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Abstract

A classical result in the theory of Hopf algebras concerns the uniqueness and existence of in
for an arbitrary Hopf algebra, the integral space has dimension� 1, and for a finite-dimensional Hop
algebra, this dimension is exactly one. We generalize these results to quasi-Hopf algebras a
quasi-Hopf algebras. In particular, it will follow that the bijectivity of the antipode follows from
other axioms of a finite-dimensional quasi-Hopf algebra. We give a new version of the Funda
Theorem for quasi-Hopf algebras. We show that a dual quasi-Hopf algebra is co-Frobenius
only if it has a non-zero integral. In this case, the space of left or right integrals has dimension
 2003 Published by Elsevier Inc.

0. Introduction

Quasi-bialgebras and quasi-Hopf algebras were introduced by Drinfel’d in [8
connection with the Knizhnik–Zamolodchikov system of partial differential equati
cf. [12]. From a categorical point of view, the notion is not so different from class
bialgebras: we consider an algebraH , and we want to make the category ofH -modules,
equipped with the tensor product of vector spaces, into a monoidal category. If we r
that the associativity constraint is the natural associativity condition for vector space
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we obtain a bialgebra structure onH , in general, we obtain a quasi-bialgebra structu
that is, we have a comultiplication and a counit onH , where the comultiplication is no
necessarily coassociative, but only quasi-coassociative.

Of course the theory of quasi-bialgebras and quasi-Hopf algebras is technically
complicated than the classical Hopf algebra theory. A more conceptual difference ho
is the fact that the definition of a bialgebra is self-dual, and this symmetry is broken
we pass to quasi-bialgebras. As a consequence, we do not have the notion of como
Hopf module over a quasi-Hopf algebra, and results in Hopf algebras that depend o
notions cannot be generalized in a straightforward way. For instance, the classical p
the uniqueness and existence of integral is based on the Fundamental Theorem f
modules [21].

Hausser and Nill [11] proved that a finite-dimensional quasi-Hopf algebra is a
benius algebra, and has a one-dimensional integral space. Independently, Pana
Van Oystaeyen [16] proved the existence of integrals for finite-dimensional quasi
algebras, using the approach developed in [23], without using quasi-Hopf bimodule

For a finite-dimensional Hopf algebraH , it follows from the Fundamental Theore
that

∫ H

l
⊗H ∗ andH are isomorphic as Hopf modules. In Section 2, we will see tha

isomorphism survives as a leftH -linear isomorphism in the case of a finite-dimensio
quasi-Hopf algebra. The method of proof is quite different from the classical one
isomorphism is constructed explicitly, using the projection ofH onto the integral spac
constructed in [16]. In Drinfel’d’s original definition [8], the antipode of a quasi-H
algebra is required to be bijective. Actually our proof of

∫ H

l ⊗H ∗ ∼=H does not use thi
bijectivity, and has as a consequence that, for a finite-dimensional quasi-Hopf algeb
bijectivity of the antipode follows from the other axioms; another consequence is th
integral space is one-dimensional. In a recent preprint [19], Schauenburg gave a d
proof of the fact that the antipode of a finite-dimensional quasi-Hopf algebra is bijec

The infinite-dimensional case is treated as well. We show that a quasi-Hopf a
(without the assumption that the antipode is bijective) is finite-dimensional if and
if the antipode is bijective and the integral space is non-zero. The integral space
infinite-dimensional quasi-Hopf algebra with bijective antipode is zero. A semisimple
algebra with bijective antipode is finite-dimensional. Hausser and Nill [11] also introd
cointegrals on a finite-dimensional quasi-Hopf algebra; these cointegrals are elem
the dual spaceH ∗, and, using a Structure Theorem for quasi-Hopf bimodules, Hau
and Nill prove that the space of cointegralsL is one-dimensional, and that all non-ze
integrals are nondegenerate. In Section 3, we further investigate cointegrals. In [11
asked whether there is a connection between the projection ofH onto the space of integra
from [16], and the projection ofH ∗ onto the space of cointegrals, introduced in [11]. Thi
done in Lemma 3.2, and, as an application, we give some characterizations of coin
see Proposition 3.4.

In the second part of Section 3, we propose an alternative definition of the sp
coinvariants of a quasi-Hopf bimodule. This alternative space of coinvariants is isomo
to the Hausser–Nill space of coinvariants, and can be used to give a second ver
the Structure Theorem. Our alternative has nevertheless two advantages, compare
Hausser–Nill approach: first, it is invariant under the adjoint action (cf. Lemma
Secondly, in the finite-dimensional case, it gives rise to an alternative definitio



554 D. Bulacu, S. Caenepeel / Journal of Algebra 266 (2003) 552–583

e, so

self-
with a
duce

a dual

]), but,
ructure
ace is
tigate
e of
a, or
ns are
t to
. As a
ebra
dly, it
give
es [3,
a with
se for
uasi-
ple if

si-Hopf

. This
ebras
e case
l
ults on

placing
ts (see

e used

le
cointegral: we take the alternative coinvariants ofH ∗. If we write down this formula
explicitly, we obtain a formula that still makes sense in the infinite-dimensional cas
we obtain a plausible definition for cointegrals in the infinite-dimensional case.

As we have already pointed out, the definition of quasi-Hopf algebra is not
dual. Actually, we can introduce dual quasi-Hopf algebras, these are coalgebras,
multiplication that is not associative, but only quasi-associative. In Section 4, we intro
integrals in dual quasi-Hopf algebras. We were able to prove that the rational dual of
quasi-Hopf algebraA is isomorphic as a comodule to the tensor product ofA itself and the
integral space. This generalizes the classical statement for Hopf algebras (see [21
again, we have to give a direct proof, and cannot deduce the statement from a St
Theorem. As in the classical case, it then follows immediately that the integral sp
zero if and only if the rational dual is zero. Also we can use the integrals to inves
properties of a dual quasi-Hopf algebraA as a coalgebra (Theorem 4.5). The existenc
a non-zero integral is equivalent toA being a co-Frobenius coalgebra, a QcF coalgebr
a left semiperfect coalgebra. Moreover, for a dual quasi-Hopf algebra, all these notio
left–right symmetric. Furthermore the existence of a non-zero integral is equivalenA

being a generator or a projective object in the category of (left or right) comodules
first application of this coalgebraic viewpoint, we find that a dual quasi-Hopf subalg
of a dual quasi-Hopf algebra with non-zero integral has non-zero integrals. Secon
follows that non-zero integrals are unique up to multiplication by a scalar. Also we can
the connection between left and right integrals (Proposition 4.9), and this generaliz
Proposition 1.3]. We were able to prove that the antipode of a dual quasi-Hopf algebr
a non-zero integral is injective, but it remains open if it is also surjective, as it is the ca
a classical Hopf algebra, see [17]. Our final result is Maschke’s Theorem for dual q
Hopf algebras (Theorem 4.10), stating that a dual quasi-Hopf algebra is cosemisim
and only there exists an integralT such thatT (1)= 1.

When we pass from bialgebras and Hopf algebras to quasi-bialgebras and qua
algebras, the appearance of the reassociator and the elementsα andβ in the definition
of the antipode, considerably increase the complexity of computations and proofs
observation is not new, other authors who have been working on quasi-Hopf alg
experienced this before us. However, the philosophy is basically the same as in th
of usual bialgebras: the idea is to make the category ofA-modules into a monoida
category. Recently, Schauenburg proposed an alternative approach to proving res
quasi-bialgebras, exploiting the categorical ideas behind quasi-bialgebras, and re
the computational arguments using the Sweedler notation by conceptual argumen
[19] for detail). At this moment is not clear to us whether Schauenburg ’s ideas can b
to give alternative and/or more transparent proofs of the results in this paper.

1. Preliminaries

We work over a commutative fieldk. All algebras, linear spaces etc. will be overk;
unadorned⊗ means⊗k . Following Drinfel’d [8], a quasi-bialgebra is a four-tup
(H,∆,ε,Φ) whereH is an associative algebra with unit,Φ is an invertible element in
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H ⊗H ⊗H , and∆ :H →H ⊗H andε :H → k are algebra homomorphisms satisfyi
the identities

(id⊗∆)
(
∆(h)

)=Φ(∆⊗ id)
(
∆(h)

)
Φ−1, (1.1)

(id⊗ ε)
(
∆(h)

)= h⊗ 1, (ε⊗ id)
(
∆(h)

)= 1⊗ h, (1.2)

for all h ∈H , andΦ has to be a 3-cocycle, in the sense that

(1⊗Φ)(id⊗∆⊗ id)(Φ)(Φ ⊗ 1)= (id⊗ id⊗∆)(Φ)(∆⊗ id⊗ id)(Φ), (1.3)

(id⊗ ε ⊗ id)(Φ)= 1⊗ 1⊗ 1. (1.4)

The map∆ is called the coproduct or the comultiplication,ε the counit andΦ the
reassociator. As for Hopf algebras we denote∆(h) = ∑

h1 ⊗ h2, but since∆ is only
quasi-coassociative we adopt the further convention

(∆⊗ id)
(
∆(h)

)=
∑

h(1,1) ⊗ h(1,2) ⊗ h2, (id⊗∆)
(
∆(h)

)=
∑

h1 ⊗ h(2,1) ⊗ h(2,2),

for all h ∈H . We will denote the tensor components ofΦ by capital letters, and the one
of Φ−1 by small letters, namely:

Φ =
∑

X1 ⊗X2 ⊗X3 =
∑

T 1 ⊗ T 2 ⊗ T 3 =
∑

V 1 ⊗ V 2 ⊗ V 3 = · · · ,
Φ−1 =

∑
x1 ⊗ x2 ⊗ x3 =

∑
t1 ⊗ t2 ⊗ t3 =

∑
v1 ⊗ v2 ⊗ v3 = · · · .

H is called a quasi-Hopf algebra if, moreover, there exists an anti-automorphismS of the
algebraH and elementsα,β ∈H such that, for allh ∈H , we have:

∑
S(h1)αh2 = ε(h)α and

∑
h1βS(h2)= ε(h)β, (1.5)

∑
X1βS

(
X2)αX3 = 1 and

∑
S
(
x1)αx2βS

(
x3)= 1. (1.6)

For a quasi-Hopf algebra the antipode is determined uniquely up to a transform
α 	→ Uα, β 	→ βU−1, S(h) 	→ US(h)U−1, whereU ∈ H is invertible. The axioms fo
a quasi-Hopf algebra imply thatε(α)ε(β) = 1, so, by rescalingα andβ , we may assum
without loss of generality thatε(α) = ε(β) = 1 andε ◦ S = ε. The identities (1.2), (1.3
and (1.4) also imply that

(ε⊗ id⊗ id)(Φ)= (id⊗ id⊗ ε)(Φ)= 1⊗ 1⊗ 1. (1.7)

Next we recall that the definition of a quasi-Hopf algebra is “twist coinvariant” in
following sense. An invertible elementF ∈ H ⊗ H is called agauge transformationor
twist if (ε⊗ id)(F )= (id⊗ε)(F )= 1. If H is a quasi-Hopf algebra andF = ∑

F 1⊗F 2 ∈
H⊗H is a gauge transformation with inverseF−1 =∑

G1⊗G2, then we can define a ne
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quasi-Hopf algebraHF by keeping the multiplication, unit, counit and antipode ofH and
replacing the comultiplication, antipode and the elementsα andβ by

∆F(h)= F∆(h)F−1, (1.8)

ΦF = (1⊗ F)(id⊗∆)(F)Φ(∆⊗ id)
(
F−1)(F−1 ⊗ 1

)
, (1.9)

αF =
∑

S
(
G1)αG2, βF =

∑
F 1βS

(
F 2). (1.10)

It is well known that the antipode of a Hopf algebra is an anti-coalgebra morphism
a quasi-Hopf algebra, we have the following statement: there exists a gauge transfor
f ∈H ⊗H such that

f∆
(
S(h)

)
f−1 =

∑
(S ⊗ S)

(
∆op(h)

)
, for all h ∈H. (1.11)

f can be computed explicitly. First set

∑
A1 ⊗A2 ⊗A3 ⊗A4 = (Φ ⊗ 1)(∆⊗ id⊗ id)

(
Φ−1), (1.12)

∑
B1 ⊗B2 ⊗B3 ⊗B4 = (∆⊗ id⊗ id)(Φ)

(
Φ−1 ⊗ 1

)
, (1.13)

and then defineγ, δ ∈H ⊗H by

γ =
∑

S
(
A2)αA3 ⊗ S

(
A1)αA4 and δ =

∑
B2βS

(
B4)⊗B2βS

(
B3).

(1.14)

f andf−1 are then given by the formulas

f =
∑

(S ⊗ S)
(
∆op(x1))γ∆

(
x2βS

(
x3)), (1.15)

f−1 =
∑

∆
(
S
(
x1)αx2)δ(S ⊗ S)

(
∆op(x3)), (1.16)

where∆op(h)=∑
h2 ⊗ h1. f satisfies the following relations:

f∆(α)= γ, ∆(β)f−1 = δ. (1.17)

Furthermore, the corresponding twisted reassociator (see (1.9)) is given by

Φf =
∑

(S ⊗ S ⊗ S)
(
X3 ⊗X2 ⊗X1). (1.18)

In a Hopf algebraH , we obviously have the identity

∑
h1 ⊗ h2S(h3)= h⊗ 1, for all h ∈H.
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We will need the generalization of this formula to quasi-Hopf algebras. Following [9
we define

pR =
∑

p1 ⊗ p2 =
∑

x1 ⊗ x2βS
(
x3),

qR =
∑

q1 ⊗ q2 =
∑

X1 ⊗ S−1(αX3)X2. (1.19)

For allh ∈H , we then have

∑
∆(h1)pR

[
1⊗ S(h2)

]= pR[h⊗ 1],
∑[

1⊗ S−1(h2)
]
qR∆(h1)= (h⊗ 1)qR, (1.20)

and

∑
∆

(
q1)pR

[
1⊗ S

(
q2)]= 1⊗ 1,

∑[
1⊗ S−1(p2)]qR∆

(
p1)= 1⊗ 1, (1.21)

(qR ⊗ 1)(∆⊗ id)(qR)Φ−1

=
∑[

1⊗ S−1(X3)⊗ S−1(X2)][1⊗ S−1(f 2)⊗ S−1(f 1)](id⊗∆)
(
qR∆

(
X1)), (1.22

Φ(∆⊗ id)(pR)(pR ⊗ id)

=
∑

(id⊗∆)
(
∆

(
x1)pR

)(
1⊗ f−1)(1⊗ S

(
x3)⊗ S

(
x2)), (1.23

wheref = ∑
f 1 ⊗ f 2 is the twist defined in (1.15). Note that the formulas (1.16)–(1

(except (1.22) and the second part of (1.20), (1.21)) can be proved without usin
bijectivity of the antipode S.

2. Integrals in quasi-Hopf algebras

Let H be a finite-dimensional quasi-Hopf algebra with an antipodeS. In [11], it is
shown thatH is a Frobenius algebra and, as a consequence, the space of left
integrals inH is one-dimensional. The proof in [11] relies on the fact that the antip
S is bijective. Using different arguments independent of the bijectivity of the antipode
will give another proof of the existence and uniqueness of integrals inH . In fact we will
prove that, in the definition of finite-dimensional quasi-Hopf algebra, the bijectivity o
antipode can be dropped, in other words, the bijectivity of the antipode follows from
other axioms. This will generalize a similar result for Hopf algebras, see [13].

Let us make our terminology consistent: by a quasi-Hopf algebra, we will mean a q
Hopf algebra as defined in Section 1, but without the assumption that the antip
bijective. If the antipode is bijective, then we will say that we have a quasi-Hopf alg
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in the sense of Drinfel’d. With this convention, our main result is the following: a fin
dimensional quasi-Hopf algebra is a quasi-Hopf algebra in the sense of Drinfel’d.

Recall thatt ∈ H is called a left (respectively right) integral inH if ht = ε(h)t

(respectivelyth= ε(h)t), ∀h ∈H . We denote by
∫ H

l
(
∫ H

r
) the space of left (right) integra

in H . If there exists a non-zero left integral inH which is at the same time a right integr
thenH is called unimodular.

In [13], the Fundamental Theorem is used to prove the existence and uniquen
integrals, and then the bijectivity of the antipode follows. In the quasi-Hopf algebra
this approach will not work, since we cannot define Hopf modules. Van Daele [23] g
short and direct proof of the existence and uniqueness of integrals in a finite-dimen
Hopf algebra, and Panaite and Van Oystaeyen [16] generalized Van Daele’s arg
proving the existence of left integrals in finite-dimensional quasi-Hopf algebras.
precisely, letH be a finite-dimensional quasi-Hopf algebra,{ei}i=1,n, a basis ofH and

{ei}i=1,n the dual basis ofH ∗. Following [16], we define

P(h)=
n∑

i=1

〈
ei, βS

(
S(X2(ei)2

)
αX3)h〉

X1(ei)1, (2.1)

for all h ∈ H . Then one can show thatP(h) ∈ ∫ H

l ,∀h ∈ H and
∑n

i=1〈ei, S(P (ei)β)〉 =
ε(β)= 1. It follows that at least one of theP(ei) �= 0, and

∫ H

l
�= 0.

In order to prove the uniqueness of integrals for finite-dimensional quasi-Hopf alg
we need the following lemma.

Lemma 2.1. Let t be a left integral in a quasi-Hopf algebraH . Then for allh ∈H

∑
hX1t1 ⊗ S

(
X2t2

)
αX3 =

∑
X1t1 ⊗ S

(
X2t2

)
αX3h (2.2)

and

∑
t1 ⊗ S(t2)=

∑
X1t1 ⊗ S

(
X2t2

)
αX3β =

∑
βX1t1 ⊗ S

(
X2t2

)
αX3. (2.3)

Proof. For allh ∈H we calculate, using (1.5), (1.1), andt ∈ ∫ H

l that

∑
hX1t1 ⊗ S

(
X2t2

)
αX3 =

∑
h1X

1t1 ⊗ S
(
h(2,1)X

2t2
)
αh(2,2)X

3

=
∑

X1(h1t)1 ⊗ S
(
X2(h1t)2

)
αX3h2

=
∑

X1t1 ⊗ S
(
X2t2

)
αX3h.

To prove the first equality in (2.3), we take
∑

X1t1 ⊗ S(X2t2)αX3β . First we apply the
3-cocycle condition

Φ ⊗ 1= (id⊗∆⊗ id)
(
Φ−1)(1⊗Φ−1)(id⊗ id⊗∆)(Φ)(∆⊗ id⊗ id)(Φ)
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and then, successively using the fact thatt ∈ ∫ H

l , (1. 5), (1. 4), (1. 7), and (1. 6), we fin
the left-hand side of (2.3). The second equality in (2.3) follows from (2.2).✷

For a quasi-Hopf algebraH , we introduceH ∗ as the dual space ofH with its natural
multiplication〈h∗g∗, h〉 =∑

h∗(h1)g
∗(h2), whereh∗, g∗ ∈H ∗ andh ∈H . If H is finite-

dimensional, thenH ∗ is also equipped with a natural coassociative coalgebra stru
(∆̃, ε̃) given by〈∆̃(h∗), h⊗ h′〉 = 〈h∗, hh′〉 andε̃(h∗)= h∗(1), whereh∗ ∈H ∗, h,h′ ∈H

and〈 , 〉 :H ∗ ⊗H → k denotes the dual pairing. OnH ∗ we have the natural left and righ
H -actions

〈
h⇀ h∗, h′

〉 = 〈
h∗, h′h

〉
,

〈
h∗ ↼ h,h′

〉= 〈
h∗, hh′

〉
, (2.4)

whereh,h′ ∈H andh∗ ∈H ∗. This makesH ∗ into aH–H -bimodule.
We also introduceS :H ∗ → H ∗ as the anti-coalgebra homomorphism dual toS, i.e.,

〈S(h∗), h〉 = 〈h∗, S(h)〉, ∀h∗ ∈H ∗, h ∈H .

Theorem 2.2. Let H be a finite-dimensional quasi-Hopf algebra,{ei}i=1,n a basis ofH

with dual basis{ei}i=1,n of H ∗, and defineθ :
∫ H

l
⊗H ∗ →H , by

θ
(
t ⊗ h∗

)=
∑

h∗
(
S
(
X2t2p

2)αX3)X1t1p
1, ∀t ∈ ∫ H

l
, h∗ ∈H ∗, (2.5)

wherepR = ∑
p1 ⊗ p2 is the element defined in(1.19). Then the following assertion

hold:

(i) θ is an isomorphism of leftH -modules, where
∫ H

l
⊗ H ∗ is a left H -module via

h · (t ⊗ h∗) = t ⊗ h ⇀ h∗ ∀h ∈ H , t ∈ ∫ H

l , h∗ ∈ H ∗, and H is a left H -module

via left multiplication. Consequentlydimk

∫ H

l
= 1. The inverse ofθ is given by

θ−1(h)=
n∑

i=1

P(eih)⊗ ei, ∀h ∈H, (2.6)

whereP is the projection onto the space of left integrals, defined in(2.1).
(ii) The antipodeS is bijective.
(iii) S(

∫ H

l
)= ∫ H

r
, S(

∫ H

r
)= ∫ H

l
, anddimk

∫ H

r
= 1.

Proof. (i) First we show thatθ andθ−1 are inverses. Indeed, for allh ∈H we have:

θ
(
θ−1(h)

) (2.5)
(2.1)=

n∑
i,j=1

〈
ej , βS

(
S
(
X2(ej )2

)
αX3)eih

〉

〈
ei, S

(
Y 2X1

2(ej )(1,2)p
2)αY 3〉Y 1X1

1(ej )(1,1)p
1
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at
(1.20) =
n∑

j=1

〈
ej , βS

(
Y 2X1

2p
2S

(
X2)αX3)αY 3h

〉
Y 1X1

1p
1ej

(1.19), (1.3) =
∑

Y 1x1Z1βS
(
Y 2x2X1Z2

1βS
(
x3

1X
2Z2

2

)
αx3

2X
3Z3)αY 3h

(1.5), (1.4), (1.7), (1.6) =
∑

Y 1βS
(
Y 2X1βS

(
X2)αX3)αY 3h= h.

For all t ∈ ∫ H

l
andh∗ ∈H ∗ we compute

θ−1(θ(t ⊗ h∗)
) =

n∑
i=1

h∗
(
S
(
X2t2p

2)αX3)P (
eiX

1t1p
1)⊗ ei

(2.1), (2.2) =
n∑

i,j=1

h∗
(
S
(
X2t2p

2)αX3βS
(
S
(
Y 2(ej )2

)
αY 3)ei

)

〈
ej ,X1t1p

1〉Y 1(ej )1 ⊗ ei

(2.3) =
n∑

i=1

h∗
(
S
(
S
(
Y 2t(1,2)p

1
2

)
αY 3t2p

2)ei
)
Y 1t(1,1)p

1
1 ⊗ ei

(1.1), (1.5) =
n∑

i=1

h∗
(
S
(
S
(
Y 2p1

2

)
αY 3p2)ei

)
tY 1p1

1 ⊗ ei

(1.19), (1.3) =
n∑

i=1

h∗
(
S
(
S
(
y2

1x
1X2)αy2

2x
2X3

1βS
(
y3x3X3

2

))
ei

)
ty1X1 ⊗ ei

(1.5), (1.4), (1.7) =
n∑

i=1

h∗
(
S
(
S
(
x1)αx2βS

(
x3))ei

)
t ⊗ ei

(1.6) =
n∑

i=1

h∗(ei)t ⊗ ei = t ⊗ h∗.

Sinceθ is a bijection and dimk H = dimk H ∗ is finite, is follows that dimk
∫ H

l = 1. We are

left to show thatθ is H -linear. For allh ∈H , t ∈ ∫ H

l
andh∗ ∈H ∗ we have:

hθ
(
t ⊗ h∗

) =
∑

h∗
(
S
(
X2t2p

2)αX3)hX1t1p
1

(2.2) = 〈
h⇀ h∗, S

(
X2t2p

2)αX3〉X1t1p
1

= θ
(
t ⊗ h⇀ h∗

)
.

(ii) First we prove thatS is bijective.H ∗ is finite-dimensional, so it suffices to show th
S is injective. Leth∗ ∈H ∗ be such thatS(h∗)= 0, and take 0�= t ∈ ∫ H

l . For allh ∈H we
have
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θ
(
t ⊗ βS(h) ⇀ h∗

) = 〈
βS(h) ⇀h∗, S

(
X2t2p

2)αX3〉X1t1p
1

=
∑〈

h∗, S
(
X2t2p

2)αX3βS(h)
〉
X1t1p

1

(2.3) =
∑〈

h∗, S
(
ht2p

2)〉t1p1

=
∑〈

S
(
h∗

)
, ht2p

2〉t1p1 = 0.

Sinceθ is bijective, we obtain thatt⊗βS(h)⇀h∗ = 0. Now, sincet �= 0 and dimk

∫ H

l = 1,
it follows thatβS(h)⇀ h∗ = 0, for allh ∈H . Therefore, by (1.6), for allh′ ∈H we have

h∗
(
h′

)=
∑〈

h∗, h′S
(
x1)αx2βS

(
x3)〉=

∑〈
βS

(
x3) ⇀ h∗, h′S

(
x1)αx2〉= 0.

It is not hard to see thatS∗ :H ∗∗ → H ∗∗, S∗(h∗∗) = h∗∗ ◦ S, ∀h∗∗ ∈ H ∗∗, is a bijective
map. If we defineξ :H →H ∗∗ by ξ(h)(h∗)= h∗(h), ∀h ∈H , h∗ ∈H ∗, then we can easil
show that{ξ(ei)}i=1,n is a basis ofH ∗∗ dual to the basis{ei}i=1,n of H ∗, and it follows

thatξ is bijective. Moreover,ξ−1 is given byξ−1(h∗∗)=∑n
i=1 h∗∗(ei)ei , ∀h∗∗ ∈H ∗∗. In

addition,ξ−1 ◦ S∗ ◦ ξ = S soS is bijective.
(iii) We have already seen thatS is an anti-algebra automorphism ofH and

dimk

∫ H

l
= 1. The rest of the proof is identical to the proof for classical Hopf algebras✷

Remark 2.3. We cannot deduce the isomorphismθ in Theorem 2.2 from a Structur
Theorem for dual quasi-Hopf bicomodules. IfA is a dual quasi-Hopf algebra (for th
complete definition see the last section) then the category ofA-bicomodulesAMA is
monoidal andA is in a canonical way an algebra inAMA. Thus, it makes sense
define a right dual quasi-HopfA-bicomoduleM as being a rightA-module inAMA.
Denote byAMA

A the category whose objects are right dual quasi-HopfA-bicomodules and
morphismsA-bicomodule maps which are also rightA-linear (for more details see [19]
This definition is dual to the one given by Hausser and Nill [11] for quasi-Hopf bimod
So, using their Structure Theorem, by duality, we can prove a Structure Theorem fo
quasi-HopfA-bicomodules and then we can apply it in the particular caseM =H (hereH
is a finite-dimensional quasi-Hopf algebra andA=H ∗, the linear dual space ofH ). But, on
one hand, in order to obtainH as an object inH

∗MH ∗
H ∗ we need the antipodeS of H to be

bijective and, on the other hand, using the definition of Hausser and Nill for coinvar
in the dual case we do not obtain the space of integrals inH . As a consequence, if th
isomorphismθ is derived from a Structure Theorem for dual quasi-Hopf bicomodules
it is not the dual case of Hausser and Nill result.

Now, let M ∈ AMA
A. First, sinceA is a coassociative coalgebra we can define the

of right coinvariantsMco(A) of M as beingMco(A) := {m ∈ M | ρr(m) = m ⊗ 1}, where
ρr :M →M ⊗A, ρr(m)=∑

m(0) ⊗m(1), m ∈M, is the right coaction ofA onM. Since
ρr(m · a) = ρr(m)∆(a) for all m ∈ M and a ∈ A (we denote byM ⊗ A � m ⊗ A →
m ·a ∈M, m ∈M, a ∈A, the right action ofA onM), as in [4, Theorem 2.11] we can sho
thatP :M →Mco(A) given byP (m) := ∑

m(0) · β(m(1))S(m(2)), m ∈M, is well defined
and a surjection. Thus, the mapθ−1 :M → Mco(A) ⊗ A, θ−1(m) := ∑

P(m(0)) ⊗ m(1),
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m ∈ M, is well defined. It is not hard to see thatMco(A) ⊗ A ∈ AMA
A via the structures

(m⊗ a) · b :=m⊗ ab, andMco(A) ⊗A �m⊗ a → ∑
a1 ⊗m⊗ a2 ⊗ a3 ∈A⊗Mco(A) ⊗

A⊗ A, m ∈Mco(A), a, b ∈ A. In this wayθ−1 becomes a rightA-colinear map but not a
morphism inAMA

A; moreover, we do not know if, in general,θ−1 is bijective. Under thes
circumstances, if we takeH a finite-dimensional quasi-Hopf algebra thenH ∈ H ∗MH ∗

via

H � h→
n∑

i,j=1

ei ⊗ ejhei ⊗ ej ∈H ∗ ⊗H ⊗H ∗,

where{ei}i=1,n is a basis ofH with dual basis{ei}i=1,n of H ∗. Moreover, if we define

h · h∗ :=
∑

h∗
(
S
(
X2h2

)
αX3)X1h1, ∀h ∈H, h∗ ∈H ∗,

then with this structuresH is not an object inH
∗MH ∗

H ∗ but ρr(h · h∗) = ρr(h)∆̃(h∗),
H co(H ∗) = ∫ H

l and the projectionP :H → ∫ H

l is just the projectionP defined in (2.1).
Therefore, in this caseθ−1 coincides withθ−1 defined in (2.6), so it is bijective. We notic
that, in the proof of the fact thatθ−1 defined by (2.6) is the inverse ofθ , a key role is played
by the relation (2.3) in Lemma 2.1. Since the equality (2.3) involve all the structures ofH as
a quasi-Hopf algebra, it cannot be generalized for the coinvariantsMco(A) of a dual quasi-
Hopf A-bicomoduleM. In conclusion, in order to obtainθ from a Structure Theorem
for dual quasi-Hopf bicomodules we need the above context but it does not pro
“suggestion” for the general case. Also, the same kind of problems occur when we
with relative Hopf modules [4], instead of dual quasi-Hopf bicomodules.

Let H be a quasi-Hopf algebra andt a left integral inH . Using the fact thatH is an
associative algebra, we find thatth is also a left integral inH , for all h ∈H , hence the spac
of left (right) integrals inH is a two-sided ideal. Moreover, ifH is finite-dimensional, then
it follows from the uniqueness of the integral inH , that there existsµ ∈H ∗ such that

th= µ(h)t, ∀t ∈ ∫ H

l andh ∈H. (2.7)

More precisely,µ ∈ Alg(H, k). It was noted in [11] that Alg(H, k) is a group with
multiplication given byνξ = (ν ⊗ ξ) ◦∆, unit ε, and inverseµ−1 = µ ◦ S. In [11], µ is
called the modulus ofH , but, following the classical terminology for Hopf algebras,
will call µ the distinguished group-like element. Observe thatµ = ε if and only if H is
unimodular. As in the case of a Hopf algebra, it follows from the bijectivity of the antip
that

hr = µ−1(h)r = µ
(
S(h)

)
r, ∀r ∈ ∫ H

r andh ∈H. (2.8)

For infinite-dimensional Hopf algebras it is well-known that the space of left (ri
integrals inH is zero [21, p. 107]. In order to prove a similar result for quasi-Hopf alge
we first need a lemma.
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Lemma 2.4. LetH be a quasi-Hopf algebra in the sense of Drinfel’d and define

∆ :H →H ⊗H, ∆(h)=
∑

h1 ⊗ h2 :=
∑

q1h1p
1 ⊗ q2h2p

2, ∀h ∈H, (2.9)

wherepR = ∑
p1 ⊗ p2 and qR = ∑

q1 ⊗ q2 are defined by(1.19). If J is a non-zero
two-sided ideal ofH such that∆(J )⊆ J ⊗H , thenJ =H .

Proof. From (1.21), we easily deduce that

∑(
1⊗ S−1(p2))∆(

p1hq1)(1⊗ S
(
q2))=∆(h), ∀h ∈H.

This implies that∆(J )⊆ J ⊗H , sinceJ is a two-sided ideal ofH and∆(J ) ⊆ J ⊗H .
Now, if ε(J ) = 0, then for anyh ∈ H we haveh = ∑

ε(h1)h2 ∈ ε(J )H = 0, soJ = 0,
a contradiction. Thusε(J ) �= 0, and there existsa ∈ J with ε(a) = 1. Using (1.5), we
obtain thatβ = ε(a)β = ∑

a1βS(a2) ∈ JH ⊆ J , soβ ∈ J . Using (1.6) and the fact thatJ
is a two-sided ideal ofH , we find that 1=∑

X1βS
(
X2

)
αX3 ∈ J , andJ =H . ✷

For h ∈H andh∗ ∈ H ∗, we defineh∗ → h= ∑
h∗(h2)h1. For a two-sided idealI of

H , we letH ∗ → I be the subspace ofI generated by all the elements of the formh∗ → a,
with h∗ ∈H ∗ anda ∈ I .

Theorem 2.5. Let H be a quasi-Hopf algebra in the sense of Drinfel’d andI a non-zero
two-sided ideal ofH . Then

J =H ∗ → I =H.

As a consequence, we obtain

(i) If H is a quasi-Hopf algebra with an antipodeS, thenH is finite-dimensional if and
only if S is bijective and

∫ H

l
�= 0.

(ii) If a quasi-Hopf algebra in the sense of Drinfel’d is semisimple as an algebra, th
is finite-dimensional.

Proof. The statement follows from Lemma 2.4 if we can show thatJ is a non-zero two-
sided ideal ofH such that∆(J )⊆ J ⊗H .

Obviouslyε → h= h, and thereforeI ⊆ J . For allh ∈H , h∗ ∈H ∗ anda ∈ I we have

(
h∗ → a

)
h =

∑
h∗

(
q2a2p

2)q1a1p
1h

(1.20) =
∑

h∗
(
q2(ah1)2p

2S(h2)
)
q1(ah1)1p

1

=
∑(

S(h2)⇀h∗
)→ (ah1)

andJ is a right ideal.J is also a left ideal, since
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h
(
h∗ → a

) =
∑

h∗
(
q2a2p

2)hq1a1p
1

(1.20) =
∑

h∗
(
S−1(h2)q

2(h1a)2p
2)q1(h1a)1p

1

=
∑(

h∗ ↼ S−1(h2)
)→ (h1a).

Write f = ∑
f 1 ⊗ f 2. Using (1.22), (1.1) and (1.23) we can show that

h∗ → (
g∗ → h

)

=
∑[(

g1S
(
x3) ⇀ h∗ ↼ S−1(f 2X3))(g2S

(
x2) ⇀g∗ ↼ S−1(f 1X2))]→ (

X1ax1)

for all h∗, g∗ ∈ H ∗ andh ∈ H . I is a two-sided ideal ofH , so the above equality show
thatH ∗ → J ⊆ J . To prove that∆(J ) ⊆ J ⊗ H , we use the same arguments as in [
p. 12]. Takea ∈ J , and write∆(a)=∑n

i=1ai⊗a′i , wherea1, . . . , am ∈ J andam+1, . . . , an

are linearly independent moduloJ . For anyh∗ ∈H ∗, h∗ → a = ∑n
i=1 h∗(a′i )ai ∈ J . The

linear independence ofam+1, . . . , an modulo J implies thath∗(a′i ) = 0, and therefore
a′i = 0 (h∗ is arbitrary), for alli > m. We find that∆(a) ∈ J ⊗H , as needed.

(i) One implication follows from Theorem 2.2. Conversely, assume thatS is bijective
and I = ∫ H

l
�= 0. ThenI is a non-zero two-sided ideal ofH and the first part of ou

theorem tells us thatH ∗ → I = H . Thus there exist{h∗i }i=1,n ⊆ H ∗ and{ti}i=1,n ⊆
∫ H

l

such that 1= ∑n
i=1 h∗i → ti . For anyi = 1, n we have∆(ti) = ∑ni

j=1 ai
j ⊗ bi

j , for some

{ai
j }j=1,ni

⊆ H and {bi
j }j=1,ni

⊆ H . Therefore, for anyh∗ ∈ H ∗ and i = 1, n we have

h∗ → ti =∑ni

j=1h∗(bi
j )a

i
j . For allh ∈H we obtain that

h=
n∑

i=1

h
(
h∗i → ti

) =
n∑

i=1

(
h∗ ↼ S−1(h2)

)→ h1ti

=
n∑

i=1

(
h∗ ↼ S−1(h)

)→ ti sinceti ∈
∫ H

l
, ∀i = 1, n

=
n∑

i=1

ni∑
j=1

h∗
(
S−1(h)bi

j

)
ai
j .

This shows thatH is finite-dimensional, since it is a subspace of the span of{ai
j | i = 1, n,

j = 1, ni}.
(ii) Let H be a semisimple quasi-Hopf algebra with bijective antipode. Then Ker(ε) is

a two-sided ideal ofH . SinceH is a semisimple leftH -module, there exists a left idealI

of H such thatH = I ⊕Ker(ε). Ker(ε) has codimension 1 inH , henceI has dimension 1
Write 1= t + h, with t ∈ I , h ∈ Ker(ε). t �= 0, because 1/∈ Ker(ε). It follows thatI = kt ,
since dimk(I )= 1. For allh′ ∈H , we haveh′t ∈ I , and alsoh′t = ε(h′)t + (h′ − ε(h′)1)t
with ε(h′)t ∈ I and(h′ − ε(h′)1)t ∈ Ker(ε). Since we have a direct sum, it follows th
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h′t = ε(h′)t , and t is a non-zero left integral inH . From (i), it then follows thatH is
finite-dimensional. ✷
Remarks 2.6. (i) Let H be a quasi-Hopf algebra in the sense of Drinfel’d. Th
S(

∫ H

l )= ∫ H

r and dimk

∫ H

l = dimk

∫ H

r . Therefore, ifH is infinite-dimensional then
∫ H

l =∫ H

r = 0.
(ii) Let H be a finite-dimensional quasi-Hopf algebra andt a non-zero left integral inH .

Theorem 2.5 implies thatH =H ∗ → t so the map

θ :H ∗ →H, θ
(
h∗

)= h∗ → t =
∑

h∗
(
q2t2p

2)q1t1p
1 ∀h∗ ∈H ∗, (2.10)

is bijective. Moreover,θ is left H -linear, where the leftH -action onH ∗ is given by the
formula

h · h∗ = h∗ ↼ S−1(h)

for h ∈ H andh∗ ∈ H ∗. If H is a classical Hopf algebra, thenθ is also leftH ∗-linear
where theH ∗-actions onH ∗ andH are given by convolution andh∗ ⇀ h= ∑

h∗(h2)h1,
respectively. This means thatH is a left cyclicH ∗-module generated by a left non-ze
integral.

3. Cointegrals on quasi-Hopf algebras

In the first part of this section we study the cointegrals on a finite-dimensional q
Hopf algebra (so the antipode ofH is bijective).

Definition 3.1 [11]. Let H be a quasi-Hopf algebra,M an H -bimodule andρ :M →
M ⊗ H an H -bimodule map. Then(M,ρ) is called a right quasi-HopfH -bimodule if
the following relations hold:

(idM ⊗ ε) ◦ ρ = idM, (3.1)

Φ · (ρ ⊗ idM)
(
ρ(m)

)= (idM ⊗∆)
(
ρ(m)

) ·Φ, ∀m ∈M. (3.2)

A morphism between two right quasi-HopfH -bimodules is anH -bimodule map
f :M →M ′ satisfyingρ′ ◦ f = (f ⊗ id) ◦ ρ. HMH

H is the category of right quasi-Hop
H -bimodules and morphisms of right quasi-HopfH -bimodules.

We will use the Sweedler type notation

ρ(m)=
∑

m(0) ⊗m(1), (ρ ⊗ idM)
(
ρ(m)

)=m(0,0) ⊗m(0,1) ⊗m(1), etc.
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Let H be a quasi-Hopf algebra andM a right quasi-HopfH -bimodule. We define
E :M →M , by

E(m)=
∑

X1 ·m(0) · βS
(
X2m(1)

)
αX3, (3.3)

for all m ∈M.

McoH = {
n ∈M |E(n)= n

}

is called the space of coinvariants ofM. We also have (cf. [11, Corollary 3.9])

McoH =
{
n ∈M

∣∣ ρ(n)=
∑

E
(
x1 · n) · x2 ⊗ x3

}
. (3.4)

We have the following Structure Theorem for right quasi-HopfH -bimodules (see [11
Theorem 3.8]). The map

ν :McoH ⊗H →M, ν(n⊗ h)= n · h, ∀n ∈McoH , h ∈H, (3.5)

is an isomorphism of right quasi-HopfH -bimodules. HereMcoH ⊗ H is a right quasi-
Hopf H -bimodule via the structuresa · (n⊗ h) · b=∑

E(a1 · n)⊗ a2hb andρ(n⊗ h)=∑
E(x1 · n)⊗ x2h1 ⊗ x3h2, ∀n ∈N , a,h, b ∈H . The inverse ofν is given by

ν−1(m)=
∑

E(m(0))⊗m(1), ∀m ∈M. (3.6)

Now, let H be a finite-dimensional quasi-Hopf algebra; recall that the antipode is
automatically bijective. Let{ei}i=1,n be a basis inH with dual basis{ei}i=1,n in H ∗ and
consider

U =
∑

g1S
(
q2)⊗ g2S

(
q1), V =

∑
S−1(f 2p2)⊗ S−1(f 1p1), (3.7)

wheref = ∑
f 1 ⊗ f 2 is the element defined by (1.15),f−1 = ∑

g1 ⊗ g2, andqR =∑
q1 ⊗ q2 andpR = ∑

p1 ⊗ p2 are defined as in (1.19). Following [11],H ∗ is right
quasi-HopfH -bimodule. The structure is the following:

h · h∗ · h′ = S
(
h′

)
⇀ h∗ ↼S−1(h), ∀h,h′ ∈H,h∗ ∈H ∗, (3.8)

ρ
(
h∗

)=
n∑

i=1

ei ∗ h∗ ⊗ ei, ∀h∗ ∈H ∗, (3.9)

where the (non-associative) multiplication∗ :H ∗ ⊗H ∗ →H ∗ is given by

〈
h∗ ∗ g∗, h

〉=
∑

h∗
(
V 1h1U

1)g∗(V 2h2U
2), ∀h∗, g∗ ∈H ∗, h ∈H. (3.10)
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The coinvariantsλ ∈H ∗coH are called left cointegrals onH and the space of left cointe
grals is denoted byL. Thus dimk L= 1 and the projectionE :H ∗ → L is given by

〈
E

(
h∗

)
, h

〉=
n∑

i=1

〈
ei ⊗ h∗,∆

(
S−1(q1)hS2(q2ei

)
S(β)

)〉
, (3.11)

for all h∗ ∈ H ∗ andh ∈ H . Here∆(h) = ∑
V 1h1U

1 ⊗ V 2h2U
2, for any h ∈ H . The

transposeET :H →H is given by

ET(h)=
n∑

i=1

〈
ei ⊗ id,∆

(
S−1(q1)hS2(q2ei

)
S(β)

)〉
, ∀h ∈H (3.12)

and provides a projection onto the space of right integrals inH . Moreover, the dual pairin
L⊗ ∫ H

r
→ k, λ⊗ r 	→ 〈λ, r〉 is nondegenerate [11, Lemma 4.4].

WhenH is an ordinary Hopf algebra the left cointegrals onH are precisely the lef
integrals inH ∗ (i.e., an elementλ ∈H ∗ such that

∑
λ(h2)h1 = λ(h)1,∀h ∈H ). For quasi-

Hopf algebrasH we will give some characterizations for left cointegrals. First, we n
another formula for the projection (3.11), giving the connection between the projectP

onto the space of left integrals defined by (2.1) and the projectionET, defined by (3.12)
This provides an answer to a question raised in [11].

Lemma 3.2. LetH be a finite-dimensional quasi-Hopf algebra andE the map defined b
(3.11). Then, for allh∗ ∈H ∗ andh ∈H , we have:

〈
E

(
h∗

)
, h

〉 = 〈
h∗, S−1(P (

S(h)
))〉

. (3.13)

In particular, if ET is the transpose map(3.12)andP :H → ∫ H

l is the projection(2.1)
thenET(h)= S−1(P (S(h))), for all h ∈H .

Proof. Takef = ∑
f 1 ⊗ f 2 = ∑

F 1 ⊗ F 2 andf−1 = ∑
g1 ⊗ g2 = ∑

G1 ⊗G2 as in
(1.15) and (1.16). It is easy to see that

∑
g1S

(
g2α

)= β,
∑

S
(
βf 1)f 2 = α,

∑
f 1βS

(
f 2)= S(α), (3.14)

and we compute, forh∗ ∈H ∗ andh ∈H :
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〈
E

(
h∗

)
, h

〉=
n∑

i=1

〈
ei ⊗ h∗,∆

(
S−1(q1)hS2(q2ei

)
S(β)

)〉

(3.7), (1.11) =
n∑

j=1

〈
ej , hS2(q2S−1(f 2q1

2p
2)(ej )1U

1)S(β)
〉

〈
h∗, S−1(f 1q1

1p
1)(ej )2U

2〉

(1.21), (3.7), (1.19) =
n∑

j=1

〈
ej , hS2(S−1(f 2)(ej )1g

1S
(
X2)αX3S−1(β)

)〉

〈
h∗, S−1(f 1)(ej )2g

2S
(
X1)〉

(1.9), (1.18) =
n∑

j=1

〈
ej , hS2(S−1(f 2)(ej )1F

2
1 X2g1

2G
2αS−1(βF 1X1g1

1G
1))〉

〈
h∗, S−1(f 1)(ej )2F

2
2X3g2〉

(3.14), (1.5) =
n∑

i=1

〈
ei, hS2(S−1(f 2)(ei)1X

2)S(
βF 1X1β

)
F 2〉

〈
h∗, S−1(f 1(ei)2X

3〉

(3.14), (1.11) =
n∑

i=1

〈
ei, hS2(S−1(S(ei)2

)
S−1(f 2)X2S−1(S−1(α)X1β

))〉

〈
h∗, S−1(S(ei)1

)
S−1(f 1)X3〉

(1.9), (1.18) =
n∑

i=1

〈
ei, hS

(
S(ei)2

)
S
(
βF 1f 2

1 X2g1
2

)
F 2f 2

2 X3g2α
〉

〈
h∗, S−1(S(ei)1

)
S−1(f 1X1g1

1

)〉

(3.14), (1.5) =
n∑

j=1

〈
ej , g1S

(
hS

(
(ej )2

)
S
(
X2)αX3g2α

)〉〈
h∗, S−1(X1(ej )1

)〉

(3.14), (1.19), (2.1) = 〈
h∗, S−1(P (

S(h)
))〉

.

The last assertion follows easily by (3.13) and (3.12).✷
Lemma 3.3. Let H be a finite-dimensional quasi-Hopf algebra andE :H ∗ → L the
projection(3.11). Then

E
(
h∗ ↼ S−1(h)

)= µ(h)E
(
h∗

)
, ∀h∗ ∈H ∗ andh ∈H, (3.15)

λ
(
S−1(h)h′

)=
∑

µ(h1)λ
(
h′S(h2)

)
, ∀h,h′ ∈H, (3.16)

whereµ is the distinguished group-like element ofH ∗.
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Proof. The relations (3.15) follow easily from (3.13) and the fact thatP(h) ∈ ∫ H

l , ∀h ∈H .
To prove (3.16), let{ei}i=1,n be a basis inH with dual basis{ei}i=1,n in H ∗ andqR the
element defined by (1.19). For allh,h′ ∈H andλ ∈L we have:

λ
(
S−1(h)h′

) = 〈
E(λ),S−1(h)h′

〉

(3.13), (2.1) =
n∑

i=1

〈
ei, βS2(q2(ei)2

)
S
(
h′

)
h
〉〈
λ,S−1(q1(ei)1

)〉

=
n∑

j=1

〈
ej , βS2(q2(ej )2h2

)
S
(
h′

)〉〈
λ,S−1(q1(ej )1h1

)〉

(2.1), (3.13) =
∑〈

E
(
λ ↼S−1(h1)

)
, h′S(h2)

〉

(3.15) =
∑

µ(h1)λ
(
h′S(h2)

)
. ✷

Proposition 3.4. LetH be a finite-dimensional quasi-Hopf algebra andµ the distinguished
group-like element ofH ∗. For λ ∈H ∗, the following statements are equivalent:

(a) λ is a left cointegral onH ;
(b) for all h ∈H , we have

∑
λ
(
S−1(f 1)h2S

−1(q1g1))S−1(f 2)h1S
−1(q2g2)

=
∑

µ
(
q1

1x
1)〈λ,hS−1(f 1)g2S

(
q1

2x
2)〉q2x3S−1(S−1(f 2)g1); (3.17)

(c) for all h ∈H , we have

∑
λ
(
S−1

(
f 1)h2U

2)S−1
(
f 2)h1U

1 =
∑

µ
(
q1

1x
1)〈λ,hS(

q1
2x

2)〉q2x3.

Heref =∑
f 1 ⊗ f 2, qR =∑

q1 ⊗ q2, andU =∑
U1 ⊗U2 are defined respectively b

(1.15), (1.19), and(3.7), andf−1 =∑
g1 ⊗ g2.

Proof. (a)⇒ (b). Suppose thatλ is a left cointegral. As before, we writef =∑
f 1⊗f 2 =∑

F 1 ⊗ F 2 = ∑
F 1 ⊗ F 2, f−1 = ∑

g1 ⊗ g2 = ∑
G1 ⊗ G2 = ∑

G1 ⊗ G2, qR =∑
q1 ⊗ q2, andpR =∑

p1 ⊗ p2. Using (3.4), (3.8), (3.9), and (3.15), we find that

∑
λ
(
V 2h2U

2)V 1h1U
1 =

∑
µ

(
x1)λ(

hS
(
x2))x3, (3.18)

for all h ∈H , and we compute that



570 D. Bulacu, S. Caenepeel / Journal of Algebra 266 (2003) 552–583
∑
µ

(
q1

1x
1)〈λ,hS−1(f 1)g2S

(
q1

2x
2)〉q2x3S−1(S−1(f 2)g1)

(3.15), (3.18) =
∑〈

λ,V 2[S−1(q1)hS−1(f 1)g2]
2U

2〉q2V 1[S−1(q1)hS−1(f 1)g2]
1

U1S−1(S−1(f 2)g1)

(3.7), (1.11) =
∑〈

λ,S−1(F 1q1
1p

1)h2S
−1(F 1f 1

1 G1)g2
2U

2〉q2S−1(F 2q1
2p

2)h1S
−1

(
F 2f 1

2 G2)g2
1U

1S−1(S−1(f 2)g1)

(1.21), (1.11) =
∑〈

λ,S−1(S(h)1
)
S−1(F 1f 1

1

)
g2

2G
2S

(
X1)〉S−1(S(h)2

)
S−1(F 2f 1

2

)

g2
1G

1S
(
X2)αS−1(S−1(f 2)g1S

(
X3))

(1.9), (1.18) =
∑〈

λ,S−1(S(h)1
)
S−1(S(

X3)F 1f 1
1

)
g2〉S−1(S(h)2

)
S−1(S(

X2)F 2f 1
2

)

g1
2G

2αS−1(S−1(S(
X1)f 2)g1

1G
1)

(3.14), (1.5) =
∑〈

λ,S−1(S(h)1
)
S−1(S(

X3)F 1f 1
1

)〉
S−1(S(h)2

)

S−1(S−1(S(
X1)f 2)βS

(
X2)F 2f 1

2

)

(1.9), (1.18) =
∑〈

λ,S−1(S(h)1
)
S−1(f 1X1)〉S−1(S(h)2

)

S−1(S−1(F 2f 2
2 X3)βF 1f 2

1 X2)

(3.14), (1.5) =
∑〈

λ,S−1(X1S(h)1
)〉
S−1(S−1(αX3)X2S(h)2

)

(1.19), (1.11) =
∑〈

λ,S−1(f 1)h2S
−1(q1g1)〉S−1(f 2)h1S

−1(q2g2).

(b)⇒ (a). Assume thatλ ∈H ∗ satisfies (3.17). It follows from (1.11) that

∑
λ
(
S−1(q1h1

))
q2h2 =

∑
µ

(
q1

1x
1)〈λ,S−1(f 1h

)
g2S

(
q1

2x
2)〉S−1(f 2)g1S

(
q2x3),

(3.19)

for all h ∈H and

〈
λ,S−1(P (

S(h)
))〉

(2.1), (3.19) =
∑

µ
(
q1

1x
1) 〈

λ,S−1(f 1βS
(
f 2)S2(g1)S3(q2x3)S(h)

)

g2S
(
q1

2x
2)〉

(3.14) =
∑

µ
(
q1

1x
1) 〈

λ,hS2(q2x3)S(
g1)αg2S

(
q1

2x
2)〉

(3.14), (1.19), (1.20) = λ(h),

and it follows from Lemma 3.2 thatλ ∈ L.
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(c) ⇒ (a). Repeating the computations of the first part of the proof of Lemma 3.2
find that the projectionE (cf. (3.11)) is given by

〈
E

(
h∗

)
, h

〉 =
n∑

i=1

〈
ei, hS

(
f 2)S2((ei)1U

1)S(β)
〉〈
h∗, S−1(f 1)(ei)2U

2〉, (3.20)

for all h∗ ∈H , h ∈H . Using (3.20), we can compute thatE(λ)= λ, soλ ∈ L.
(a)⇒ (c). Assume thatλ ∈ L. We calculate

∑
µ

(
q1

1x
1)〈λ,hS(

q1
2x

2)〉q2x3

(3.16), (3.18) =
∑〈

λ,V 2[S−1(q1)h]
2U

2〉q2V 1[S−1(q1)h]
1U

1

(3.7), (1.11), (1.21) =
∑〈

λ,S−1(f 1)h2U
2〉S−1(f 2)h1U

1

and the proof is complete.✷
Remark 3.5. Formula (3.19) is equivalent to (3.17), and can be viewed as an
characterization of left cointegrals. In the case of a Hopf algebra, (3.19) takes the fo

∑
λ
(
S−1(h1)

)
h2 = λ

(
S−1(h)

)
1

which is the well known statement thatλ is a left integral if and only ifλ ◦ S−1 is a right
integral.

Observe that our definition of cointegral only makes sense in the case whereH is finite-
dimensional: indeed, we need a dual basis ofH in order to makeH ∗ into a right quasi-
Hopf bimodule (see 3.9). Also the equivalent characterizations from Proposition 3.4
no sense in the infinite-dimensional case, as they involve the distinguished element
can only be defined in the finite-dimensional case. Nevertheless, the cointegral has
applications in the finite-dimensional case (see [11]).

Following [5, Lemma 4.1], we now give an alternative definition for the spac
coinvariants of a right quasi-HopfH -bimoduleM:

McoH =
{
n ∈M

∣∣ ρ(n)=
∑

x1 · n · S(
x3

2X
3)f 1 ⊗ x2X1βS

(
x3

1X
2)f 2

}
. (3.21)

Using this definition, we will prove a second Structure Theorem for right quasi-H
bimodules. ForM ∈ HMH

H , we define

E :M →M, E(m) :=
∑

m(0) · βS(m(1)), ∀m ∈M. (3.22)

It follows that

E(m)=
∑

E
(
p1 ·m) · p2, E(m)=

∑
X1 ·E(m) · S(

X2)αX3, ∀m ∈M. (3.23)
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By [11, Proposition 3.4], we have

E(m · h)= ε(h)E(m), E
(
h ·E(m)

)=E(h ·m), h ·E(m)=
∑

E(h1 ·m) · h2

(3.24)

for all m ∈M andh ∈H and therefore the maps

E :McoH →McoH and E :McoH →McoH (3.25)

are each others inverses. In the case of a classical Hopf algebra, the mapsE andE are
equal to the identity onMcoH =McoH . Moreover, in this caseMcoH is invariant under the
left adjointH -actionh �m := ∑

h1 · m · S(h2), in the sense thatE(h �m) = h � E(m),
h ∈ H , m ∈ M. In the quasi-Hopf case the projectionE generalizes this property. Mor
precisely, if we defineh ¬ m = E(h · m), then by [11, Proposition 3.4], we have th
h ·E(m)=∑[h1¬E(m)] ·h2. Now, as in the Hopf algebra case, we will prove thatMcoH

is invariant under the left adjointH -action.

Lemma 3.6. LetH be a quasi-Hopf algebra,M a right quasi-HopfH -bimodule.

(a) Im(E)⊆McoH . If n ∈M thenn ∈McoH ⇐⇒E(n)= n.
(b) McoH is a leftH -submodule ofM, whereM is considered a leftH -module via the lef

adjoint action, that ish �m=∑
h1 ·m · S(h2), for all h ∈H andm ∈M.

Proof. (a) Letm ∈M andδ =∑
δ1 ⊗ δ2 be given by (1.14). Then

ρ
(
E(m)

) =
∑

m(0,0) · β1S(m(1))1 ⊗m(0,1)β2S(m(1))2

(1.17), (1.11) =
∑

m(0,0) · δ1S(m(1)2)f
1 ⊗m(0,1)δ

2S(m(1)1)f
2

(1.14), (1.3), (1.5) =
∑

m(0,0) · x1βS
((

m(1)x
3)

2X
3)f 1

⊗m(0,1)x
2X1βS

((
m(1)x

3)
1X

2)f 2

(3.2), (1.1), (1.5) =
∑

x1 ·m(0) · βS
(
x3

2X
3m(1)

)
f 1 ⊗ x2X1βS

(
x3

1X
2)f 2

=
∑

x1 ·E(m) · S(
x3

2X
3)f 1 ⊗ x2X1βS

(
x3

1X
2)f 2.

Therefore Im(E) ⊆ McoH , implying immediately one implication of the second pa
Conversely, ifn ∈McoH then

E(n) =
∑

n(0) · βS(n(1))

(3.21), (3.14) =
∑

x1 · n · S(
x2X1βS

(
x3

1X
2)αx3

2X
3)

(1.5), (1.6) = n.
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(b) If M is anH -bimodule then is not hard to see thatM is a leftH -module via the
H -actionh�m= ∑

h1 ·m ·S(h2), h ∈H , m ∈M. Using (3.23), (3.24) and (1.20) we ha

thatE(h �m) = h � E(m) for all h ∈ H , m ∈ M. By part (a), we see thatMcoH is a left
H -module under the left adjoint action.✷

LetH be a quasi-Hopf algebra andM a right quasi-HopfH -bimodule. We already hav
seen that the mapE :McoH →McoH is an isomorphism. It is alsoH -linear since

E(h¬ n) = E
(
E(h · n))

(3.23), (3.24) =
∑

E
(
p1h · n) · p2

(1.24) (3.24) =
∑

h1 ·E
(
p1 · n) · p2S(h2)

(3.23) = h �E(n)

for all h ∈H andn ∈McoH .
McoH is a leftH -module, so, by [11, Lemma 3.2],McoH ⊗H becomes a right quas

Hopf H -bimodule with the following structure:

a · (n⊗ h) · b=
∑

a1 � n⊗ a2hb, ρ′(n⊗ h)=
∑

x1 � n⊗ x2h1 ⊗ x3h2 (3.26)

for all a, b,h ∈H andn ∈McoH . We can now state the second Structure Theorem for
quasi-Hopf bimodules.

Theorem 3.7. Let H be a quasi-Hopf algebra andM a right quasi-HopfH -bimodule.
ConsiderMcoH ⊗H as a right quasi-HopfH -bimodule as in(3.26). The map

ν :McoH ⊗H →M, ν(n⊗ h)=
∑

X1 · n · S(
X2)αX3h (3.27)

is an isomorphism of quasi-HopfH -bimodules. The inverse ofν is given by the formula

ν−1(m)=
∑

E(m(0))⊗m(1). (3.28)

Proof. We have seen thatMcoH ∼=McoH are isomorphic as leftH -modules, and therefor
McoH ⊗ H ∼= McoH ⊗ H as quasi-HopfH -bimodules (in both cases, the structu
is determined by [11, Lemma 3.2]). From the Hausser–Nill Structure Theorem
Theorem 3.8], it follows thatM ∼=McoH ⊗H as quasi-HopfH -bimodules. Thus we find
thatMcoH ⊗H ∼= M as quasi-HopfH -bimodules, and it is straightforward to verify th
the connecting isomorphism is exactlyν. ✷
Remark 3.8. Theorem 3.7 can be proved also in a direct way, without using the Hau
Nill Structure Theorem. This proof is straightforward, but long and technical. Howev
has the advantage that it is independent of the bijectivity of the antipode, which ma
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more general in the infinite-dimensional case. At first sight, the Hausser–Nill definiti
coinvariants makes use of the bijectivity of the antipode; however, a careful inspect
their definition and their proof of the Structure Theorem shows that we do not really
the bijectivity.

The antipode of a finite-dimensional quasi-Hopf algebra is bijective, so its dualH ∗ is
a right quasi-HopfH -bimodule with structures defined in (3.8), (3.9). The coinvaria
λ ∈ H ∗coH are called left alternative cointegrals onH , and the space of left alternativ
cointegrals is denoted byL = H ∗coH . From Theorem 3.7, we obtain immediately t
following result.

Theorem 3.9. LetH be a finite-dimensional quasi-Hopf algebra. Thendimk L= 1.

Applying (1.3) and (1.5), we find thatλ ∈H ∗ is an alternative left cointegral if and on
if

∑
λ
(
V 2h2U

2)V 1h1U
1 =

∑
λ
(
S−1

(
X1

1p
1)hS(

S
(
X3)f 1))X1

2p
2S

(
X2)f 2 (3.29)

for all h ∈ H . (3.29) can be used to extend the definition of left alternative cointegr
infinite-dimensional quasi-Hopf algebras.

4. Integrals for dual quasi-Hopf algebras

Sullivan’s Theorem [20] asserts that the space of left integrals on a Hopf algeb
dimension at most one. Various new proofs of this result have been given in recent
see [3,6,18,22]. The aim of this section is to give a proof of the uniqueness of integr
a dual quasi-Hopf algebra. Our approach is based on the methods developed in [3].

Throughout,A will be a dual quasi-bialgebra or a dual quasi-Hopf algebra. Follow
[14], a dual quasi-bialgebraA is a coassociative coalgebraA with comultiplication∆ and
counitε together with coalgebra morphismsM :A⊗A→A (the multiplication; we write
M(a ⊗ b) = ab) andu : k → A (the unit; we writeu(1) = 1), and an invertible elemen
ϕ ∈ (A⊗A⊗A)∗ (the reassociator), such that for alla, b, c, d ∈A the following relations
hold:

∑
a1(b1c1)ϕ(a2, b2, c2)=

∑
ϕ(a1, b1, c1)(a2b2)c2, (4.1)

1a = a1= a, (4.2)
∑

ϕ(a1, b1, c1d1)ϕ(a2b2, c2, d2)=
∑

ϕ(b1, c1, d1)ϕ(a1, b2c2, d2)ϕ(a2, b3, c3), (4.3)

ϕ(a,1, b)= ε(a)ε(b). (4.4)

A is called a dual quasi-Hopf algebra if, moreover, there exist an antimorphismS of the
coalgebraA and elementsα,β ∈H ∗ such that, for alla ∈A:
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∑
S(a1)α(a2)a3 = α(a)1,

∑
a1β(a2)S(a3)= β(a)1, (4.5)

∑
ϕ
(
a1β(a2), S(a3), α(a4)a5

)=
∑

ϕ−1(S(a1), α(a2)a3, β(a4)S(a5)
)= ε(a). (4.6)

It follows from the axioms thatα(1)β(1)= 1, so we can assume thatα(1)= β(1)= 1 and,
S(1)= 1. Moreover (4.3) and (4.4) imply

ϕ(1, a, b)= ϕ(a, b,1)= ε(a)ε(b), ∀a, b ∈A. (4.7)

If A= (A,M,u,ϕ,S,α,β) is a dual quasi-Hopf algebra, thenAop,cop is also a dual quasi
Hopf algebra. The structure maps are

ϕop,cop(a, b, c)= ϕ(c, b, a), Sop,cop= S, αop,cop= β, and βop,cop= α.

If A is a dual quasi-bialgebra, thenA∗ is an algebra, with multiplication given by conv
lution and unitε.

Definition 4.1. A map T ∈ A∗ is called a left integral on the dual quasi-bialgebraA if
a∗T = a∗(1)T for anya∗ ∈A∗. Left integrals onAop,cop are called right integrals onA.

The set of left (right) integrals onA is denoted by
∫
l

(
∫
r
). We keep the same notatio

as in Section 3 but we will specify every time which kind of integral we are using.
clear thatT ∈ A∗ is a left integral if and only if

∑
T (a2)a1 = T (a)1 for all a ∈ A.

∫
l

is
a subspace ofA∗. Moreover, as in the Hopf algebra case,

∫
l is a two-sided ideal in the

algebraA∗.
Let A∗rat be the left rational part ofA∗. A∗rat is the sum of rational left ideals of th

algebraA∗, see [21, Chapter II]. Note thatA∗rat⊆A∗ and

a∗ ∈A∗rat ⇐⇒ ∃(a∗i
)
i=1,n ⊆A∗ and (ai)i=1,n ⊆A such that

b∗a∗ =
n∑

i=1

b∗(ai)a
∗
i , ∀b∗ ∈A∗. (4.8)

It follows that
∫
l ⊆A∗rat. In particular, ifA∗rat= 0, then

∫
l = 0.

Later in this section we will show that the left and right rational parts ofA∗ are equal,
justifying our notation. As in the Hopf algebra case, we first describe the conne
betweenA∗rat and

∫
l . It is well known thatA∗rat is a rational leftA∗-module, and this

induces a rightA-comodule structure onA∗rat defined by

ρ :A∗rat→A∗rat⊗A,

ρ(a∗)=
∑

a∗(0) ⊗ a∗(1) ⇐⇒ b∗a∗ =
∑

b∗
(
a∗(1)

)
a∗(0), (4.9)

for all b∗ ∈A∗. This can be rewritten as follows:

ρ(a∗)=
∑

a∗ ⊗ a∗ ⇐⇒
∑

a∗(a2)a1 =
∑

a∗ (a)a∗ , ∀a ∈A. (4.10)
(0) (1) (0) (1)



576 D. Bulacu, S. Caenepeel / Journal of Algebra 266 (2003) 552–583

.2
e,
Now, define the mapσ :A⊗A→A∗ by

σ(a ⊗ b)(c)= ϕ(c, a, b), ∀a, b, c ∈A. (4.11)

σ is convolution invertible, the inverseσ−1 is given byσ−1(a ⊗ b)(c)= ϕ−1(c, a, b), for
all a, b, c ∈A. We introduce the following notation, fora∗ ∈A∗ anda ∈A:

a∗ ↽ a = S(a)⇀ a∗ ∈A∗.

For alla∗ ∈A∗rat, we defineP ∗(a∗) by

P ∗(a∗)=
∑

β
(
a∗(1)

)
α
(
S
(
a∗(3)

))
σ
(
S2(a∗(4)

)⊗ S
(
a∗(2)

))(
a∗(0) ↽ S

(
a∗(5)

))
. (4.12)

We now claim thatP ∗(a∗) ∈ ∫
l , for all a∗ ∈A∗rat. Indeed, for allb∗ ∈A∗, we calculate:

〈
b∗(1)P ∗(a∗), a

〉

(4.12), (4.5) =
∑〈

b∗, a∗(1)β
(
a∗(2)

)
S
(
a∗(3)

)〉
α
(
S
(
a∗(5)

))
ϕ
(
a1, S

2(a∗(6)
)
, S

(
a∗(4)

))
〈
a∗(0), a2S

2(a∗(7)
)〉

(4.10), (4.1) =
∑

β
(
a∗(1)

)〈
b∗, a1

[
S2(a∗(5)

)
α
(
S
(
a∗(4)

))
S
(
a∗(3)

)]〉
ϕ
(
a2, S

2(a∗(6)
)
, S

(
a∗(2)

))
〈
a∗(0), a3S

2(a∗(7)
)〉

(4.5), (4.12) =
∑

b∗(a1)
〈
P ∗(a∗), a2

〉= 〈
b∗P ∗(a∗), a

〉
.

Proposition 4.2. LetA be a dual quasi-Hopf algebra andσ :A⊗A→A∗ the map defined
in (4.11). Thenθ∗ :

∫
l ⊗A→A∗rat, given by

θ∗(T ⊗ a)=
∑

σ
(
S(a5), α(a6)a7

)
(T ↽ a4)σ

−1(S(a3)⊗ β
(
S(a2)

)
S2(a1)

)
, (4.13)

is an isomorphism of rightA-comodules.

Proof. In the situation whereA is finite-dimensional, the proof follows from Theorem 2
by duality. This is why we restrict to proving thatθ∗ is well-defined and has an invers
leaving other details to the reader. Fora∗ ∈A∗, T ∈ ∫

l anda ∈A, we compute that

〈
a∗θ∗(T ⊗a), b

〉

=
∑

a∗(b1)ϕ
(
b2, S(a5), α(a6)a7

)
T

(
b3S(a4)

)
ϕ−1(b4, S(a3), β

(
S(a2)

)
S2(a1)

)
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(4.5) =
∑〈

a∗, b1
(
S(a6)α(a7)a8

)〉
ϕ
(
b2, S(a5), a9

)
T

(
b3S(a4)

)

ϕ−1(b4, S(a3), β
(
S(a2)

)
S2(a1)

)

(4.1) =
∑〈

(a8 ⇀ a∗)T , b2S(a4)
〉
ϕ
(
b1, S(a5), α(a6)a7

)

ϕ−1(b3, S(a3), β
(
S(a2)

)
S2(a1)

)

=
∑

a∗(a2)
〈
θ∗(T ⊗ a1), b

〉
,

hence

a∗θ∗(T ⊗ a)=
∑

a∗(a2)θ
∗(T ⊗ a1). (4.14)

From (4.8) it follows thatθ∗(T ⊗ a) ∈A∗rat, as needed.∫
l
⊗A is a rightA-comodule with structure induced by the comultiplication onA, and

it follows then from (4.9) thatθ∗ is rightA-colinear.
We claim that the inverse ofθ∗ is given by

θ∗−1 :A∗rat→ ∫
l ⊗A, θ∗−1(a∗)=

∑
P ∗(a∗(0)

)⊗ a∗(1), (4.15)

whereρ(a∗) = ∑
a∗(0) ⊗ a∗(1) ∈ A∗rat ⊗ A is defined as in (4.9). It is clear thatθ∗−1 is

well defined. To show thatθ∗ andθ∗−1 are each others inverses, we need the follow
equalities, for anyT ∈ ∫

l anda, b ∈A:

∑
ϕ
(
a2, S(b2), α(b3)b4

)
T

(
a3S(b1)

)
a1

=
∑

ϕ
(
a1, S(b2), α(b3)b4

)
T

(
a2S(b1)

)
b5, (4.16)

T
(
aS(b)

)=
∑

ϕ
(
a1, S(b2)α(b3), b4β(b5)

)
T

(
a2S(b1)

)

=
∑

ϕ
(
β(a1)a2, S(b2), α(b3)b4

)
T

(
a3S(b1)

)
. (4.17)

Note that these formulas are the formal duals of (2.2) and (2.3).✷
Corollary 4.3. LetA be a dual quasi-Hopf algebra. ThenA∗rat= 0 if and only if

∫
l = 0.

Corollary 4.4. Assume that a dual quasi-Hopf algebraA has a non-zero left integra
Then the antipodeS is injective. IfA is finite-dimensional, then the left integral space h
dimension1, and the antipodeS is bijective.

Proof. Let T be a non-zero left integral, and assume thatS(a) = 0. LetS be the algebra
antimorphism dual toS. If θ∗ is the map defined by (4.13) then for alla∗ ∈A∗ andb ∈A

we have:
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are
〈
θ∗

(
T ⊗ βS(a∗) ⇀ a

)
, b

〉

=
∑

β(a2)a
∗(S(a3)

)〈
θ∗(T ⊗ a1), b

〉

=
∑

β(a8)a
∗(S(a9)

)
ϕ
(
b1, S(a5), α(a6)a7

)
T

(
b2S(a4)

)

ϕ−1(b3, S(a3), β
(
S(a2)

)
S2(a1)

)

(4.17) =
∑

a∗
(
S(a5)

)
T

(
b1S(a4)

)
ϕ−1(b2, S(a3), β

(
S(a2)

)
S2(a1)

)= 0.

Sinceθ∗ is bijective andT �= 0, it is follows thatβS(a∗) ⇀ a = 0, for anya∗ ∈A∗. Thus∑
β(a2)a1 ⊗ S(a3)= 0 and therefore

∑
β(a5)a1 ⊗ a2 ⊗ a3 ⊗ a4 ⊗ S(a6)= 0.

By (4.6) we obtain thata =∑
ϕ−1(S(a2), α(a3)a4, β(a5)S(a6))a1 = 0, andS is injective.

If A is finite-dimensional thenA∗rat = A∗. We obtain thatθ∗ :
∫
l ⊗ A → A∗ is an

isomorphism of rightA-comodules. The final assertion is then obvious.✷
Let C be a coalgebra andC∗ the dual algebra. ThenC is a left (right)C∗-module

under the left (right) action⇀ (↼) of C∗ onC given byc∗ ⇀ c =∑
c∗(c2)c1 (c ↼ c∗ =∑

c∗(c1)c2), for all c∗ ∈ C∗ and c ∈ C. Recall thatC is called a left (right) quasi-co
Frobenius coalgebra (shortly QcF coalgebra) if there exists an injective morphism
(right) C∗-modules fromC to a free left (right)C∗-module. The coalgebraC is called left
(right) co-Frobenius if there exists a monomorphism of (left) rightC∗-modules fromC to
C∗ or, equivalently, if there exists a bilinear formb :C ⊗C → k which is left (right) non-
degenerated andC∗-balanced, i.e., ifb(c, x) = 0 for anyc ∈ C (respectivelyb(x, c) = 0
for anyc ∈C) thenx = 0 andb(x ↼ c∗, y)= b(x, c∗ ⇀ y) for anyx, y ∈C, c∗ ∈C∗.

Finally, C∗ is a left (right)C∗-module, so we can consider the left (right) rational p
of C∗. We will denote thisC∗-submodule ofC∗ by C∗rat

l (respectivelyC∗rat
r ). C is called

a left (right) semiperfect coalgebra if the categoryCM (MC) of left (right) C-comodules
has enough projectives or, equivalently,C∗rat

r (C∗rat
l ) is a dense subset ofC∗ (in the finite

topology, see [1,7] for the definition). Following [3], ifC is a left and right semiperfec
coalgebra thenC∗rat

l = C∗rat
r := C∗rat, C∗rat is dense inC∗ andC is projective generator in

the categoriesCM andMC .
It is known that a left (right) co-Frobenius coalgebra is a left (right) QcF coalg

and a left (right) QcF coalgebra is a left (right) semiperfect coalgebra, but the con
implications are not true. There are examples showing that none of the three conc
left–right symmetric. However, ifH is a Hopf algebra all these concepts are equivalen
H having non-zero left (or right) integrals. We prove now that a similar result hold
dual quasi-Hopf algebras. Except for the implication (i)⇒ (ii), the proof is identical to the
proof of [7, Theorem 5.3.2], so we omit it here.

Theorem 4.5. Let A be a dual quasi-Hopf algebra. Then the following assertions
equivalent:
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(i) A has a non-zero integral.
(ii) A is a left co-Frobenius coalgebra.
(iii) A is a left QcF coalgebra.
(iv) A is a left semiperfect coalgebra.
(v) A has a non-zero right integral.

(vi) A is a right co-Frobenius coalgebra.
(vii) A is a right QcF coalgebra.
(viii) A is a right semiperfect coalgebra.
(ix) A is a generator in the categoryAM (or in MA).
(x) A is a projective object in the categoryAM (or in MA).

Proof. (i) ⇒ (ii). Let T ∈ A∗ be a non-zero left integral. We define a bilinear fo
b :A⊗A→ k as follows:

b(a, b)= θ∗(T ⊗ b)(a), ∀a, b ∈A, (4.18)

whereθ∗ is the map defined as in (4.13). Then, for alla, b ∈A anda∗ ∈A∗ we compute:

b(a ↼a∗, b) =
∑

a∗(a1)b(a2, b)

(4.18) = 〈
a∗θ∗(T ⊗ b), a

〉

(4.14), (4.18) =
∑

a∗(b2)b(a, b1)= b(a, a∗ ⇀ b)

proving thatb is C∗-balanced. Now we prove thatb is left non-degenerate. Ifx ∈ A such
that b(a, x) = 0 for anya ∈ A thenθ∗(T ⊗ x) = 0, and it follows from Proposition 4.
that x = 0. Thusb is C∗-balanced and left non-degenerate, soA is a left co-Frobenius
coalgebra. ✷

By [6, Proposition 2.2], any subcoalgebraD of a left semiperfect coalgebraC is itself
left semiperfect. As a consequence of Theorem 4.5, we therefore have

Corollary 4.6. Let A be a dual quasi-Hopf algebra with non-zero integrals. Then
dual quasi-Hopf subalgebraB of A (i.e., a subcoalgebraB of A which is closed unde
multiplication ofA, 1∈ B andS(B)⊆ B) has non-zero integrals.

We proceed with a proof of the uniqueness of integrals for dual quasi-Hopf alge
First, by [7, Remark 5.4.3], ifC is a left and right co-Frobenius coalgebra, andM is a
finite-dimensional rightC-comodule, then dimk HomC∗(C,M) � dimk M (recall thatM
andN are in a natural way leftC∗-modules).

Proposition 4.7. Let A be a dual quasi-Hopf algebra with non-zero integral. Th
dimk

∫
l
= dimk

∫
r
= 1.

Proof. A is a left and right co-Frobenius dual quasi-Hopf algebra by Theorem 4.5k is
a rightA-comodule, and

∫ = HomA∗(A, k). Thus,
∫

has dimension at most 1, so this h

r r
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dimension precisely 1 since
∫
r �= 0. Now, if we replace the dual quasi-Hopf algebraA with

Aop,cop then we obtain that dimk
∫
l = 1. ✷

A result of Radford [17] asserts that a co-Frobenius Hopf algebra has bijective ant
It is not known if a similar result holds for a co-Frobenius dual quasi-Hopf algebra
this end, we would need the dual version of Lemma 2.4, without the assumption th
antipode is bijective. However, we know that the antipode of a co-Frobenius dual
Hopf algebra is injective (Corollary 4.4). We apply this to prove the following result.

Lemma 4.8. Let A be a dual quasi-Hopf algebra with a non-zero left integralT and
antipodeS. ThenT ◦ S is a non-zero right integral onA. In particular,S(

∫
l
)= ∫

r
.

Proof. We omit the proof, since it is identical to proof of [7, Lemma 5.4.4].✷
The right integralT ◦ S can be described more explicitly. Indeed, letA be a dual

quasi-Hopf algebra with non-zero left integralT . Then, for alla∗ ∈A∗, T a∗ is also a left
integral andT a∗ = χ(a∗)T for some mapχ from A∗ to k. SinceT a∗b∗ = χ(a∗b∗)T =
χ(a∗)χ(b∗)T andT = χ(ε)T , χ is an algebra map.

Let G(C) be the set of group-like elements of a coalgebraC. From (4.6) and (4.5)
it follows that a group-like elementg in a dual quasi-Hopf algebra is invertible a
g−1 = S(g).

The following result generalizes [2, Proposition 1.3].

Proposition 4.9. LetA be a dual quasi-Hopf algebra with a non-zero left integralT . Then
there exists a group-like elementg in A such that

(i) T a∗ = a∗(g)T , for anya∗ ∈A∗;
(ii) S(T )=Λ(g ⇀ T ), whereΛ ∈ A∗ is given byΛ(b)= ∑

α(b2)ϕ
−1(S(b1), b3, g), for

all b ∈A.

Proof. SinceT �= 0, there existsa ∈A such thatT (a)= 1. We will show that

g = a ↼T =
∑

T (a1)a2

has the required properties. As in Section 3, we denote by⇀ and↼ the usual left and
right action respectively ofA onA∗, that is

〈b ⇀a∗, c〉 = 〈a∗, cb〉 and 〈a∗ ↼b,c〉 = 〈a∗, bc〉.

It is easy to show that

(a∗b∗) ↼ b =
∑

(a∗ ↼ b1)(b
∗ ↼b2); (4.19)

b ⇀ (a∗b∗) =
∑

(b1 ⇀a∗)(b2 ⇀ b∗). (4.20)
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Let χ ∈A∗∗ be defined as above. For alla∗ ∈A∗, we have that

χ(a∗)= χ(a∗)T (a)= 〈T a∗, a〉 =
∑

T (a1)a
∗(a2)=

〈
a∗,

∑
T (a1)a2

〉
= a∗(g),

and thereforeT a∗ = χ(a∗)T = a∗(g)T , for any a∗ ∈ A∗. g is a group-like element
becauseχ is an algebra map.

(ii) Define Λ :A → A∗ by Λ(b)(c) = ∑
α(b2)ϕ

−1(S(b1), b3, c) for any b, c ∈ A. It
follows thatΛ(b)=Λ(b)(g), for anyb ∈ A, andΛ(1)= ε. Moreover, by (4.1), (4.5) an
(i) we have that

∑
Λ(b2)

[(
T ↼ S(b1)

)
↼ b3

]= T Λ(b)=Λ(b)T , ∀b ∈ B. (4.21)

Now, the relation in (ii) follows from the following computation, for allb ∈A:

〈
Λ(g ⇀ T ),b

〉 =
∑

Λ(b1)
〈
T ↼ b2, g

〉
T (a)

(i) =
∑

Λ(b1)
〈
T (T ↼b2), a

〉

(4.21), (4.19) =
∑〈

Λ(b2)
{[(

T ↼ S(b1)
)
T

]
↼ b3

}
, a

〉

=
∑

T
(
S(b1)

)〈
Λ(b2)(T ↼ b3), a

〉
sinceT ∈ ∫

l

= 〈
Λ(1)T , a

〉〈
S(T ), b

〉
sinceS(T ) ∈ ∫

r , see Lemma 4.8

= 〈
S(T ), b

〉
. ✷

We conclude this paper with a Maschke type theorem for dual quasi-Hopf algebra
C be a coalgebra andM a rightC-comodule. Recall thatM is called cosemisimple if fo
any subcomoduleN of M there exists aC-colinear mapπ :M → N such thatπ ◦ i = id,
wherei :N →M is the inclusion map.C is called cosemisimple if any rightC-comodule
is cosemisimple.

Theorem 4.10. For a dual quasi-Hopf algebraA, the following statements are equivale:

(i) A is a cosemisimple coalgebra;
(ii) A, viewed as a rightA-comodule via comultiplication, is cosemisimple as

A-comodule;
(iii) there exists a right integralT ∈A∗ such thatT (1)= 1;
(iv) there exists a left integralT ∈A∗ such thatT (1)= 1.

Proof. (i) ⇒ (ii) is trivial.
(ii) ⇒ (iii). Let u : k →A be the unit map ofA. k is trivially a rightA-comodule. Since

u is injective, there exists anA-colinear mapT :A → k such thatT (1) = 1. This means
thatT is a right integral forA andT (1)= 1.
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(iii) ⇒ (iv). Let T be a right integral onA such thatT (1)= 1. ThenT is a left integral
onAop,cop andT ◦ S is a right integral onAop,cop, by Lemma 4.8. Therefore,T ◦ S is a left
integral forA, and sinceT (1)= 1 it follows that(T ◦ S)(1)= 1.

(iv) ⇒ (i). Let T ∈ ∫
l

be such thatT (1)= 1 andM a rightA-comodule. ThenM ⊗A

is also a rightA-comodule rightA-action id⊗∆. ρM :M → M ⊗A is an injective right
A-colinear map. Moreover, the mapωM :M ⊗A→M given by

ωM(m⊗ a)=
∑

α(a3)ϕ
(
m(1), S(a2), a4

)
β(m(3))T

(
m(2)S(a1)

)
m(0), (4.22)

is rightA-colinear (by (4.16)), andωM ◦ ρM = id (by (4.5) and (4.6)).
Now, if N is anA-subcomodule ofM, then there is ak-linear mapπ̃ :M → N such

that π̃ ◦ i = id, wherei is the inclusion mapi :N → M. We defineπ :M → N , π =
ωN ◦ (π̃ ⊗ id) ◦ ρM , whereωN is the corresponding map (4.22) for the rightA-comodule
N . Is not hard to see that̃π ⊗ id is A-colinear, henceπ is A-colinear. It also follows from
the above considerations thatπ ◦ i = id, proving thatA is a cosemisimple coalgebra.✷
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[6] S. Dăsc̆alescu, C. N̆ast̆asescu, B. Torrecillas, Co-Frobenius Hopf algebras: Integrals, Doi–Koppinen mo

and injective objects, J. Algebra 220 (1999) 542–560.
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[18] Ş. Raianu, An easy proof for uniqueness of integrals, in: S. Caenepeel, F. Van Oystaeyen (Eds

Algebras and Quantum Groups, in: Lecture Notes Pure Appl. Math., Vol. 209, Dekker, New York,
pp. 237–240.

[19] P. Schauenburg, Two characterizations of finite quasi-Hopf algebras, math.QA/0207069.
[20] J.B. Sullivan, The uniqueness of integrals for Hopf algebras and some existence theorems of integ

cocommutative Hopf algebras, J. Algebra 19 (1971) 426–440.
[21] M.E. Sweedler, Hopf Algebras, Benjamin, New York, 1969.
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