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Abstract

It is well known that the flow past a circular cylinder at critical Reynolds number combines flow separation, turbulence transition,

reattachment of the flow and further turbulent separation of the boundary layer. In the critical regime, the transition to turbulence in

the boundary layer causes the delaying of the separation point and, an important reduction of the drag force on the cylinder surface

known as the Drag Crisis. In this paper advanced turbulence simulations at Reynolds numbers in the range of 1.4 × 105-8.5 × 105

will be carried out by means of large-eddy simulations. Numerical simulations using unstructured grids up to 70 million of control

volumes have been performed on Marenostrum Supercomputer. One of the major outcomes is shedding some light on the shear

layer instabilities mechanisms and their role on the drag crisis phenomena.
c© 2013 The Authors. Published by Elsevier Ltd. Selection and/or peer-review under responsibility of the Hunan University and

National Supercomputing Center in Changsha (NSCC).
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1. Introduction

The flow past a circular cylinder is associated with different types of instabilities which involve the wake, the

separated shear layers and the boundary layer. A comprehensive description of the flow phenomena at different

Reynolds numbers (Re) can be found in [1]. It is well known that when Reynolds numbers approaches 2 × 105

the boundary layer undergoes a transition from laminar to turbulent regime. The range of Reynolds numbers up

to ∼ 3.5 × 105 is characterised by a rapid decrease of the drag coefficient with the Reynolds numbers. Another

feature which characterises this regime is the presence of asymmetric forces during the transition regime as reported

experimentally [2, 3]. During this transition, the sepation point moves towards the rear end of the cylinder until it

reaches a stationary point with a stable drag coefficient. This marks the transition from the critical to the supercritical

regime [4].

This work aims at shed some light into the complex physics present at these critical and supercritical Reynolds

numbers. To do this, large-eddy simulations of the flow at Reynolds numbers in the range of Re = 1.4× 105-8.5× 105

are carried out. Solutions are compared to experimental measurements available in the literature. One of the major

outcomes is to understand the physics that characterise both critical and supercritical regimes and the role of the

turbulent transition in the boundary layer on the drag crisis phenomena.
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2. Mathematical and numerical method

The spatially filtered Navier-Stokes equations can be written as,

Mu = 0 (1)

∂u
∂t
+ C

(
u
)

u + νDu + ρ−1Gp = C
(
u
)

u − C (u) u

≈ −MTi j (2)

where u and p are the filtered velocity vector and pressure, respectively. ν is the kinematic viscosity and ρ the density.

Convective and diffusive operators in the momentum equation for the velocity field are given by C
(
u
)
= (u · ∇),

D = −∇2 respectively. Gradient and divergence (of a vector) operators are given by G = ∇ and M = ∇· respectively.

The last term in equation 2 indicates some modelisation of the filtered non-linear convective term. T is the SGS stress

tensor, which is defined as,

Ti j = −2νsgsSi j + (Tkk : I)I/3 (3)

where Si j is the large-scale rate-of-strain tensor, Si j =
1
2
[G(u)+G∗(u)], with G∗ being the transpose of the gradient

operator.

To close the formulation, a suitable expression for the subgrid-scale (SGS) viscosity must be introduced. LES stud-

ies have been performed using the wall-adapting local-eddy viscosity model within a variational multi-scale frame-

work (VMS-WALE) [5, 6]. The variational multi-scale (VMS) approach was originally formulated for the Smagorin-

sky model by Hughes [6] is used here with the small-small strategy is used in conjunction with the wall-adapting eddy

viscosity (WALE) model [5]. In VMS three classes of scales are considered: large, small and unresolved scales. If

a second filter with filter length �̂ is introduced (usually called test filter), a splitting of the scales can be performed,

f
′
= f − f̂ . For the large-scale parts of the resolved u a general governing equation can be derived,

∂u
∂t
+ C

(
u
)
u + νDu + ρ−1ΩGp = −

∂T̂
∂x j
−
∂T ′

∂x j
(4)

Neglecting the effect of unresolved scales in the large-scale equation (T̂ ≈ 0), it is only necessary to model the T ′ .

T ′ = −2νsgsSij

′

+
1

3
T ′δi j (5)
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where Ωi j is the rate-of-rotation tensor. Cvms
w is the equivalent of the WALE coefficient for the small-small VMS

approach. In our studies a value of Cw = 0.325 is used.

2.1. Numerical method

The governing equations have been discretised on a collocated unstructured grid arrangement by means of second-

order spectro-consistent schemes. Such schemes are conservative, i.e. they preserve the symmetry properties of the

continuous differential operators and, ensure both stability and conservation of the kinetic-energy balance even at high

Reynolds numbers and with coarse grids. For the temporal discretisation of the momentum equation (2) a two-step

linear explicit scheme on a fractional-step method has been used for the convective and diffusive terms [7], while

for the pressure gradient term an implicit first-order scheme has been implemented. This methodology has been

previously used with accurate results for solving the flow over bluff bodies with massive separation [8, 9].



168   Ivette Rodríguez et al.  /  Procedia Engineering   61  ( 2013 )  166 – 172 

2.2. Definition of the case. Geometry and mesh resolution.

We are considering here the flow past a circular cylinder at critical Reynolds numbers in the range of Re =
Ure f D/ν = 1.4 × 105 − 8.5 × 105. The Reynolds numbers is defined in terms of the free-stream velocity Ure f and

the cylinder diameter D. The cases have been solved in a computational domain of dimensions x ≡ [−16D, 16D]; y ≡
[−10D, 10D]; z ≡ [0, 0.5πD] in the stream-, cross- and span-wise directions, respectively, with a circular cylinder

at (0,0,0). As mentioned before, the governing equations are discretised on an unstructured mesh generated by the

constant-step extrusion of a two-dimensional unstructured grid. Different grids up ∼ 64 MCVs to have been used,

depending on the Reynolds number (see Table 1). As we are not using any wall function in our formulation, the

boundary layer should be well solved. Thus, in the near-wall region the mesh is highly refined. In fact, for Reynolds

numbers Re ≥ 3.8 × 105, a prism layer is constructed around the cylinder surface as can be seen in Figure 1.

Table 1. Main parameters for the different computations. NCVt total number of CVs; NCV plane number of CVs in the plane; Nplanes number of

planes in the span-wise direction

Re NCVt [MCVs] NCV plane Nplanes

1.44 × 105 38.4 299683 128

2.6 × 105 38.4 299683 128

3.8 × 105 48.6 379950 128

5.3 × 105 48.6 379950 128

7.2 × 105 64 500516 128

8.5 × 105 64 500516 128

Fig. 1. Detail of the computational 2D grid. (left) grid refinement around the cylinder. (right) Detail of the prism layer at the cylinder surface.

2.3. Boundary conditions

The boundary conditions at the inflow consist of a uniform velocity (u,v,w)=(1,0,0), slip conditions in the top and

bottom boundaries of the domain, while at the outlet a pressure-based condition is used. At the cylinder surface,

no-slip conditions are prescribed. As for the span-wise direction, periodic boundary conditions are imposed. As

mentioned before, the governing equations are discretised on an unstructured mesh generated by the constant-step

extrusion of a two-dimensional unstructured grid.

2.4. Computational details. Solving the Poisson equation.

Accordingly to the numerical method explained above, in order to respect the incompressibility constraint of the

flow, a Poisson equations needs to be solved at each time-step to project the velocity field onto a divergence-free space.

Due to the non-local nature of its solution, this elliptic system is the most time consuming and difficult to parallelize
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Fig. 2. Illustrative weak speed-up test for the direct Poisson solver, based in a FFT diagonalization and a Schur complement based decomposition

part of the code. Therefore, the optimization efforts are concentrated in this part of the algorithm, while the parallel

performance of the rest of the code, which is based on explicit schemes, can be obtained much more effortless.

Since periodic boundary conditions are imposed in the span-wise direction, an FFT based method is being used

decoupling the initial system into a set of two-dimensional subsystems, i.e diagonalizing the system in a Fourier space.

Those subsystems, here referred to as frequency systems, are then solved by means of a direct Schur complement

based (DSD) method. Therefore, a direct approach is composed - no iterative convergence scheme is required - which

makes up a robust solution to the problem.

The parallelization is based on a geometric domain decomposition. Different partitions are employed for the FFT-

based change-of-basis (from the physical to the spectral space and vice versa) and for the solution of the frequency

systems. The former operation must be performed without partitioning the mesh in the span-wise direction - to avoid

the parallelization of the FFT - whereas, for the latter, the number of processes to solve each frequency subsystem

must be kept in the range of linear scalability of the DSD algorithm. Despite the additional transmissions of data

between both partitions, this strategy benefits the scalability of the overall algorithm. The interested reader is referred

to [10] for the full details.

The efficiency and scalability of this method was demonstrated for meshes with up to 109 million nodes engaging

up to 8192 CPU in [10]. In Figure 2(a) is shown an illustrative weak speedup test performed in the MareNostrum

supercomputer. The load per CPU is kept constant at around 125000 nodes varying the number of parallel process

from 64 to 8192. The slowdown obtained when increasing the mesh and number of parallel processes 128 times is

only of 1.5×. Its also remarkable that, in the now old fashioned MareNostrum II supercomputer, only 0.4 seconds

where necessary to solve the 109 millions unknowns problem with 8192 CPU-cores.

3. Results

Figure 3 shows the isocontours of second invariant of the velocity gradient tensor (Q) coloured by the velocity

magnitude at Reynolds numbers 1.44×105 and 5.3×105. While the lower Reynolds numbers exhibits a flow topology

similar to that observed in the sub-critical regime, i.e. laminar flow separation at about (φs ∼ 90◦) from the stagnation

point and, transition to turbulence in the separated shear layers, at the higher Reynolds numbers the flow shows a

narrow wake with the separation point moving towards the rear end of the cylinder (φs ≥ 90◦).

The variation of the drag coefficient with the Reynolds number is plotted in 4(a) together with reference data from

the literature. At these Reynolds numbers, the measured data of the drag coefficient present a large scattering. This is
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Fig. 3. Vortical structures represented by Q isocontours at different Reynolds numbers (left) Re = 1.4 × 105; (right) Re = 5.3 × 105.

due to the difficulties associated with the measurements; the flow is very sensitive to the different turbulence intensities,

cylinder end conditions, surface roughness, blockage ratio (i.e. the ratio of the cylinder diametre to the wind tunnel

height), etc. In spite of the large scattering in the reference data, results obtained with the present simulations show a

fair agreement, being in the same range of the measured data.

In addition to the total drag coefficient, the pressure distribution at the cylinder at different Reynolds numbers is

also shown in figure 4(b). As can be seen, at Re = 1.44×105 it compares very well with that measured by Cantwell and

Coles [15] at the same Reynolds number. As the Reynolds numbers increases, the pression distribution changes with

a pronounced deacrese in the magnitude of the minimum pressure, and the position of this minima moving towards

the rear end of the cylinder. At the same time the cylinder base pressure rises as also shown by Achenbach [11] in his

study. This behaviour is characteristic of the critical regime.

One interesting feature observed in the present computations is the presence of asymmetric forces at the cylinder

surface in the regime transition (in the present computations at Re = 2.5 × 105). This behaviour, which causes large

fluctuations in the cylinder forces and yields average lift Cl > 0, was also observed experimentally by Bearman [2]

and Schewe [3]. As can be observed, at the larger Reynolds, forces at the cylinder recover their symmetry (see figure

4(b)) and the drag coefficient reaches its minimum value (see also figure 4(a)). In the final version of the manuscript,

results of the different flow configurations observed at the different Reynolds numbers will be given, together with

measurements of the local forces and characteristics frequencies of the flow.
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