Journal of Number Theory 130 (2010) 1115

Contents lists available at ScienceDirect

www.elsevier.com/locate/jnt

Journal of Number Theory

Corrigendum

Corrigendum to "Restricting Hecke-Siegel operators to Jacobi modular forms" [J. Number Theory 129 (7) (2009) 1709-1733]

Lynne H. Walling

Department of Mathematics, University of Bristol, Bristol BS8 1TW, United Kingdom

ARTICLE INFO

Article history: Received 14 September 2009 Available online 9 December 2009 Communicated by J. Brian Conrey

In Proposition 3.1, the conditions given on $\Omega \oplus \Delta$ mean that in addition to $\Omega \oplus \Delta$ varying so that $p\Lambda \oplus \Delta \subseteq \Omega \oplus \Delta \subseteq \frac{1}{p}(\Lambda \oplus \Delta)$, we must also have some Λ' so that $\Lambda' \oplus \Delta = \Lambda \oplus \Delta$ and $p\Lambda' \subseteq \Delta$ $\Omega \subseteq \frac{1}{p}A'$. These conditions apply to $\Omega \oplus \Delta$ in Theorem 3.2 as well. Similarly, in Proposition 4.1 and Theorem 4.3, $\Omega \oplus \Delta$ varies subject to $p\Lambda \oplus \Delta \subseteq \Omega \oplus \Delta \subseteq \frac{1}{p}(\Lambda \oplus \Delta')$ so that for some Λ' with $\Lambda' \oplus \Delta' = \Lambda \oplus \Delta'$, we have $p\Lambda' \subseteq \Omega \subseteq \frac{1}{p}\Lambda'$; in Proposition 4.2 and Theorem 4.3, $\Omega \oplus \Delta$ varies subject to $\Lambda \oplus \Delta \subseteq \Omega \oplus \Delta \subseteq \frac{1}{p}(\Lambda \oplus \Delta)$ so that for some Λ' with $\Lambda' \oplus \Delta = \Lambda \oplus \Delta$, we have $\Lambda' \subseteq \Omega \subseteq \frac{1}{p}\Lambda'$. For Corollary 3.3, $\tilde{T}_i(p^2)$ should be defined as

$$\widetilde{T}_{j}(p^{2}) = p^{j(k-n-1)} \sum_{0 \leq \ell \leq j} \chi(p^{j-\ell}) p^{m(j-\ell)} \beta(n-m-\ell, j-\ell) T_{\ell}(p^{2}).$$

(This reflects the fact that with V, V' vector spaces over $\mathbb{Z}/p\mathbb{Z}$, dim V = n - m - r, dim V' = m, and U a dimension $\ell - r$ subspace of $V \oplus V'$ that is independent of V', the number of ways to extend U to a dimension j - r subspace of $V \oplus V'$ that is independent of V' is $p^{m(j-\ell)}\beta(n-m-\ell, j-\ell)$.)

DOI of original article: 10.1016/j.jnt.2009.01.027.

E-mail address: l.walling@bristol.ac.uk.

⁰⁰²²⁻³¹⁴X/\$ - see front matter © 2009 Published by Elsevier Inc. doi:10.1016/j.jnt.2009.10.002