zoledronic acid. Cancer Biol Ther 2012;13(14):1491–500.

[30] Tsai S-H, Huang P-H, Chang W-C, Tsai H-Y, Lin C-P, Leu H-B, et al. Zoledronate
inhibits ischemia-induced neovascularization by impairing the mobilization
and function of endothelial progenitor cells. PloS One 2012;7(7):e41065.

[31] Stresing V, Fournier PG, Bellahcene A, Benzaid I, Monkkonen H, Colombel M, et al.
Nitrogen-containing bisphosphonates can inhibit angiogenesis in vivo without the
involvement of farnesyl pyrophosphate synthase. Bone 2011;48(2):259–66.

[32] Kuroshima S, Elliott KW, Yamashita J. Effect of zoledronate on the responses of
osteocytes to acute parathyroid hormone. Calcif Tissue Int 2013;92(6):576–85.

[33] Kobayashi Y, Hiraga T, Ueda A, Wang L, Matsumoto-Nakano M, Hata K, et al.
Zoledronic acid delays wound healing of the tooth extraction socket, inhibits
oral epithelial cell migration, and promotes proliferation and adhesion to
hydroxyapatite of oral bacteria, without causing osteonecrosis of the jaw, in
mice. J Bone Miner Metab 2010;28(2):165–75.

[34] Aragon-Ching JB, Ning YM, Chen CC, Latham L, Guadagnini JP, Gulley JL, et al.
Higher incidence of Osteonecrosis of the Jaw (ONJ) in patients with metastatic
castration resistant prostate cancer treated with anti-angiogenic agents.
Cancer Invest 2009;27(2):221–6.

J. Zekri et al. / Journal of Bone Oncology 3 (2014) 25–35 33

http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref1
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref1
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref1
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref2
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref2
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref2
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref3
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref3
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref3
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref3
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref4
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref4
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref4
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref4
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref5
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref5
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref5
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref5
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref6
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref6
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref6
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref6
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref7
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref7
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref7
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref8
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref8
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref8
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref8
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref9
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref9
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref9
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref10
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref10
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref10
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref11
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref11
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref11
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref12
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref12
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref12
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref13
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref13
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref13
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref14
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref14
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref14
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref14
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref15
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref15
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref15
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref15
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref16
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref16
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref16
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref17
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref17
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref17
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref18
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref18
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref18
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref19
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref19
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref19
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref20
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref20
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref20
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref20
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref21
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref21
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref21
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref21
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref21
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref22
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref22
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref22
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref23
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref23
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref23
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref23
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref24
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref24
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref24
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref25
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref25
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref26
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref26
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref26
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref27
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref27
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref27
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref28
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref28
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref28
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref28
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref29
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref29
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref29
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref30
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref30
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref30
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref31
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref31
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref31
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref32
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref32
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref33
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref33
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref33
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref33
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref33
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref34
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref34
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref34
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref34


[35] Christodoulou C, Pervena A, Klouvas G, Galani E, Falagas ME, Tsakalos G, et al.
Combination of bisphosphonates and antiangiogenic factors induces osteone-
crosis of the jaw more frequently than bisphosphonates alone. Oncology
2009;76(3):209–11.

[36] David Roodman G. Role of stromal-derived cytokines and growth factors in
bone metastasis. Cancer 2003;97(Suppl. 3):S733–8.

[37] Corso A, Ferretti E, Lunghi M, Zappasodi P, Mangiacavalli S, De Amici M, et al.
Zoledronic acid down-regulates adhesion molecules of bone marrow stromal
cells in multiple myeloma: a possible mechanism for its antitumor effect.
Cancer 2005;104(1):118–25.

[38] Boissier S, Magnetto S, Frappart L, Cuzin B, Ebetino FH, Delmas PD, et al.
Bisphosphonates inhibit prostate and breast carcinoma cell adhesion to
unmineralized and mineralized bone extracellular matrices. Cancer Res
1997;57(18):3890–4.

[39] Magnetto S, Boissier S, Delmas PD, Clezardin P. Additive antitumor activities of
taxoids in combination with the bisphosphonate ibandronate against invasion
and adhesion of human breast carcinoma cells to bone. Int J Cancer 1999;83
(2):263–9.

[40] van der Pluijm G, Vloedgraven H, van Beek E, van der Wee-Pals L, Lowik C,
Papapoulos S. Bisphosphonates inhibit the adhesion of breast cancer cells to
bone matrices in vitro. J Clin Invest 1996;98(3):698–705.

[41] Clezardin P, Fournier P, Boissier S, Peyruchaud O. In vitro and in vivo
antitumor effects of bisphosphonates. Curr Med Chem 2003;10(2):173–80.

[42] Denoyelle C, Hong L, Vannier JP, Soria J, Soria C. New insights into the actions
of bisphosphonate zoledronic acid in breast cancer cells by dual RhoA-
dependent and -independent effects. Br J Cancer 2003;88(10):1631–40.

[43] Green JR. Antitumor effects of bisphosphonates. Cancer 2003;97(Suppl. 3):
S840–S847.

[44] Hiraga T, Williams PJ, Ueda A, Tamura D, Yoneda T. Zoledronic acid inhibits
visceral metastases in the 4T1/luc mouse breast cancer model. Clin Cancer Res
2004;10(13):4559–67.

[45] Sawada K, Morishige K, Tahara M, Kawagishi R, Ikebuchi Y, Tasaka K, et al.
Alendronate inhibits lysophosphatidic acid-induced migration of human
ovarian cancer cells by attenuating the activation of rho. Cancer Res
2002;62(21):6015–20.

[46] Clezardin P, Ebetino FH, Fournier PG. Bisphosphonates and cancer-induced
bone disease: beyond their antiresorptive activity. Cancer Res 2005;65
(12):4971–4.

[47] Hasmim M, Bieler G, Ruegg C. Zoledronate inhibits endothelial cell adhesion,
migration and survival through the suppression of multiple, prenylation-
dependent signaling pathways. J Thromb Haemost 2007;5(1):166–73.

[48] Bukowski JF, Morita CT, Tanaka Y, Bloom BR, Brenner MB, Band H. V gamma
2V delta 2 TCR-dependent recognition of non-peptide antigens and Daudi
cells analyzed by TCR gene transfer. J Immunol 1995;154(3):998–1006.

[49] Fisch P, Malkovsky M, Kovats S, Sturm E, Braakman E, Klein BS, et al.
Recognition by human V gamma 9/V delta 2 T cells of a GroEL homolog on
Daudi Burkitt0s lymphoma cells. Science 1990;250(4985):1269–73.

[50] De Libero G. Sentinel function of broadly reactive human gamma delta T cells.
Immunol Today 1997;18(1):22–6.

[51] Kunzmann V, Bauer E, Feurle J, Weissinger F, Tony HP, Wilhelm M. Stimulation
of gammadelta T cells by aminobisphosphonates and induction of antiplasma
cell activity in multiple myeloma. Blood 2000;96(2):384–92.

[52] Dieli F, Gebbia N, Poccia F, Caccamo N, Montesano C, Fulfaro F, et al. Induction
of gammadelta T-lymphocyte effector functions by bisphosphonate zoledronic
acid in cancer patients in vivo. Blood 2003;102(6):2310–1.

[53] Mariani S, Muraro M, Pantaleoni F, Fiore F, Nuschak B, Peola S, et al. Effector
gammadelta T cells and tumor cells as immune targets of zoledronic acid in
multiple myeloma. Leukemia 2005;19(4):664–70.

[54] Marten A, Lilienfeld-Toal M, Buchler MW, Schmidt J. Zoledronic acid has direct
antiproliferative and antimetastatic effect on pancreatic carcinoma cells and
acts as an antigen for delta2 gamma/delta T cells. J Immunother 2007;30
(4):370–7.

[55] Sato K, Kimura S, Segawa H, Yokota A, Matsumoto S, Kuroda J, et al. Cytotoxic
effects of gammadelta T cells expanded ex vivo by a third generation bispho-
sphonate for cancer immunotherapy. Int J Cancer 2005;116(1):94–9.

[56] Naoe M, Ogawa Y, Takeshita K, Morita J, Shichijo T, Fuji K, et al. Zoledronate
stimulates gamma delta T cells in prostate cancer patients. Oncol Res 2010;18
(10):493–501.

[57] Santini D, Martini F, Fratto ME, Galluzzo S, Vincenzi B, Agrati C, et al. In vivo
effects of zoledronic acid on peripheral gammadelta T lymphocytes in early
breast cancer patients. Cancer Immunol Immunother 2009;58(1):31–8.

[58] Sugie T, Murata-Hirai K, Iwasaki M, Morita CT, Li W, Okamura H, et al.
Zoledronic acid-induced expansion of gammadelta T cells from early-stage
breast cancer patients: effect of IL-18 on helper NK cells. Cancer Immunol
Immunother 2013;62(4):677–87.

[59] Allavena P, Sica A, Solinas G, Porta C, Mantovani A. The inflammatory micro-
environment in tumor progression: the role of tumor-associated macro-
phages. Crit Rev Oncol Hematol 2008;66(1):1–9.

[60] Coffelt SB, Hughes R, Lewis CE. Tumor-associated macrophages: effectors of
angiogenesis and tumor progression. Biochim Biophys Acta. 2009;1796
(1):11–8.

[61] Lin EY, Pollard JW. Tumor-associated macrophages press the angiogenic
switch in breast cancer. Cancer Res 2007;67(11):5064–6.

[62] Rogers TL, Wind N, Hughes R, Nutter F, Brown HK, Vasiliadou I, et al.
Macrophages as potential targets for zoledronic acid outside the skeleton-

evidence from in vitro and in vivo models. Cell Oncol (Dordr) 2013;36
(6):505–14.

[63] Moreau MF, Guillet C, Massin P, Chevalier S, Gascan H, Basle MF, et al.
Comparative effects of five bisphosphonates on apoptosis of macrophage cells
in vitro. Biochem Pharmacol 2007;73(5):718–23.

[64] Melani C, Sangaletti S, Barazzetta FM, Werb Z, Colombo MP. Amino-
biphosphonate-mediated MMP-9 inhibition breaks the tumor-bone marrow
axis responsible for myeloid-derived suppressor cell expansion and macro-
phage infiltration in tumor stroma. Cancer Res 2007;67(23):11438–46.

[65] Coscia M, Quaglino E, Iezzi M, Curcio C, Pantaleoni F, Riganti C, et al.
Zoledronic acid repolarizes tumour-associated macrophages and inhibits
mammary carcinogenesis by targeting the mevalonate pathway. J Cell Mol
Med 2010;14(12):2803–15.

[66] Ha TC, Li H. Meta-analysis of clodronate and breast cancer survival. Br J Cancer
2007;96(12):1796–801.

[67] Kristensen B, Ejlertsen B, Mouridsen HT, Jensen MB, Andersen J, Bjerregaard B,
et al. Bisphosphonate treatment in primary breast cancer: results from a
randomised comparison of oral pamidronate versus no pamidronate in
patients with primary breast cancer. Acta Oncol 2008;47(4):740–6.

[68] Mystakidou K, Katsouda E, Parpa E, Kelekis A, Galanos A, Vlahos L. Rando-
mized, open label, prospective study on the effect of zoledronic acid on the
prevention of bone metastases in patients with recurrent solid tumors that
did not present with bone metastases at baseline. Med Oncol 2005;22
(2):195–201.

[69] Aft R, Naughton M, Trinkaus K, Watson M, Ylagan L, Chavez-MacGregor M,
et al. Effect of zoledronic acid on disseminated tumour cells in women with
locally advanced breast cancer: an open label, randomised, phase 2 trial.
Lancet Oncol 2010;11(5):421–8.

[70] Rack B, Juckstock J, Genss EM, Schoberth A, Schindlbeck C, Strobl B, et al.
Effect of zoledronate on persisting isolated tumour cells in patients with early
breast cancer. Anticancer Res 2010;30(5):1807–13.

[71] Lin AY, Park JW, Scott J, Melisko M, Goga A, Moasser MM, et al. Zoledronic acid
as adjuvant therapy for women with early stage breast cancer and dissemi-
nated tumor cells in bone marrow. J Clin Oncol 2008;26(S15):S559.

[72] Vincenzi B, Santini D, Dicuonzo G, Battistoni F, Gavasci M, La Cesa A, et al.
Zoledronic acid-related angiogenesis modifications and survival in advanced
breast cancer patients. J Interferon Cytokine Res 2005;25(3):144–51.

[73] Santini D, Vincenzi B, Hannon RA, Brown JE, Dicuonzo G, Angeletti S, et al.
Changes in bone resorption and vascular endothelial growth factor after a
single zoledronic acid infusion in cancer patients with bone metastases from
solid tumours. Oncol Rep 2006;15(5):1351–7.

[74] Santini D, Vincenzi B, Galluzzo S, Battistoni F, Rocci L, Venditti O, et al.
Repeated intermittent low-dose therapy with zoledronic acid induces an early,
sustained, and long-lasting decrease of peripheral vascular endothelial growth
factor levels in cancer patients. Clin Cancer Res 2007;13(15 Pt 1):4482–6.

[75] Zhao X, Xu X, Guo L, Ragaz J, Guo H, Wu J, et al. Biomarker alterations with
metronomic use of low-dose zoledronic acid for breast cancer patients with
bone metastases and potential clinical significance. Breast Cancer Res Treat
2010;124(3):733–43.

[76] Ferretti G, Fabi A, Carlini P, Papaldo P, Cordiali Fei P, Di Cosimo S, et al.
Zoledronic-acid-induced circulating level modifications of angiogenic factors,
metalloproteinases and proinflammatory cytokines in metastatic breast can-
cer patients. Oncology 2005;69(1):35–43.

[77] Tas F, Duranyildiz D, Oguz H, Camlica H, Yasasever V, Topuz E. Effect of
zoledronic acid on serum angiogenic factors in patients with bone metastases.
Med Oncol 2008;25(3):346–9.

[78] Meraviglia S, Eberl M, Vermijlen D, Todaro M, Buccheri S, Cicero G, et al. In
vivo manipulation of Vgamma9Vdelta2 T cells with zoledronate and low-dose
interleukin-2 for immunotherapy of advanced breast cancer patients. Clin Exp
Immunol 2010;161(2):290–7.

[79] Sakamoto M, Nakajima J, Murakawa T, Fukami T, Yoshida Y, Murayama T, et al.
Adoptive immunotherapy for advanced non-small cell lung cancer using
zoledronate-expanded gammadelta T cells: a phase I clinical study. J Immun-
other 2011;34(2):202–11.

[80] Lang JM, Kaikobad MR, Wallace M, Staab MJ, Horvath DL, Wilding G, et al.
Pilot trial of interleukin-2 and zoledronic acid to augment gammadelta T cells
as treatment for patients with refractory renal cell carcinoma. Cancer
Immunol Immunother 2011;60(10):1447–60.

[81] Gnant M, Mlineritsch B, Luschin-Ebengreuth G, Kainberger F, Kassmann H,
Piswanger-Solkner JC, et al. Adjuvant endocrine therapy plus zoledronic acid
in premenopausal women with early-stage breast cancer: 5-year follow-up of
the ABCSG-12 bone-mineral density substudy. Lancet Oncol 2008;9(9):840–9.

[82] Brufsky A, Bundred N, Coleman R, Lambert-Falls R, Mena R, Hadji P, et al.
Integrated analysis of zoledronic acid for prevention of aromatase inhibitor-
associated bone loss in postmenopausal women with early breast cancer
receiving adjuvant letrozole. Oncologist 2008;13(5):503–14.

[83] Eidtmann H, de Boer R, Bundred N, Llombart-Cussac A, Davidson N, Neven P,
et al. Efficacy of zoledronic acid in postmenopausal women with early breast
cancer receiving adjuvant letrozole: 36-month results of the ZO-FAST Study.
Ann Oncol 2010;21(11):2188–94.

[84] De Boer R., Bundred N., Eidtmann H., Llombart A., Neven P., von Minckwitz G.,
et al. The effect of zoledronic acid on aromatase inhibitor-associated bone loss
in postmenopausal women with early breast cancer receiving adjuvant
letrozole: the ZO-FAST study 5-year final follow-up. In: Proceedings of the
33rd annual San Antonio breast cancer symposium; 2010. p. 8–12.

J. Zekri et al. / Journal of Bone Oncology 3 (2014) 25–3534

http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref35
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref35
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref35
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref35
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref36
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref36
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref37
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref37
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref37
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref37
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref38
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref38
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref38
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref38
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref39
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref39
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref39
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref39
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref40
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref40
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref40
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref41
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref41
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref42
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref42
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref42
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref43
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref43
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref44
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref44
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref44
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref45
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref45
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref45
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref45
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref46
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref46
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref46
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref47
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref47
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref47
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref48
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref48
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref48
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref49
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref49
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref49
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref49
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref50
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref50
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref51
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref51
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref51
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref52
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref52
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref52
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref53
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref53
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref53
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref54
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref54
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref54
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref54
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref55
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref55
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref55
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref56
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref56
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref56
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref57
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref57
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref57
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref58
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref58
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref58
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref58
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref59
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref59
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref59
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref60
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref60
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref60
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref61
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref61
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref62
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref62
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref62
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref62
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref63
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref63
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref63
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref64
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref64
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref64
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref64
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref65
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref65
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref65
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref65
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref66
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref66
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref67
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref67
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref67
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref67
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref68
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref68
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref68
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref68
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref68
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref69
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref69
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref69
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref69
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref70
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref70
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref70
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref71
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref71
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref71
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref72
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref72
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref72
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref73
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref73
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref73
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref73
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref74
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref74
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref74
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref74
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref75
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref75
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref75
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref75
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref76
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref76
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref76
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref76
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref77
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref77
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref77
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref78
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref78
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref78
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref78
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref79
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref79
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref79
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref79
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref80
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref80
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref80
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref80
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref81
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref81
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref81
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref81
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref82
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref82
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref82
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref82
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref83
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref83
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref83
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref83


[85] Coleman R.E., Thorpe H.C., Cameron D., Dodwell D., Burkinshaw R., Keane M.,
et al. Adjuvant treatment with zoledronic acid in stage II/III breast cancer. The
AZURE trial (BIG 01/04)(abstract S4–S5). In: Proceedings from the San Antonio
breast cancer symposium. San Antonio; 2010.

[86] Gnant M. Zoledronic acid in breast cancer: latest findings and interpretations.
Ther Adv Med Oncol 2011;3(6):293–301.

[87] Scagliotti GV, Kosmidis P, de Marinis F, Schreurs AJ, Albert I, Engel-Riedel W,
et al. Zoledronic acid in patients with stage IIIA/B NSCLC: results of a
randomized, phase III study. Ann Oncol 2012;23(8):2082–7.

[88] Aft RL, Naughton M, Trinkaus K, Weilbaecher K. Effect of (Neo)adjuvant
zoledronic acid on disease-free and overall survival in clinical stage II/III
breast cancer. Br J Cancer 2012;107(1):7–11.

[89] Karim SM, Brown J, Zekri J. Efficacy of bisphosphonates and other bone-
targeted agents in metastatic bone disease from solid tumors other than
breast and prostate cancers. Clin Adv Hematol Oncol 2013;11(5):281–7.

J. Zekri et al. / Journal of Bone Oncology 3 (2014) 25–35 35

http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref84
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref84
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref85
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref85
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref85
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref86
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref86
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref86
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref87
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref87
http://refhub.elsevier.com/S2212-1374(13)00070-5/sbref87

	The anti-tumour effects of zoledronic acid
	Introduction
	Preclinical rationale for potential anticancer effects of ZA
	Inhibition of tumour cell proliferation and induction of apoptosis
	Augmentation of inhibitory effect of cytotoxic agents (additive and synergistic effect)
	Inhibition of angiogenesis
	Decrease in tumour cell adhesion to bone
	Decrease in tumour cell invasion and migration, and disorganization of cell cytoskeleton
	Activation of γδ T cells
	Effects on tumour macrophage infiltration

	Early clinical (phase I/II) data regarding anticancer effects of zoledronic acid
	Direct cytotoxic effect of ZA
	Inhibition of angiogenesis
	Activation of γδ T cells

	Phase III trials of zoledronic acid in early breast cancer
	Trials showing lack of benefit from zoledronic acid
	Other bone modifying agents in oncology

	Conclusion
	Conflict of interest statement
	References




