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Denote by X” the convex cone of n-by-n positive semi-definite hermitian matrices. 
Let d, be the normalized immanant afforded by S. and the partition (2, lne2). 
Then h(A) + (A - 1) det(A) >, Ad,(A), A E X”, where h(A) is the main diagonal 
product of A and A is approximately (n - 1)/e. 0 1987 Academic Press, Inc. 

Denote by Xn the cone of positive semidefinite hermitian n-by-n matrices. 
In 1893, J. Hadamard [3] proved that h(A) 2 det(A), for all A E Xn, where 
h(A) is the product of the main diagonal entries of A. Let x2 be the 
irreducible character of the symmetric group S, corresponding to the 
partition (2, 1, . . . . 1). The second immanant, d,, is defined on the n-by-n 
matrices by 

4(A) = 1 x2(o) fi a,,(,), 
0 E s. f=l 

where A = (av). When n = 2, d,(A)=per(A), the permanent of A. In 
general, x2 is a character of degree n - 1, and it is convenient to define the 
normalized second immanent, d2, by &(A) = d,(A)/(n - 1). In 1918, 
I. Schur [9] proved (among a great many things) that 

d,(A) > det(A), A E 2”. (1) 
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In a recent paper, [2], the present authors showed that 

W)k~*(A), A~X,,n>44, (2) 

a result which supports the permanental dominance conjecture [4]. It is 
the purpose of this note to present an improvement of (2) which tends to 
show that (1) is much tighter than (2) for large values of n. 

Before proceeding, we introduce some notation. Define 

0) = (1 +lin)“’ 

noting that A(n) G n/e for large n. Denote by P, the n-by-n matrix each of 
whose diagonal entries is 1 and each of whose off diagonal entries is 
- l/(n - 1). 

Suppose n > 2. 

THEOREM 1. Let A E Xm and let A = A(n - 1). Then 

h(A) + (A - 1) det(A) > A &(A), (3) 

with equality if and only if A is diagonal, A has a zero row (and coIumn), or 
A is diagonally congruent to P,. 

Note that (3) may be rewritten as 

h(A) B d,(A) + (A - 1)(~&(~4) - det(A)), (3’) 

which, in view of ( 1 ), improves (2) as long as A > 1. (Indeed, for n 2 2, 
A(n - 1) is an increasing function of n which first exceeds 1 when n = 4.) 

Another way to write (3) is 

h(A) 2 A(&(A) - det(A)) + det(A). (3*) 

In this form, one has an improvement of Hadamard’s Inequality. Note, 
also, that the theorem remains valid if A is any number less than A(n - 1). 
If, for example, n 2 6, then A(n - 1) > 2. Therefore, for A E Za and n 2 6, 

h(A) + det(A) 2 2&(A). (4) 

Similarly, for A E sn, 

h(A) + 2 det(A) 2 3d,(A), n B 9; 

h(A) + 3 det(A) 2 4&(A), n $12; 

h(A) + 4 det(A) > 5&(A), n2 15; 

h(A) + 5 det(A) 2 6&(A), n>l7; 



HADAMARD INEQUALITY 

etc. It follows from (4) and the Hadamard Theorem 
that 

alt(A) 2 &A 1, A~%~,n>6, 

where alt(A) is the generalized matrix function 

WA) = 1 fi a,,(,, 
osA. r=1 

= i(per(A) + det(A)). 

Proof of Theorem 1. It is known (see, e.g., [8]) that 

n 
d,(A) = 1 a,, det(A(t)) - det(A), 
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where A(t) is the (n- 1)-by-(n - 1) principal submatrix of A = (a,) 
obtained by deleting row and column t. If A E Xn has a zero on the main 
diagonal, then both sides of (3) equal 0, accounting for one case of 
equality. Otherwise, since both sides of (3) are similarly affected by a 
diagonal congruence, we may assume that A is a correlation matrix, i.e., 
al,=a,,= ... =ann = 1. Putting (5) into (3) under these conditions trans- 
forms the desired inequality into 

n - 1 2 A f det(A(t)) - (nd -n + 1) det(A). (6) 
1=I 

Note that (6) can be written in terms of elementary symmetric functions of 
A= (A,, I,, . ..) A,,), the eigenvalues of A: 

n-l>dE,-,(I)-(nd-n+l)E,(A). (7) 

Our problem now is to maximize the right-hand side of (7) subject to the 
side conditions A,, &, . . . . A, 2 0 and A, + . .. + I,, = n. By the method of 
Lagrange multipliers, the maximum will occur either on the boundary 
(where some li = 0) or at a critical value (where 1, = & = . . . = A,). (See, 
e.g., [l].) This means we have two cases to consider: 

Case 1. IfA,=&= ... = A,,, then their common value is 1 (and A = I,). 
In this case, the right-hand side of (7) becomes An - (nA -n + 1) = n - 1, 
our first case of equality. (A nonsingular matrix in Sn is diagonally 
congruent to Z, if and only if it is diagonal.) 

Case 2. We now suppose some li = 0. Since we are dealing with sym- 
metric functions, there is no loss of generality if we assume 1, =O. Let 
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I = (A,) AZ , . . . . A,, i). Then our problem is to maximize the function 
AE,- ,(A) subject to the side conditions I,, A,, . . . . A,. ,30 and 
%, + A2 + . . + A,, ~ 1 = n. We may argue as before or simply recall that the 
elementary symmetric functions are “Schur concave” [6]. In any case, we 
see that E, ~ I (I) is maximized when A, = 1, = . . . = 2, ~ i = n/(n - 1 ), in 
which case AE,- i(l) = n - 1 by our choice of A. It remains to establish the 
third case of equality. This happens when our original matrix is diagonally 
congruent to a correlation matrix C with spectrum 
A,= ... =a.+, = n/n - 1 and A,, = 0. In this case C = (n/(n - 1 ))I, - xx*, 
where x is a complex n-tuple and xx* a rank 1 positive semidefinite matrix. 
Since C is a correlation matrix, lx,1 2 = ... = lx,12 = l/(n - 1). From this we 
can see that xx* is unitarily diagonally similar to J, that C is unitarily 
diagonally similar to P,, and that the original matrix is diagonally 
congruent to P,. 1 

It was conjectured in [7] that the “single hook” immanants satisfy the 
following ordering for A E X” : 

per(A) = &(A) 2 a,- ,(A) 2 ... B cl,(A) 2 d,(A) = det(A). 

Our result shows that a2(A) is much closer to det(A) than to per(A), which 
tends to suggest that a counterexample to the conjectured inequalities 
probably will not involve a2. 
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